Academic literature on the topic 'COMPLES NETWORK'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'COMPLES NETWORK.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "COMPLES NETWORK"

1

PELLEGRINI, Lilla, Monica LEBA, and Alexandru IOVANOVICI. "CHARACTERIZATION OF URBAN TRANSPORTATION NETWORKS USING NETWORK MOTIFS." Acta Electrotechnica et Informatica 20, no. 4 (2020): 3–9. http://dx.doi.org/10.15546/aeei-2020-0019.

Full text
Abstract:
We use tools and techniques specific to the field of complex networks analysis for the identification and extraction of key parameters which define ”good” patterns and practices for designing public transportation networks. Using network motifs we analyze a set of 18 cities using public data sets regarding the topology of network and discuss each of the identified motifs using the concepts and tools of urban planning.
APA, Harvard, Vancouver, ISO, and other styles
2

Tarapata, Zbigniew. "Modelling and analysis of transportation networks using complex networks: Poland case study." Archives of Transport 36, no. 4 (2015): 55–65. http://dx.doi.org/10.5604/08669546.1185207.

Full text
Abstract:
In the paper a theoretical bases and empirical results deal with analysis and modelling of transportation networks in Poland using complex networks have been presented. Properties of complex networks (Scale Free and Small World) and network's characteristic measures have been described. In this context, results of empirical researches connected with characteristics of passenger air links network, express railway links network (EuroCity and InterCity) and expressways/highways network in Poland have been given. For passenger air links network in Poland results are compared with the same networks in USA, China, India, Italy and Spain. In the conclusion some suggestions, observations and perspective dealing with complex network in transportation networks have been presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Asbaş, Caner, Zühal Şenyuva, and Şule Tuzlukaya. "New Organizations in Complex Networks: Survival and Success." Central European Management Journal 30, no. 1 (2022): 11–39. http://dx.doi.org/10.7206/cemj.2658-0845.68.

Full text
Abstract:
Purpose: The present study investigates the survival and success of new organizations in the light of complex network theory. Methodology: The empirical data was collected using the survey method from the technology park companies are analyzed with social network analysis. Two main methods were used in this study: descriptive statistics and social network analysis. Findings: The findings indicate that new nodes appearing because of splitting up of bigger nodes from present or other related networks have a higher degree of centrality. In practice, this means that companies founded by former members of large-scale companies from these networks are more successful due to the ease in providing the flow of resources and information through previous links. This suggests that the imprint effect can be observed in the appearance, lifecycle, and performance of new nodes in complex networks. Originality: The literature lacks studies on new organizations’ lifecycle in complex networks despite the existence of studies about new organizations in organizational networks. This study examines the appearance, success, and survival of new organizations in networks by complex network approaches such as dynamism, dissipative structures, and uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Ziping, Krishnaiyan Thulasiraman, and Pramode K. Verma. "Complex Networks: Traffic Dynamics, Network Performance, and Network Structure." American Journal of Operations Research 03, no. 01 (2013): 187–95. http://dx.doi.org/10.4236/ajor.2013.31a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maciá-Pérez, Francisco, Iren Lorenzo-Fonseca, Jose Vicente Berná-Martinez, and Jose Manuel Sánchez-Bernabeu. "Conceptual Modelling of Complex Network Management Systems." Journal of Computers 10, no. 5 (2015): 309–20. http://dx.doi.org/10.17706/jcp.10.5.309-320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Shuai, and Bai Da Zhang. "Complex Network Model and its Application." Advanced Materials Research 791-793 (September 2013): 1589–92. http://dx.doi.org/10.4028/www.scientific.net/amr.791-793.1589.

Full text
Abstract:
Human life is in a complex network world. In everyday life, the network can be a physical object such as the Internet, power network, road network and neural network; can also abstract not touch, such as interpersonal networks, networks of co-operation in scientific research, product supply chain network, biological populations, networks, etc.. The topology of these networks, the statistical characteristics and the formation mechanism, and so on, has a very important significance for the efficient allocation of resources, provides various functions, as well as the stability of the network, however, due to the complexity of these networks, conventional simplified model and cannot be good solution to the above problems. The complex network and network complexity has become a hot issue in the scientific and engineering concern. This article describes a few common complex network models and its application brief.
APA, Harvard, Vancouver, ISO, and other styles
7

Hernandez, Bryan S., Patrick Vincent N. Lubenia, Matthew D. Johnston, and Jae Kyoung Kim. "A framework for deriving analytic steady states of biochemical reaction networks." PLOS Computational Biology 19, no. 4 (2023): e1011039. http://dx.doi.org/10.1371/journal.pcbi.1011039.

Full text
Abstract:
The long-term behaviors of biochemical systems are often described by their steady states. Deriving these states directly for complex networks arising from real-world applications, however, is often challenging. Recent work has consequently focused on network-based approaches. Specifically, biochemical reaction networks are transformed into weakly reversible and deficiency zero generalized networks, which allows the derivation of their analytic steady states. Identifying this transformation, however, can be challenging for large and complex networks. In this paper, we address this difficulty by breaking the complex network into smaller independent subnetworks and then transforming the subnetworks to derive the analytic steady states of each subnetwork. We show that stitching these solutions together leads to the the analytic steady states of the original network. To facilitate this process, we develop a user-friendly and publicly available package, COMPILES (COMPutIng anaLytic stEady States). With COMPILES, we can easily test the presence of bistability of a CRISPRi toggle switch model, which was previously investigated via tremendous number of numerical simulations and within a limited range of parameters. Furthermore, COMPILES can be used to identify absolute concentration robustness (ACR), the property of a system that maintains the concentration of particular species at a steady state regardless of any initial concentrations. Specifically, our approach completely identifies all the species with and without ACR in a complex insulin model. Our method provides an effective approach to analyzing and understanding complex biochemical systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Dong Wei, Xiang Yan Meng, and Cai Fang Hou. "Building Complex Network Similar to Facebook." Applied Mechanics and Materials 513-517 (February 2014): 909–13. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.909.

Full text
Abstract:
Social networks have been developed rapidly, especially for Facebook which is very popular with 10 billion users. It is a considerable significant job to build complex network similar to Facebook. There are many modeling methods of complex networks but which cant describe characteristics similar to Facebook. This paper provide a building method of complex networks with tunable clustering coefficient and community strength based on BA network model to imitate Facebook. The strategies of edge adding based on link-via-triangular, link-via-BA and link-via-type are used to build a complex network with tunable clustering coefficient and community strength. Under different parameters, statistical properties of the complex network model are analyzed. The differences and similarities are studied among complex network model proposed by this paper and real social network on Facebook. It is found that the network characteristics of the network model and real social network on Facebook are similar under some specific parameters. It is proved that the building method of complex networks is feasible.
APA, Harvard, Vancouver, ISO, and other styles
9

Koam, Ali N. A., Ali Ahmad, and Yasir Ahmad. "Computation of reverse degree-based topological indices of hex-derived networks." AIMS Mathematics 6, no. 10 (2021): 11330–45. http://dx.doi.org/10.3934/math.2021658.

Full text
Abstract:
<abstract><p>Network theory gives an approach to show huge and complex frameworks through a complete arrangement of logical devices. A network is made is made of vertices and edges, where the degree of a vertex refers to the number of joined edges. The degree appropriation of a network represents the likelihood of every vertex having a particular degree and shows significant worldwide network properties. Network theory has applications in many disciplines like basic sciences, computer science, engineering, medical, business, public health and sociology. There are some important networks like logistical networks, gene regulatory networks, metabolic networks, social networks, derived networks. Topological index is a numerical number assigned to the molecular structure/netwrok which is used for correlation analysis in physical, theoretical and environmental chemistry. The hex-derived networks are created by hexagonal networks of dimension $ t $, these networks have an assortment of valuable applications in computer science, medical science and engineering. In this paper we discuss the reverse degree-based topological for third type of hex-derived networks.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
10

Sivakumar, B., and F. M. Woldemeskel. "Complex networks for streamflow dynamics." Hydrology and Earth System Sciences 18, no. 11 (2014): 4565–78. http://dx.doi.org/10.5194/hess-18-4565-2014.

Full text
Abstract:
Abstract. Streamflow modeling is an enormously challenging problem, due to the complex and nonlinear interactions between climate inputs and landscape characteristics over a wide range of spatial and temporal scales. A basic idea in streamflow studies is to establish connections that generally exist, but attempts to identify such connections are largely dictated by the problem at hand and the system components in place. While numerous approaches have been proposed in the literature, our understanding of these connections remains far from adequate. The present study introduces the theory of networks, in particular complex networks, to examine the connections in streamflow dynamics, with a particular focus on spatial connections. Monthly streamflow data observed over a period of 52 years from a large network of 639 monitoring stations in the contiguous US are studied. The connections in this streamflow network are examined primarily using the concept of clustering coefficient, which is a measure of local density and quantifies the network's tendency to cluster. The clustering coefficient analysis is performed with several different threshold levels, which are based on correlations in streamflow data between the stations. The clustering coefficient values of the 639 stations are used to obtain important information about the connections in the network and their extent, similarity, and differences between stations/regions, and the influence of thresholds. The relationship of the clustering coefficient with the number of links/actual links in the network and the number of neighbors is also addressed. The results clearly indicate the usefulness of the network-based approach for examining connections in streamflow, with important implications for interpolation and extrapolation, classification of catchments, and predictions in ungaged basins.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!