Academic literature on the topic 'Complete tripartite graphs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complete tripartite graphs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Complete tripartite graphs"

1

Seoud, M. A., and M. Z. Youssef. "On labelling complete tripartite graphs." International Journal of Mathematical Education in Science and Technology 28, no. 3 (1997): 367–71. http://dx.doi.org/10.1080/0020739970280306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Revathi, R., D. Angel, and R. Mary Jeya Jothi. "MMD labeling of complete tripartite graphs." Journal of Physics: Conference Series 1770, no. 1 (2021): 012083. http://dx.doi.org/10.1088/1742-6596/1770/1/012083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edwards, Keith. "Edge decomposition of complete tripartite graphs." Discrete Mathematics 272, no. 2-3 (2003): 269–75. http://dx.doi.org/10.1016/s0012-365x(03)00195-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haviland, Julie, and Andrew Thomason. "Rotation numbers for complete tripartite graphs." Graphs and Combinatorics 7, no. 2 (1991): 153–63. http://dx.doi.org/10.1007/bf01788140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bunge, Ryan C. "On 1-rotational decompositions of complete graphs into tripartite graphs." Opuscula Mathematica 39, no. 5 (2019): 623–43. http://dx.doi.org/10.7494/opmath.2019.39.5.623.

Full text
Abstract:
Consider a tripartite graph to be any simple graph that admits a proper vertex coloring in at most 3 colors. Let \(G\) be a tripartite graph with \(n\) edges, one of which is a pendent edge. This paper introduces a labeling on such a graph \(G\) used to achieve 1-rotational \(G\)-decompositions of \(K_{2nt}\) for any positive integer \(t\). It is also shown that if \(G\) with a pendent edge is the result of adding an edge to a path on \(n\) vertices, then \(G\) admits such a labeling.
APA, Harvard, Vancouver, ISO, and other styles
6

Camacho, Charles, Silvia Fernández‐Merchant, Marija Jelić Milutinović, et al. "Bounding the tripartite‐circle crossing number of complete tripartite graphs." Journal of Graph Theory 100, no. 1 (2021): 5–27. http://dx.doi.org/10.1002/jgt.22763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chiang, N. P. "Chaotic Numbers of Complete Bipartite Graphs and Tripartite Graphs." Journal of Optimization Theory and Applications 131, no. 3 (2006): 485–91. http://dx.doi.org/10.1007/s10957-006-9152-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bunge, Ryan C., Avapa Chantasartrassmee, Saad I. El-Zanati, and Charles Vanden Eynden. "On Cyclic Decompositions of Complete Graphs into Tripartite Graphs." Journal of Graph Theory 72, no. 1 (2012): 90–111. http://dx.doi.org/10.1002/jgt.21632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Le, Xuan Hung. "Uniquely list colorability of complete tripartite graphs." Chebyshevskii sbornik 23, no. 2 (2022): 170–78. http://dx.doi.org/10.22405/2226-8383-2022-23-2-170-178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajasekaran, G., and R. Sampathkumar. "Optimal orientations of some complete tripartite graphs." Filomat 29, no. 8 (2015): 1681–87. http://dx.doi.org/10.2298/fil1508681r.

Full text
Abstract:
For a graph G, let D(G) be the set of all strong orientations of G. The orientation number of G is d?(G) = min{d(D)|D ? D(G)},where d(D) denotes the diameter of the digraph D. In this paper, we determine the orientation number for some complete tripartite graphs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Complete tripartite graphs"

1

Creswell, Stephanie A. "The Linear Cutwidth and Cyclic Cutwidth of Complete n-Partite Graphs." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/34.

Full text
Abstract:
The cutwidth of different graphs is a topic that has been extensively studied. The basis of this paper is the cutwidth of complete n-partite graphs. While looking at the cutwidth of complete n-partite graphs, we strictly consider the linear embedding and cyclic embedding. The relationship between the linear cutwidth and the cyclic cutwidth is discussed and used throughout multiple proofs of different cases for the cyclic cutwidth. All the known cases for the linear and cyclic cutwidth of complete bipartite, complete tripartite, and complete n-partite graphs are highlighted. The main focus of this paper is to expand on the cyclic cutwidth of complete tripartite graphs. Using the relationship of the linear cutwidth and cyclic cutwidth of any graph, we find a lower bound and an upper bound for the cyclic cutwidth of complete tripartite graph K_(r,r,pr) where r is odd and p is a natural number. Throughout this proof there are two cases that develop, p even and p odd. Within each case we have to consider the cuts of multiple regions to find the maximum cut of the cyclic embedding. Once all regions within each case are considered, we discover that the upper and lower bounds are equivalent. This discovery of the cyclic cutwidth of complete tripartite graph K_(r,r,pr) where r is odd and p is a natural number results in getting one step closer to finding the cyclic cutwidth of any complete tripartite graph K_(r,s,t).
APA, Harvard, Vancouver, ISO, and other styles
2

WU, BAO-LIN, and 吳寶林. "The total colorings of the complete tripartite graphs." Thesis, 1990. http://ndltd.ncl.edu.tw/handle/75684817456433006596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuo, Chun-Yi, and 郭俊億. "On the IC-colorings of complete tripartite graphs." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/49537015849169965661.

Full text
Abstract:
碩士<br>中原大學<br>應用數學研究所<br>99<br>Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a connected subgraph $H$ of $G$ such that $f(H)=k$. Clearly, any connected graph $G$ admits an IC-coloring. The extit{IC-index} of a graph $G$, denoted by $M(G)$, is defined to be $M(G)= maxleftlbrace f(G)mid ight.$ $f$ is an IC-coloring of $left. G ight brace$. If $f$ is an IC-coloring of $G$ such that $f(G) = M(G)$, then we say that $f$ is an maximal IC-coloring of $G$. In this thesis, we prove that $M(K_{m_{1},m_{2},m_{3}})= 13cdot2^{m_{1}+m_{2}+m_{3}-4}-3cdot2^{m_{1}-2}+4$ for $2leq m_{1}leq m_{2}leq m_{3}$.
APA, Harvard, Vancouver, ISO, and other styles
4

Jie, Huang-Bang, and 黃邦傑. "On (p,1)-Total Labelings of Balanced Complete Tripartite Graphs." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/b5yhdq.

Full text
Abstract:
碩士<br>中原大學<br>應用數學研究所<br>102<br>Let G=(V,E) be a graph. A (p,1)-total labeling of G is a mapping from V∪E into {0,…, λ} for some integer λ such that : (i) if x and y are adjacent vertices, then ; (ii) if e and f are adjacent edges, then ; (iii) if an edge e is incident to a vertex x, then , where p is a positive integer. The span of a (p,1)-total labeling is the maximum difference between two labels. The (p,1)-total number of a graph G is the minimum span of a (p,1) -total labeling of G, denoted by λ_p^T (G). In this thesis, we prove that for each integer n≥2, λ_p^T (K_(n,n,n) )≤2n+p+1. Moreover, if n is even or p≥2n then λ_p^T (K_(n,n,n) )=2n+p+1.
APA, Harvard, Vancouver, ISO, and other styles
5

Tsai, Chia-Hsin, and 蔡家欣. "On the IC-colorings of complete tripartite graphs K(1,m,n)." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/42854476016480962314.

Full text
Abstract:
碩士<br>中原大學<br>應用數學研究所<br>100<br>Let G be a graph and let f be a function which maps V(G) into the set of positive integers.We define f(H)=simf(v),v in V(H) for each subgraph H of G.We say f to be an IC-coloring of G if for any integer k in [1,f(G)] there is a connected subgraph H of G such that f(H)=k.Clearly, any connected graph G admits an IC-coloring. The IC -index of a graph G, denoted by M(G) ,is defined to be M(G)=max(f(G),f is a IC-coloring of G).If f is an IC-coloring of G such that f(G)=M(G),then we say that f is an maximal IC-coloring of G. In this thesis, we mainly study the IC-colorings of complete tripartite graphs and prove thatM(k(1,m,n))=13*2^(m+n-3)-2^(m-2)+2 for 2<=m<=n 。
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Wei-Hung, and 李維鴻. "Decompose complete tripartite graph into asteroidal graph." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/02847876006149494371.

Full text
Abstract:
碩士<br>淡江大學<br>數學學系碩士班<br>95<br>In this thesis, we mainly discuss whether the complete tripartite graph Kp,q,r can be decomposed into asteroidal graphs. First we obtain the necessary condition of the decomposition of Kp,q,r into asteroidal graphs. By using latin square, we prove that if Kp,q,r can be decomposed into asteroidal graphs then Knp,nq,nr can do too. For the special values of p、q、r, we give the decompositions. We obtain that Kq,q,r and Kp,q,q can be decomposed into asteroidal graphs if q is multiple of 6 andq>=r>=q/2、5q/2>=p>=q. At last, we give a construction to get cyclic asteroidal graph decomposition of K2n,2n,2n.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Complete tripartite graphs"

