To see the other types of publications on this topic, follow the link: Comparison theorems.

Journal articles on the topic 'Comparison theorems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Comparison theorems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Džurina, Jozef. "Comparison theorems for functional differential equations." Mathematica Bohemica 119, no. 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maniscalco, Caterina. "A comparison of three recent selection theorems." Mathematica Bohemica 132, no. 2 (2007): 177–83. http://dx.doi.org/10.21136/mb.2007.134188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baumgartner, Bernhard. "Level comparison theorems." Annals of Physics 168, no. 2 (May 1986): 484–526. http://dx.doi.org/10.1016/0003-4916(86)90041-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Filippov, V. V. "On comparison theorems." Mathematical Notes 57, no. 4 (April 1995): 421–32. http://dx.doi.org/10.1007/bf02304171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Růžičková, Miroslava. "Comparison theorems for differential equations of neutral type." Mathematica Bohemica 122, no. 2 (1997): 181–89. http://dx.doi.org/10.21136/mb.1997.125913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Di Vizio, Lucia, and Charlotte Hardouin. "Galois theories of q-difference equations: comparison theorems." Confluentes Mathematici 12, no. 2 (March 26, 2021): 11–35. http://dx.doi.org/10.5802/cml.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Achinger, Piotr. "-neighborhoods and comparison theorems." Compositio Mathematica 151, no. 10 (June 5, 2015): 1945–64. http://dx.doi.org/10.1112/s0010437x15007319.

Full text
Abstract:
A technical ingredient in Faltings’ original approach to$p$-adic comparison theorems involves the construction of$K({\it\pi},1)$-neighborhoods for a smooth scheme$X$over a mixed characteristic discrete valuation ring with a perfect residue field: every point$x\in X$has an open neighborhood$U$whose generic fiber is a$K({\it\pi},1)$scheme (a notion analogous to having a contractible universal cover). We show how to extend this result to the logarithmically smooth case, which might help to simplify some proofs in$p$-adic Hodge theory. The main ingredient of the proof is a variant of a trick of Nagata used in his proof of the Noether normalization lemma.
APA, Harvard, Vancouver, ISO, and other styles
8

Eschenburg, J. H. "Comparison theorems and hypersurfaces." Manuscripta Mathematica 59, no. 3 (September 1987): 295–323. http://dx.doi.org/10.1007/bf01174796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aharonov, Dov, and Uri Elias. "Singular Sturm comparison theorems." Journal of Mathematical Analysis and Applications 371, no. 2 (November 2010): 759–63. http://dx.doi.org/10.1016/j.jmaa.2010.05.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Yufeng, Ettore Minguzzi, and Shin-ichi Ohta. "Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with ϵ-Range." Analysis and Geometry in Metric Spaces 10, no. 1 (January 1, 2022): 1–30. http://dx.doi.org/10.1515/agms-2020-0131.

Full text
Abstract:
Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.
APA, Harvard, Vancouver, ISO, and other styles
11

MARENICH, Valery. "The extremal case in Toponogov's comparison theorem and gap-theorems." Hokkaido Mathematical Journal 22, no. 2 (June 1993): 115–22. http://dx.doi.org/10.14492/hokmj/1381413169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lu, G., and B. D. Sleeman. "Maximum principles and comparison theorems for semilinear parabolic systems and their applications." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 123, no. 5 (1993): 857–85. http://dx.doi.org/10.1017/s0308210500029541.

Full text
Abstract:
SynopsisA fundamental comparison theorem is established for general semilinear parabolic systems via the notions of sectorial operators, analytic semigroups and the application of the Tychonoff Fixed Point Theorem. Based on this result, we establish a maximum principle for systems of general parabolic operators and general comparison theorems for parabolic systems with quasimonotone or mixed quasimonotone nonlinearities. These results cover and extend most currently used forms of maximum principles and comparison theorems. A global existence theorem for parabolic systems is derived as an application which, in particular, gives rise to some global existence results for Fujita type systems and certain generalisations.
APA, Harvard, Vancouver, ISO, and other styles
13

Cerfon, Antoine J., and Jeffrey P. Freidberg. "Magnetohydrodynamic stability comparison theorems revisited." Physics of Plasmas 18, no. 1 (January 2011): 012505. http://dx.doi.org/10.1063/1.3535587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Džurina, Jozef. "Comparison theorems of Sturm's type." Mathematika 41, no. 2 (December 1994): 312–21. http://dx.doi.org/10.1112/s0025579300007415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Erbe, L. H. "Generalized disconjugacy and comparison theorems." Journal of Approximation Theory 59, no. 1 (October 1989): 107–15. http://dx.doi.org/10.1016/0021-9045(89)90163-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pokornyi, Yu V., and I. G. Karelina. "Nonlinear comparison theorems on graphs." Mathematical Notes of the Academy of Sciences of the USSR 50, no. 2 (August 1991): 879–80. http://dx.doi.org/10.1007/bf01157581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xiao-Qin, Huang, Wang Mian-Sen, and Jia Jun-Guo. "Two comparison theorems of bsdes." Journal of Applied Mathematics and Computing 24, no. 1-2 (May 2007): 377–85. http://dx.doi.org/10.1007/bf02832326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rebeschini, Patrick, and Ramon van Handel. "Comparison Theorems for Gibbs Measures." Journal of Statistical Physics 157, no. 2 (August 8, 2014): 234–81. http://dx.doi.org/10.1007/s10955-014-1087-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Burchard, A., and M. Schmuckenschläger. "Comparison theorems for exit times." Geometric and Functional Analysis 11, no. 4 (November 2001): 651–92. http://dx.doi.org/10.1007/pl00001681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McNabb, A. "Comparison theorems for differential equations." Journal of Mathematical Analysis and Applications 119, no. 1-2 (October 1986): 417–28. http://dx.doi.org/10.1016/0022-247x(86)90163-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Grace, S. R., B. S. Lalli, and C. C. Yeh. "Comparison theorems for difference inequalities." Journal of Mathematical Analysis and Applications 113, no. 2 (February 1986): 468–72. http://dx.doi.org/10.1016/0022-247x(86)90318-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kr�ger, Pawel. "Comparison theorems for diffusion processes." Journal of Theoretical Probability 3, no. 4 (October 1990): 515–31. http://dx.doi.org/10.1007/bf01046093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chen, Roger. "On Heat Kernel Comparison Theorems." Journal of Functional Analysis 165, no. 1 (June 1999): 59–79. http://dx.doi.org/10.1006/jfan.1999.3395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Argyros, Ioannis K., and Ferenc Szidarovszky. "Comparison theorems for algorithmic models." Applied Mathematics and Computation 40, no. 2 (November 1990): 179–85. http://dx.doi.org/10.1016/0096-3003(90)90131-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dalal, Aseem, and Narendra Govil. "On comparison of annuli containing all the zeros of a polynomial." Applicable Analysis and Discrete Mathematics 11, no. 1 (2017): 232–41. http://dx.doi.org/10.2298/aadm1701232d.

Full text
Abstract:
There are many theorems providing annulus containing all the zeros of a polynomial, and it is known that two such theorems cannot be compared, in the sense that one can always find a polynomial for which one theorem gives a sharper bound than the other. It is natural to ask if there is a class of polynomials for which such comparison is possible and in this paper we investigate this problem and provide results which for polynomials with some condition on the degree or absolute range of coefficients, enable us to compare two such theorems.
APA, Harvard, Vancouver, ISO, and other styles
26

MA, LI. "COMPARISON THEOREMS FOR CAPUTO–HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS." Fractals 27, no. 03 (May 2019): 1950036. http://dx.doi.org/10.1142/s0218348x19500361.

Full text
Abstract:
The main purpose of this paper is to investigate the comparison theorems for fractional differential equations involving Caputo–Hadamard fractional derivatives. First, we indicate the continuous dependence on parameters of solutions for Caputo–Hadamard fractional differential equations (C-HFDEs). Then, the first and second comparison theorems for C-HFDEs are proposed and proved, respectively. In addition, we establish the generalized comparisons for C-HFDEs under the one-side Lipschitz conditions. At last, the corresponding examples are also provided to verify the theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
27

Grace, S. R. "Oscillation theorems of comparison type for neutral nonlinear functional differential equations." Czechoslovak Mathematical Journal 45, no. 4 (1995): 609–26. http://dx.doi.org/10.21136/cmj.1995.128562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hansen, David. "Vanishing and comparison theorems in rigid analytic geometry." Compositio Mathematica 156, no. 2 (December 26, 2019): 299–324. http://dx.doi.org/10.1112/s0010437x19007371.

Full text
Abstract:
We prove a rigid analytic analogue of the Artin–Grothendieck vanishing theorem. Precisely, we prove (under mild hypotheses) that the geometric étale cohomology of any Zariski-constructible sheaf on any affinoid rigid space $X$ vanishes in all degrees above the dimension of $X$. Along the way, we show that branched covers of normal rigid spaces can often be extended across closed analytic subsets, in analogy with a classical result for complex analytic spaces. We also prove some new comparison theorems relating the étale cohomology of schemes and rigid analytic varieties, and give some applications of them. In particular, we prove a structure theorem for Zariski-constructible sheaves on characteristic-zero affinoid spaces.
APA, Harvard, Vancouver, ISO, and other styles
29

Li, Juan, and Shanjian Tang. "A local strict comparison theorem and converse comparison theorems for reflected backward stochastic differential equations." Stochastic Processes and their Applications 117, no. 9 (September 2007): 1234–50. http://dx.doi.org/10.1016/j.spa.2006.12.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ledoux, M., and M. Talagrand. "Comparison Theorems, Random Geometry and Some Limit Theorems for Empirical Processes." Annals of Probability 17, no. 2 (April 1989): 596–631. http://dx.doi.org/10.1214/aop/1176991418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Headley, V. B. "Comparison Theorems for Linear Elliptic Equations." Canadian Mathematical Bulletin 36, no. 2 (June 1, 1993): 164–72. http://dx.doi.org/10.4153/cmb-1993-024-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

D'AMBROS, Paola, and Antonio LANTERI. "TWO COMPARISON THEOREMS FOR SPECIAL VARIETIES." Kyushu Journal of Mathematics 52, no. 2 (1998): 403–12. http://dx.doi.org/10.2206/kyushujm.52.403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ehrlich, Paul E., and Miguel Sánchez. "Some semi-Riemannian volume comparison theorems." Tohoku Mathematical Journal 52, no. 3 (2000): 331–48. http://dx.doi.org/10.2748/tmj/1178207817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dovgoshey, Oleksiy, Parisa Hariri, and Matti Vuorinen. "Comparison theorems for hyperbolic type metrics." Complex Variables and Elliptic Equations 61, no. 11 (May 25, 2016): 1464–80. http://dx.doi.org/10.1080/17476933.2016.1182517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wu, Zhen, and Mingyu Xu. "Comparison theorems for forward backward SDEs." Statistics & Probability Letters 79, no. 4 (February 2009): 426–35. http://dx.doi.org/10.1016/j.spl.2008.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bishop, Shannon. "Comparison theorems for separable wavelet frames." Journal of Approximation Theory 161, no. 2 (December 2009): 432–47. http://dx.doi.org/10.1016/j.jat.2008.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Anastassiou, G. A. "Comparison theorems on moduli of continuity." Computers & Mathematics with Applications 30, no. 3-6 (September 1995): 15–21. http://dx.doi.org/10.1016/0898-1221(95)00082-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Drozhzhinov, Yu N., and B. I. Zav'yalov. "MULTIDIMENSIONAL ABELIAN AND TAUBERIAN COMPARISON THEOREMS." Mathematics of the USSR-Sbornik 68, no. 1 (February 28, 1991): 85–110. http://dx.doi.org/10.1070/sm1991v068n01abeh001197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Milian, Anna. "Comparison theorems for stochastic evolution equations." Stochastics and Stochastic Reports 72, no. 1-2 (January 2002): 79–108. http://dx.doi.org/10.1080/10451120290008566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Gang. "Local comparison theorems for Kähler manifolds." Pacific Journal of Mathematics 254, no. 2 (December 31, 2011): 345–60. http://dx.doi.org/10.2140/pjm.2011.254.345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Diaconis, Persi, and Laurent Saloff-Coste. "Comparison Theorems for Reversible Markov Chains." Annals of Applied Probability 3, no. 3 (August 1993): 696–730. http://dx.doi.org/10.1214/aoap/1177005359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hall, Richard L., and Qutaibeh D. Katatbeh. "Generalized comparison theorems in quantum mechanics." Journal of Physics A: Mathematical and General 35, no. 41 (October 2, 2002): 8727–42. http://dx.doi.org/10.1088/0305-4470/35/41/307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kon’kov, A. A. "Comparison theorems for quasilinear elliptic inequalities." Mathematical Notes 87, no. 3-4 (April 2010): 588–89. http://dx.doi.org/10.1134/s0001434610030387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Džurina, Jozef. "Comparison Theorems for Functional Differential Equations." Mathematische Nachrichten 164, no. 1 (1993): 13–22. http://dx.doi.org/10.1002/mana.19931640103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yin, Songting, and Qun He. "Eigenvalue comparison theorems on Finsler manifolds." Chinese Annals of Mathematics, Series B 36, no. 1 (December 7, 2014): 31–44. http://dx.doi.org/10.1007/s11401-014-0879-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Castro-Jiménez, F. J., and J. M. Ucha-Enríquez. "Explicit Comparison Theorems for D -modules." Journal of Symbolic Computation 32, no. 6 (December 2001): 677–85. http://dx.doi.org/10.1006/jsco.2001.0489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Konʼkov, Andrej A. "On comparison theorems for elliptic inequalities." Journal of Mathematical Analysis and Applications 388, no. 1 (April 2012): 102–24. http://dx.doi.org/10.1016/j.jmaa.2011.11.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Dickmeis, W. "Comparison theorems for compound quadrature formulas." Numerische Mathematik 50, no. 5 (March 1987): 547–56. http://dx.doi.org/10.1007/bf01408575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Xinpeng, and Yiqing Lin. "Strict comparison theorems under sublinear expectations." Archiv der Mathematik 109, no. 5 (September 22, 2017): 489–98. http://dx.doi.org/10.1007/s00013-017-1098-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Song, Yongzhong. "Comparison theorems for splittings of matrices." Numerische Mathematik 92, no. 3 (September 1, 2002): 563–91. http://dx.doi.org/10.1007/s002110100333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography