Academic literature on the topic 'Completed cohomology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Completed cohomology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Completed cohomology"

1

Blomer, Inga, Peter A. Linnell, and Thomas Schick. "Galois cohomology of completed link groups." Proceedings of the American Mathematical Society 136, no. 10 (2008): 3449–59. http://dx.doi.org/10.1090/s0002-9939-08-09395-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barthel, Tobias, and Nathaniel Stapleton. "Brown–Peterson cohomology from Morava -theory." Compositio Mathematica 153, no. 4 (2017): 780–819. http://dx.doi.org/10.1112/s0010437x16008241.

Full text
Abstract:
We prove that the $p$-completed Brown–Peterson spectrum is a retract of a product of Morava $E$-theory spectra. As a consequence, we generalize results of Kashiwabara and of Ravenel, Wilson and Yagita from spaces to spectra and deduce that the notion of a good group is determined by Brown–Peterson cohomology. Furthermore, we show that rational factorizations of the Morava $E$-theory of certain finite groups hold integrally up to bounded torsion with height-independent exponent, thereby lifting these factorizations to the rationalized Brown–Peterson cohomology of such groups.
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Yongping, Ying Xu, and Lamei Yuan. "Derivations and Automorphism Group of Completed Witt Lie Algebra." Algebra Colloquium 19, no. 03 (2012): 581–90. http://dx.doi.org/10.1142/s1005386712000454.

Full text
Abstract:
In this paper, a simple Lie algebra, referred to as the completed Witt Lie algebra, is introduced. Its derivation algebra and automorphism group are completely described. As a by-product, it is obtained that the first cohomology group of this Lie algebra with coefficients in its adjoint module is trivial. Furthermore, we completely determine the conjugate classes of this Lie algebra under its automorphism group, and also obtain that this Lie algebra does not contain any nonzero ad -locally finite element.
APA, Harvard, Vancouver, ISO, and other styles
4

Díaz, Antonio, Albert Ruiz, and Antonio Viruel. "Cohomological uniqueness of some p-groups." Proceedings of the Edinburgh Mathematical Society 56, no. 2 (2012): 449–68. http://dx.doi.org/10.1017/s0013091512000247.

Full text
Abstract:
AbstractWe consider classifying spaces of a family of p-groups and prove that mod p cohomology enriched with Bockstein spectral sequences determines their homotopy type among p-completed CW-complexes.
APA, Harvard, Vancouver, ISO, and other styles
5

Puig, Lluis. "Existence, Uniqueness and Functoriality of the Perfect Locality over a Frobenius P-Category." Algebra Colloquium 23, no. 04 (2016): 541–622. http://dx.doi.org/10.1142/s1005386716000523.

Full text
Abstract:
Let p be a prime, P a finite p-group and ℱ a Frobenius P-category. The question on the existence of a suitable category ℒ sc extending the full subcategory of ℱ over the set of ℱ-selfcentralizing subgroups of P goes back to Dave Benson in 1994. In 2002 Carles Broto, Ran Levi and Bob Oliver formulate the existence and the uniqueness of the category ℒ sc in terms of the annulation of an obstruction 3 -cohomology element and of the vanishing of a 2-cohomology group, and they state a sufficient condition for the vanishing of these n-cohomology groups. Recently, Andrew Chermak has proved the existe
APA, Harvard, Vancouver, ISO, and other styles
6

Newton, James. "Completed cohomology of Shimura curves and a p-adic Jacquet–Langlands correspondence." Mathematische Annalen 355, no. 2 (2012): 729–63. http://dx.doi.org/10.1007/s00208-012-0796-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dotto, Andrea, and Daniel Le. "Diagrams in the mod p cohomology of Shimura curves." Compositio Mathematica 157, no. 8 (2021): 1653–723. http://dx.doi.org/10.1112/s0010437x21007375.

Full text
Abstract:
AbstractWe prove a local–global compatibility result in the mod $p$ Langlands program for $\mathrm {GL}_2(\mathbf {Q}_{p^f})$. Namely, given a global residual representation $\bar {r}$ appearing in the mod $p$ cohomology of a Shimura curve that is sufficiently generic at $p$ and satisfies a Taylor–Wiles hypothesis, we prove that the diagram occurring in the corresponding Hecke eigenspace of mod $p$ completed cohomology is determined by the restrictions of $\bar {r}$ to decomposition groups at $p$. If these restrictions are moreover semisimple, we show that the $(\varphi ,\Gamma )$-modules atta
APA, Harvard, Vancouver, ISO, and other styles
8

Isaksen, Daniel C., and Armira Shkembi. "Motivic connective K-theories and the cohomology of A(1)." Journal of K-theory 7, no. 3 (2011): 619–61. http://dx.doi.org/10.1017/is011004009jkt154.

Full text
Abstract:
AbstractWe make some computations in stable motivic homotopy theory over Spec ℂ, completed at 2. Using homotopy fixed points and the algebraic K-theory spectrum, we construct over ℂ a motivic analogue of the real K-theory spectrum KO. We also establish a theory of motivic connective covers over ℂ to obtain a motivic version of ko. We establish an Adams spectral sequence for computing motivic ko-homology. The E2-term of this spectral sequence involves Ext groups over the subalgebra A(1) of the motivic Steenrod algebra. We make several explicit computations of these E2-terms in interesting speci
APA, Harvard, Vancouver, ISO, and other styles
9

Asadollahi, Javad, and Shokrollah Salarian. "Complete Cohomologies and Some Homological Invariants." Algebra Colloquium 14, no. 01 (2007): 155–66. http://dx.doi.org/10.1142/s1005386707000156.

Full text
Abstract:
There is a complete cohomology theory developed over a commutative noetherian ring in which injectives take the role of projectives in Vogel's construction of complete cohomology theory. We study the interaction between this complete cohomology, that is referred to as [Formula: see text]-complete cohomology, and Vogel's one and give some sufficient conditions for their equivalence. Using [Formula: see text]-complete functors, we assign a new homological invariant to any finitely generated module over an arbitrary commutative noetherian local ring, that would generalize Auslander's delta invari
APA, Harvard, Vancouver, ISO, and other styles
10

Emmanouil, Ioannis. "Balance in complete cohomology." Journal of Pure and Applied Algebra 218, no. 4 (2014): 618–23. http://dx.doi.org/10.1016/j.jpaa.2013.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Completed cohomology"

1

Rodriguez, Camargo Juan Esteban. "Locally analytic completed cohomology of Shimura varieties and overconvergent BGG maps." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEN027.

Full text
Abstract:
Dans ce manuscrit, nous étudions la structure de Hodge-Tate de la cohomologie proétale des variétés de Shimura. Cette thèse est divisée dans quatre parties. D’abord, nous construisons un modèle entière de la courbe modulaire perfectoïde. Avec ce schema formel, on montre quelques résultats d’annulation de la cohomologie cohérente en niveau infini, et nous donnons une description du dual de la cohomologie completée en termes de formes modulaires intégrales de poids 2 et de traces normalisées. Dans un second temps, on construit l’application surconvergente d’Eichler-Shimura pour le premier groupe
APA, Harvard, Vancouver, ISO, and other styles
2

Paganin, Matteo. "On some generalizations of Tate Cohomology: an overview." Pontificia Universidad Católica del Perú, 2016. http://repositorio.pucp.edu.pe/index/handle/123456789/97253.

Full text
Abstract:
This paper is an overview of the developments and generalizations of Tate Cohomology. The number of such generalizations is high and the literature on many of them is vast. Hence, we do not pretend to give a complete account of all the branches that have developed from the original ideas of Tate. This is rather an overview of how the ideas developed.<br>Este artículo es una revisión del desarrollo y generalizaciones de la cohomología de Tate. El número de tales generalizaciones es alto y la literatura en torno a muchas de ellas es vasta. Por consiguiente, no pretendemos dar un recuento complet
APA, Harvard, Vancouver, ISO, and other styles
3

Ben, Charrada Rochdi. "Cohomologie de Dolbeault feuilletée de certaines laminations complexes." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2013. http://tel.archives-ouvertes.fr/tel-00871710.

Full text
Abstract:
Dans cette thèse, nous nous s'intéressons au calcul des groupes de cohomologie de Dolbeault feuilletée H0∗L (M) de certaines laminations complexes. Ceci revient à résoudre le problème du ∂ le long des feuilles ∂Lα = ω. (Ici M est un espace métrique ou une variété dans le cas où L est un feuilletage F.) Trois situations ont été étudiées de manière explicite.1. Soit M = Ω un ouvert de C × R muni du feuilletage F dont les feuilles sont les sections Ωt = {z ∈ C : (z, t) ∈ Ω} ; on dira que F est le feuilletage canonique de Ω. Sous certaines conditions sur Ω et de croissance sur la forme feuilletée
APA, Harvard, Vancouver, ISO, and other styles
4

Nucinkis, Brita Erna Anita. "Complete cohomological functors and finiteness conditions." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Combe, Noémie. "On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0140.

Full text
Abstract:
Cette thèse concerne principalement deux objets classiques étroitement liés: d'une part la variété des polynômes complexes unitaires de degré $d&gt;1$ à une variable, et à racines simples (donc de discriminant différent de zéro), et d'autre part, les groupes de tresses d'Artin avec d brins. Le travail présenté dans cette thèse propose une nouvelle approche permettant des calculs cohomologiques explicites à coefficients dans n'importe quel faisceau. En vue de calculs cohomologiques explicites, il est souhaitable d'avoir à sa disposition un bon recouvrement au sens de Čech. L'un des principaux o
APA, Harvard, Vancouver, ISO, and other styles
6

Jaloux, Christophe. "Cohomologie des variétés feuilletées." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00358710.

Full text
Abstract:
A toute fonction de Morse généralisée f sur un feuilletage mesuré, nous associons un complexe longitudinal dont nous montrons qu'il calcule la cohomologie longitudinale introduite par A. Connes. L'espace d'indice q de ce complexe est donné par le champ d'espaces $E^q=(l^2(C^q \cap L))_L$ , où C^q est la variété des points critiques longitudinaux d'indice q de f, et où L désigne la feuille générique . Les différentielles $\delta^q:E^q \rightarrow E^{q+1}$ expriment comment l'orientation de la variété instable se transporte le long d'une trajectoire du champ de gradient feuilleté reliant un poin
APA, Harvard, Vancouver, ISO, and other styles
7

Joshi, Janhavi. "On the L² Cohomology of Complete Kähler Convex Manifolds." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1277942962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pillet, Basile. "Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S021/document.

Full text
Abstract:
L'objet de cette thèse est la construction d'objets géométriques sur une variété C paramétrant des courbes rationnelles dans l'espace des twisteurs d'une variété hyperkählérienne. On établira une correspondance entre la géométrie complexe de l'espace des twisteurs et des propriétés différentielles sur C (opérateurs différentiels et courbure de la structure riemanienne complexe héritée de la variété hyperkählérienne). Les premiers chapitres précisent le cadre et les résultats connus. Dans les chapitres 4, 5 et 6 on établit une équivalence de catégories entre fibrés triviaux en restriction à cha
APA, Harvard, Vancouver, ISO, and other styles
9

Hoggart, John. "On the cohomology of generalised quadratic complexes over the complex numbers." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anel, Mathieu. "Champs de modules des catégories linéaires et abéliennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00085627.

Full text
Abstract:
Les catégories linéaires ont naturellement plusieurs notions d'identification : l'isomorphie, l'équivalence de catégories et l'équivalence de Morita. On construit les champs classifiant les catégories pour ces trois structures ($\ukcatiso$, $\ukcateq$, $\ukcatmor$) ainsi que le champ classifiant les catégories abéliennes ($\ukab$), l'originalité étant que les trois derniers champs sont des champs supérieurs.<br /><br />Le résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve q
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Completed cohomology"

1

Laumon, Gérard. Cohomology of Drinfeld modular varieties. Cambridge University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roe, John. Coarse cohomology and index theory on complete Riemannian manifolds. American Mathematical Society, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1945-, Cohen Frederick R., ed. Mapping class groups of low genus and their cohomology. American Mathematical Society, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Topological modular forms. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1975-, Panov Taras E., ed. Toric topology. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Basterra, Maria, Kristine Bauer, Kathryn Hess, and Brenda Johnson. Women in topology: Collaborations in homotopy theory : WIT, Women in Topology Workshop, August 18-23, 2013, Banff International Research Station, Banff, Alberta, Canada. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1974-, Nelson Sam, ed. Quandles: An introduction to the algebra of knots. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1974-, Zomorodian Afra J., ed. Advances in applied and computational topology: American Mathematical Society Short Course on Computational Topology, January 4-5, 2011, New Orleans, Louisiana. American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ausoni, Christian, 1968- editor of compilation, Hess, Kathryn, 1967- editor of compilation, Johnson Brenda 1963-, Lück, Wolfgang, 1957- editor of compilation, and Scherer, Jérôme, 1969- editor of compilation, eds. An Alpine expedition through algebraic topology: Fourth Arolla Conference, algebraic topology, August 20-25, 2012, Arolla, Switzerland. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roe, John. Winding around: The winding number in topology, geometry, and analysis. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Completed cohomology"

1

Kostrikin, A. I., and I. R. Shafarevich. "Complexes and Cohomology." In Homological Algebra. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57911-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puschnigg, Michael. "Algebraic de Rham complexes." In Asymptotic Cyclic Cohomology. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Puschnigg, Michael. "Homotopy properties of X-complexes." In Asymptotic Cyclic Cohomology. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wedhorn, Torsten. "Cohomology of Complexes of Sheaves." In Manifolds, Sheaves, and Cohomology. Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davis, James, and Paul Kirk. "Chain complexes, homology, and cohomology." In Lecture Notes in Algebraic Topology. American Mathematical Society, 2001. http://dx.doi.org/10.1090/gsm/035/01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adem, Alejandro, and R. James Milgram. "G-Complexes and Equivariant Cohomology." In Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adem, Alejandro, and R. James Milgram. "G-Complexes and Equivariant Cohomology." In Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Avramov, Luchezar L., and Daniel R. Grayson. "Resolutions and Cohomology over Complete Intersections." In Computations in Algebraic Geometry with Macaulay 2. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schenzel, Peter, and Anne-Marie Simon. "Čech Complexes, Čech Homology and Cohomology." In Springer Monographs in Mathematics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96517-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hernández, L. J., and T. Porter. "Categorical models of N-types for pro-crossed complexes and ℑn-prospaces." In Algebraic Topology Homotopy and Group Cohomology. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0087509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!