1

Pai, Kung-Jui, Shyue-Ming Tang, Jou-Ming Chang, and Jinn-Shyong Yang. "Completely Independent Spanning Trees on Complete Graphs, Complete Bipartite Graphs and Complete Tripartite Graphs." In Advances in Intelligent Systems and Applications - Volume 1. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35452-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pranjali and Renu Naresh. "Nullity and Energy of Complete Tripartite Graphs." In Recent Advancements in Graph Theory. CRC Press, 2020. http://dx.doi.org/10.1201/9781003038436-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Almodóvar, Leyda, Jane HyoJin Lee, MeiRose Neal, Heiko Todt, and Jessica Williams. "DNA Self-assembly: Complete Tripartite Graphs and Cocktail Party Graphs." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-52969-6_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahmoodian, E. S., and Maryam Mirzakhani. "Decomposition of Complete Tripartite Graphs Into 5-Cycles." In Combinatorics Advances. Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-3554-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joseph, John E. "La simplicité dans les théories syntaxiques et leurs applications pédagogiques dans les années 1930-1980." In Simplicité et complexité des langues dans l’histoire des théories linguistiques. Société d’histoire et d’épistémologie des sciences du langage, 2023. https://doi.org/10.4000/132lj.

Full text
Abstract:
L’idée d’une grammaire représente la recherche d’une simplicité essentielle qui sous-tend la complexité langagière. Il n’est pas surprenant alors que les grands pas en avant dans l’histoire de la théorie linguistique ont consisté en des concepts simplificateurs, de la triade conceptuelle des Modistes à la typologie tripartite de Humboldt, puis aux dichotomies structuralistes et à la réduction générativiste des langues du monde à une seule langue humaine. La simplicité n’est pas simple, pourtant. Elle prend diverses formes à diverses époques, et entre les chercheurs d’une même époque. Cet article analyse le rôle joué par la dichotomie simple-complexe dans les théories de Lucien Tesnière (1893-1954), Michael Halliday (1925-2018) et Noam Chomsky, leurs interprétations psychologiques – surtout celle de la théorie hallidayenne par Basil Bernstein (1924-2000) – et les efforts pour les appliquer dans la pédagogie. Dans les trois cas, de bonnes intentions ont été subverties par un concept inadéquat de la simplicité syntaxique. Comment adapter la dichotomie simple-complexe pour atteindre l’égalitarisme éducatif désiré par Tesnière, Halliday et Chomsky ? Faut-il la réimaginer ? Ou l’abandonner entièrement ? Ou ce but louable est-il destiné à rester utopique ?
APA, Harvard, Vancouver, ISO, and other styles
6

Mirchev, Uri, and Mark Last. "Multi-Document Summarization by Extended Graph Text Representation and Importance Refinement." In Advances in Data Mining and Database Management. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5019-0.ch002.

Full text
Abstract:
Automatic multi-document summarization is aimed at recognizing important text content in a collection of topic-related documents and representing it in the form of a short abstract or extract. This chapter presents a novel approach to the multi-document summarization problem, focusing on the generic summarization task. The proposed SentRel (Sentence Relations) multi-document summarization algorithm assigns importance scores to documents and sentences in a collection based on two aspects: static and dynamic. In the static aspect, the significance score is recursively inferred from a novel, tripartite graph representation of the text corpus. In the dynamic aspect, the significance score is continuously refined with respect to the current summary content. The resulting summary is generated in the form of complete sentences exactly as they appear in the summarized documents, ensuring the summary's grammatical correctness. The proposed algorithm is evaluated on the TAC 2011 dataset using DUC 2001 for training and DUC 2004 for parameter tuning. The SentRel ROUGE-1 and ROUGE-2 scores are comparable to state-of-the-art summarization systems, which require a different set of textual entities.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Complete tripartite graphs"

1

Grzesik, Andrzej, and Hrant Khachatrian. "On interval edge-colorings of complete tripartite graphs." In 2013 Computer Science and Information Technologies (CSIT). IEEE, 2013. http://dx.doi.org/10.1109/csitechnol.2013.6710340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulfa, Yuliana, and Purwanto. "Properly even harmonious labelings of complete tripartite graph K1,m,n and union of two coconut tree graphs." In THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2020: Innovative Research in Science and Mathematics Education in The Disruptive Era. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0043182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alwan, Nawras A., Nadia M. G. Al-Saidi, and Wael J. Abdulaa. "A new approach for the characteristic polynomial of a complete tripartite graph." In FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography