To see the other types of publications on this topic, follow the link: Complete tripartite graphs.

Journal articles on the topic 'Complete tripartite graphs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Complete tripartite graphs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Seoud, M. A., and M. Z. Youssef. "On labelling complete tripartite graphs." International Journal of Mathematical Education in Science and Technology 28, no. 3 (1997): 367–71. http://dx.doi.org/10.1080/0020739970280306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Revathi, R., D. Angel, and R. Mary Jeya Jothi. "MMD labeling of complete tripartite graphs." Journal of Physics: Conference Series 1770, no. 1 (2021): 012083. http://dx.doi.org/10.1088/1742-6596/1770/1/012083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edwards, Keith. "Edge decomposition of complete tripartite graphs." Discrete Mathematics 272, no. 2-3 (2003): 269–75. http://dx.doi.org/10.1016/s0012-365x(03)00195-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haviland, Julie, and Andrew Thomason. "Rotation numbers for complete tripartite graphs." Graphs and Combinatorics 7, no. 2 (1991): 153–63. http://dx.doi.org/10.1007/bf01788140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bunge, Ryan C. "On 1-rotational decompositions of complete graphs into tripartite graphs." Opuscula Mathematica 39, no. 5 (2019): 623–43. http://dx.doi.org/10.7494/opmath.2019.39.5.623.

Full text
Abstract:
Consider a tripartite graph to be any simple graph that admits a proper vertex coloring in at most 3 colors. Let \(G\) be a tripartite graph with \(n\) edges, one of which is a pendent edge. This paper introduces a labeling on such a graph \(G\) used to achieve 1-rotational \(G\)-decompositions of \(K_{2nt}\) for any positive integer \(t\). It is also shown that if \(G\) with a pendent edge is the result of adding an edge to a path on \(n\) vertices, then \(G\) admits such a labeling.
APA, Harvard, Vancouver, ISO, and other styles
6

Camacho, Charles, Silvia Fernández‐Merchant, Marija Jelić Milutinović, et al. "Bounding the tripartite‐circle crossing number of complete tripartite graphs." Journal of Graph Theory 100, no. 1 (2021): 5–27. http://dx.doi.org/10.1002/jgt.22763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chiang, N. P. "Chaotic Numbers of Complete Bipartite Graphs and Tripartite Graphs." Journal of Optimization Theory and Applications 131, no. 3 (2006): 485–91. http://dx.doi.org/10.1007/s10957-006-9152-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bunge, Ryan C., Avapa Chantasartrassmee, Saad I. El-Zanati, and Charles Vanden Eynden. "On Cyclic Decompositions of Complete Graphs into Tripartite Graphs." Journal of Graph Theory 72, no. 1 (2012): 90–111. http://dx.doi.org/10.1002/jgt.21632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Le, Xuan Hung. "Uniquely list colorability of complete tripartite graphs." Chebyshevskii sbornik 23, no. 2 (2022): 170–78. http://dx.doi.org/10.22405/2226-8383-2022-23-2-170-178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajasekaran, G., and R. Sampathkumar. "Optimal orientations of some complete tripartite graphs." Filomat 29, no. 8 (2015): 1681–87. http://dx.doi.org/10.2298/fil1508681r.

Full text
Abstract:
For a graph G, let D(G) be the set of all strong orientations of G. The orientation number of G is d?(G) = min{d(D)|D ? D(G)},where d(D) denotes the diameter of the digraph D. In this paper, we determine the orientation number for some complete tripartite graphs.
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Suh-Ryung, and Yoshio Sano. "The competition numbers of complete tripartite graphs." Discrete Applied Mathematics 156, no. 18 (2008): 3522–24. http://dx.doi.org/10.1016/j.dam.2008.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chia, G. L., and Chee-Kit Ho. "Chromatic equivalence classes of complete tripartite graphs." Discrete Mathematics 309, no. 1 (2009): 134–43. http://dx.doi.org/10.1016/j.disc.2007.12.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ellingham, M. N., Chris Stephens, and Xiaoya Zha. "The nonorientable genus of complete tripartite graphs." Journal of Combinatorial Theory, Series B 96, no. 4 (2006): 529–59. http://dx.doi.org/10.1016/j.jctb.2005.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lau, G. C., and Y. H. Peng. "Chromatic uniqueness of certain complete tripartite graphs." Acta Mathematica Sinica, English Series 27, no. 5 (2011): 919–26. http://dx.doi.org/10.1007/s10114-011-8507-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Grannell, M. J., and M. Knor. "On the number of triangular embeddings of complete graphs and complete tripartite graphs." Journal of Graph Theory 69, no. 4 (2011): 370–82. http://dx.doi.org/10.1002/jgt.20590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gein, Pavel A. "ON CHROMATIC UNIQUENESS OF SOME COMPLETE TRIPARTITE GRAPHS." Ural Mathematical Journal 7, no. 1 (2021): 38. http://dx.doi.org/10.15826/umj.2021.1.004.

Full text
Abstract:
Let \(P(G, x)\) be a chromatic polynomial of a graph \(G\). Two graphs \(G\) and \(H\) are called chromatically equivalent iff \(P(G, x) = H(G, x)\). A graph \(G\) is called chromatically unique if \(G\simeq H\) for every \(H\) chromatically equivalent to \(G\). In this paper, the chromatic uniqueness of complete tripartite graphs \(K(n_1, n_2, n_3)\) is proved for \(n_1 \geqslant n_2 \geqslant n_3 \geqslant 2\) and \(n_1 - n_3 \leqslant 5\).
APA, Harvard, Vancouver, ISO, and other styles
17

Grannell, M. J., and M. Knor. "Dihedral Biembeddings and Triangulations by Complete and Complete Tripartite Graphs." Graphs and Combinatorics 29, no. 4 (2012): 921–32. http://dx.doi.org/10.1007/s00373-012-1163-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

T., Arputha Jose, Sampath Kumar S., and Cecily Sahai C. "Decomposition of Complete Tripartite Graphs into Short Cycles." Ars Combinatoria 160, no. 1 (2024): 85–103. http://dx.doi.org/10.61091/ars-160-09.

Full text
Abstract:
For a graph G and for non-negative integers p , q and r , the triplet ( p , q , r ) is said to be an admissible triplet, if 3 p + 4 q + 6 r = | E ( G ) | . If G admits a decomposition into p cycles of length 3 , q cycles of length 4 , and r cycles of length 6 for every admissible triplet ( p , q , r ) , then we say that G has a { C p 3 , C q 4 , C r 6 } -decomposition. In this paper, the necessary conditions for the existence of { C p 3 , C q 4 , C r 6 } -decomposition of K ℓ , m , n ( ℓ ≤ m ≤ n ) are proved to be sufficient. This affirmatively answers the problem raised in \emph{Decomposing complete tripartite graphs into cycles of lengths 3 and 4 , Discrete Math. 197/198 (1999), 123-135}. As a corollary, we deduce the main results of \emph{Decomposing complete tripartite graphs into cycles of lengths 3 and 4 , Discrete Math., 197/198, 123-135 (1999)} and \emph{Decompositions of complete tripartite graphs into cycles of lengths 3 and 6 , Austral. J. Combin., 73(1), 220-241 (2019)}.
APA, Harvard, Vancouver, ISO, and other styles
19

Varghese, Joseph, and A. Antonysamy. "On the Continuous Monotonic Decomposition of Some Complete Tripartite Graphs." Mapana - Journal of Sciences 8, no. 2 (2009): 7–19. http://dx.doi.org/10.12723/mjs.15.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bezegová, L'udmila, and Jaroslav Ivančo. "A characterization of complete tripartite degree-magic graphs." Discussiones Mathematicae Graph Theory 32, no. 2 (2012): 243. http://dx.doi.org/10.7151/dmgt.1608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jin, Zemin, Shili Wen, and Shujun Zhou. "Heterochromatic tree partition problem in complete tripartite graphs." Discrete Mathematics 312, no. 4 (2012): 789–802. http://dx.doi.org/10.1016/j.disc.2011.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ellingham, M. N., and Justin Z. Schroeder. "Nonorientable hamilton cycle embeddings of complete tripartite graphs." Discrete Mathematics 312, no. 11 (2012): 1911–17. http://dx.doi.org/10.1016/j.disc.2012.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Grannell, M. J., T. S. Griggs, M. Knor, and J. Širáň. "Triangulations of orientable surfaces by complete tripartite graphs." Discrete Mathematics 306, no. 6 (2006): 600–606. http://dx.doi.org/10.1016/j.disc.2005.10.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Guo, Zhiwei, Haixing Zhao, and Yaping Mao. "The equitable vertex arboricity of complete tripartite graphs." Information Processing Letters 115, no. 12 (2015): 977–82. http://dx.doi.org/10.1016/j.ipl.2015.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Alawn, Nawras A., Nadia M. G. Al-Saidi, and Rashed T. Rasheed. "Tripartite graphs with energy aggregation." Boletim da Sociedade Paranaense de Matemática 38, no. 7 (2019): 149–67. http://dx.doi.org/10.5269/bspm.v38i7.44463.

Full text
Abstract:
The aggregate of the absolute values of the graph eigenvalues is called the energy of a graph. It is used to approximate the total _-electron energy of molecules. Thus, finding a new mechanism to calculate the total energy of some graphs is a challenge; it has received a lot of research attention. We study the eigenvalues of a complete tripartite graph Ti,i,n−2i , for n _ 4, based on the adjacency, Laplacian, and signless Laplacian matrices. In terms of the degree sequence, the extreme eigenvalues of the irregular graphs energy are found to characterize the component with the maximum energy. The chemical HMO approach is particularly successful in the case of the total _-electron energy. We showed that some chemical components are equienergetic with the tripartite graph. This discovering helps easily to derive the HMO for most of these components despite their different structures.
APA, Harvard, Vancouver, ISO, and other styles
26

Guo, Zhiwei, Haixing Zhao, and Yaping Mao. "On the equitable vertex arboricity of complete tripartite graphs." Discrete Mathematics, Algorithms and Applications 07, no. 04 (2015): 1550056. http://dx.doi.org/10.1142/s1793830915500561.

Full text
Abstract:
The equitable coloring problem, introduced by Meyer in 1973, has received considerable attention and research. Recently, Wu et al. introduced the concept of equitable [Formula: see text]-tree-coloring, which can be viewed as a generalization of proper equitable [Formula: see text]-coloring. The strong equitable vertex [Formula: see text]-arboricity of complete bipartite equipartition graphs was investigated in 2013. In this paper, we study the strong equitable vertex [Formula: see text]-arboricity of complete equipartition tripartite graphs. For most cases, the exact values of [Formula: see text] are obtained.
APA, Harvard, Vancouver, ISO, and other styles
27

Gethner, Ellen, Leslie Hogben, Bernard Lidický, Florian Pfender, Amanda Ruiz, and Michael Young. "On Crossing Numbers of Complete Tripartite and Balanced Complete Multipartite Graphs." Journal of Graph Theory 84, no. 4 (2016): 552–65. http://dx.doi.org/10.1002/jgt.22041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Varghese, Joseph, and A. Antonysamy. "On Some Complete Tripartite Graphs that Decline Continuous Monotonic Decomposition." Asian Journal of Engineering and Applied Technology 1, no. 1 (2012): 1–7. http://dx.doi.org/10.51983/ajeat-2012.1.1.2508.

Full text
Abstract:
A collection of complete tripartite graphs, viz., K1,3,m, K2,3m, K2,5m and K3,5,m do not accept Continuous Monotonic Decomposition(CMD). It is shown that by an addition or removal of a single edge will make these graphs accept CMD. Eventually, the discussion helps to find a series of numbers which are not triangular.
APA, Harvard, Vancouver, ISO, and other styles
29

Hu, Si-wei, and Yi-chao Chen. "The Thickness of Some Complete Bipartite and Tripartite Graphs." Acta Mathematicae Applicatae Sinica, English Series 40, no. 4 (2024): 1001–14. http://dx.doi.org/10.1007/s10255-024-1128-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cavenagh, N. J. "Further decompositions of complete tripartite graphs into 5-cycles." Discrete Mathematics 256, no. 1-2 (2002): 55–81. http://dx.doi.org/10.1016/s0012-365x(01)00462-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Billington, Elizabeth J., and D. G. Hoffman. "Decomposition of complete tripartite graphs into gregarious 4-cycles." Discrete Mathematics 261, no. 1-3 (2003): 87–111. http://dx.doi.org/10.1016/s0012-365x(02)00462-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wagner, Brian C. "Ascending Subgraph Decompositions in Oriented Complete Balanced Tripartite Graphs." Graphs and Combinatorics 29, no. 5 (2012): 1549–55. http://dx.doi.org/10.1007/s00373-012-1208-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kawarabayashi, Ken-ichi, Chris Stephens, and Xiaoya Zha. "Orientable and Nonorientable Genera for Some Complete Tripartite Graphs." SIAM Journal on Discrete Mathematics 18, no. 3 (2004): 479–87. http://dx.doi.org/10.1137/s0895480103429319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Petrosyan, T., and A. Drambyan. "VERTEX-DISTINGUISHING EDGE COLORINGS OF SOME COMPLETE TRIPARTITE GRAPHS." Herald of Russian-Armenian (Slavonic) University humanities and social sciences, no. 2 (2022): 7–18. http://dx.doi.org/10.48200/1829-0450_pmn_2022_2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Burger, AP, and JH van Vuuren. "The Irredundance-related Ramsey Numbers \(s(3,8)=21\) and \(w(3,8)=21\)." Utilitas Mathematica 120, no. 1 (2024): 93–107. http://dx.doi.org/10.61091/um120-08.

Full text
Abstract:
For a graph G and for non-negative integers p, q, and r, the triplet \((p, q, r)\) is said to be an admissible triplet if \(3p + 4q + 6r = |E(G)|\). If G admits a decomposition into p cycles of length 3, q cycles of length 4, and r cycles of length 6 for every admissible triplet \((p, q, r)\), then we say that G has a \(\{C_{3}^{p}, C_{4}^{q}, C_{6}^{r}\}\)-decomposition. In this paper, the necessary conditions for the existence of \(\{C_{3}^{p}, C_{4}^{q}, C_{6}^{r}\}\)-decomposition of \(K_{\ell, m, n} (\ell \leq m \leq n)\) are proved to be sufficient. This affirmatively answers the problem raised in Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math. 197/198 (1999), 123-135. As a corollary, we deduce the main results of Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math., 197/198, 123-135 (1999) and Decompositions of complete tripartite graphs into cycles of lengths 3 and 6, Austral. J. Combin., 73(1), 220-241 (2019).
APA, Harvard, Vancouver, ISO, and other styles
36

Ellingham, M. N., Chris Stephens, and Xiaoya Zha. "Counterexamples to the nonorientable genus conjecture for complete tripartite graphs." European Journal of Combinatorics 26, no. 3-4 (2005): 387–99. http://dx.doi.org/10.1016/j.ejc.2004.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Billington, Elizabeth J., and Nicholas J. Cavenagh. "Decomposing complete tripartite graphs into closed trails of arbitrary lengths." Czechoslovak Mathematical Journal 57, no. 2 (2007): 523–51. http://dx.doi.org/10.1007/s10587-007-0096-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Ruying, Haixing Zhao, and Chengfu Ye. "A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs." Discrete Mathematics 289, no. 1-3 (2004): 175–79. http://dx.doi.org/10.1016/j.disc.2004.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Grannell, M. J., and T. S. Griggs. "A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs." Journal of Combinatorial Theory, Series B 98, no. 4 (2008): 637–50. http://dx.doi.org/10.1016/j.jctb.2007.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Staš, Michal, and Mária Timková. "On the Problems of CF-Connected Graphs for Kl,m,n." Mathematics 12, no. 13 (2024): 2068. http://dx.doi.org/10.3390/math12132068.

Full text
Abstract:
A connected graph, G, is Crossing Free-connected (CF-connected) if there is a path between every pair of vertices with no crossing on its edges for each optimal drawing of G. We conjecture that a complete tripartite graph, Kl,m,n, is CF-connected if and only if it does not contain any of the following as a subgraph: K1,2,7, K1,3,5, K1,4,4, K2,2,5, K3,3,3. We examine the idea that K1,2,7, K1,3,5, K1,4,4, and K2,2,5 are the first non-CF-connected complete tripartite graphs. The CF-connectedness of Kl,m,n with l,m,n≥3 is dependent on the knowledge of crossing numbers of K3,3,n. In this paper, we prove various results that support this conjecture.
APA, Harvard, Vancouver, ISO, and other styles
41

Fronček, Dalibor. "Self-complementary factors of almost complete tripartite graphs of even order." Discrete Mathematics 236, no. 1-3 (2001): 111–22. http://dx.doi.org/10.1016/s0012-365x(00)00435-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Billington, E. "Decomposing complete tripartite graphs into cycles of lengths 3 and 4." Discrete Mathematics 197-198, no. 1-3 (1999): 123–35. http://dx.doi.org/10.1016/s0012-365x(98)00227-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Billington, Elizabeth J. "Decomposing complete tripartite graphs into cycles of lengths 3 and 4." Discrete Mathematics 197-198 (February 1999): 123–35. http://dx.doi.org/10.1016/s0012-365x(99)90049-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhao, Hongtao, and C. A. Rodger. "Large sets of wrapped Hamilton cycle decompositions of complete tripartite graphs." Discrete Mathematics 338, no. 8 (2015): 1407–15. http://dx.doi.org/10.1016/j.disc.2015.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jing, Puning, Zhengke Miao, and Zi-Xia Song. "Some remarks on interval colorings of complete tripartite and biregular graphs." Discrete Applied Mathematics 277 (April 2020): 193–97. http://dx.doi.org/10.1016/j.dam.2019.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Pi, Shasha Li, and Xiaoxue Gao. "k-Path-Connectivity of Completely Balanced Tripartite Graphs." Axioms 11, no. 6 (2022): 270. http://dx.doi.org/10.3390/axioms11060270.

Full text
Abstract:
For a graph G=(V,E) and a set S⊆V(G) of a size at least 2, a path in G is said to be an S-path if it connects all vertices of S. Two S-paths P1 and P2 are said to be internally disjoint if E(P1)∩E(P2)=∅ and V(P1)∩V(P2)=S; that is, they share no vertices and edges apart from S. Let πG(S) denote the maximum number of internally disjoint S-paths in G. The k-path-connectivity πk(G) of G is then defined as the minimum πG(S), where S ranges over all k-subsets of V(G). In this paper, we study the k-path-connectivity of the complete balanced tripartite graph Kn,n,n and obtain πkKn,n,n=2nk−1 for 3≤k≤n.
APA, Harvard, Vancouver, ISO, and other styles
47

C., Sujatha, and Manickam A. "Continuous Monotonic Decomposition of Some Standard Graphs by using an Algorithm." International Journal of Basic Sciences and Applied Computing (IJBSAC) 2, no. 8 (2019): 6–9. https://doi.org/10.35940/ijbsac.H0103.072819.

Full text
Abstract:
In this paper we elaborate an algorithm to compute the necessary and sufficient conditions for the continuous monotonic star decomposition of the bipartite graph Km,r and the number of vertices and the number of disjoint sets. Also an algorithm to find the tensor product of Pn  Ps has continuous monotonic path decomposition. Finally we conclude that in this paper the results described above are complete bipartite graphs that accept Continuous monotonic star decomposition. There are many other classes of complete tripartite graphs that accept Continuous monotonic star decomposition. In this research article Extended to complete m-partite graphs for grater values of m. Also the algorithm can be developed for the tensor product of different classes such as Cn Wn K1,n , , with Pn
APA, Harvard, Vancouver, ISO, and other styles
48

Priyadarsini, Shanmugasundaram, and Appu Muthusamy. "Decomposition of complete tripartite graphs into cycles and paths of length three." Contributions to Discrete Mathematics 15, no. 3 (2020): 117–29. http://dx.doi.org/10.55016/ojs/cdm.v15i3.62692.

Full text
Abstract:
Let $C_{k}$ and $P_{k}$ denote a cycle and a path on $k$ vertices, respectively. In this paper, we obtain necessary and sufficient conditions for the decomposition of $K_{{r},{s},{t}}$ into $p$ copies of $C_{3}$ and $q$ copies of $P_{4}$ for all possible values of $p$, $q\geq0$.
APA, Harvard, Vancouver, ISO, and other styles
49

Nakprasit, Keaitsuda Maneeruk, and Kittikorn Nakprasit. "The strong equitable vertex 2-arboricity of complete bipartite and tripartite graphs." Information Processing Letters 117 (January 2017): 40–44. http://dx.doi.org/10.1016/j.ipl.2016.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ellingham, M. N., and Justin Z. Schroeder. "Orientable Hamilton Cycle Embeddings of Complete Tripartite Graphs I: Latin Square Constructions." Journal of Combinatorial Designs 22, no. 2 (2013): 71–94. http://dx.doi.org/10.1002/jcd.21375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography