To see the other types of publications on this topic, follow the link: Complex/Dusty Plasmas.

Journal articles on the topic 'Complex/Dusty Plasmas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Complex/Dusty Plasmas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ki, Dae-Han, and Young-Dae Jung. "Size Effects on the Scattering of Electron and Spherical Dust Grain in Dusty Plasmas." Zeitschrift für Naturforschung A 65, no. 12 (2010): 1147–50. http://dx.doi.org/10.1515/zna-2010-1221.

Full text
Abstract:
The finite size effects of the charged dust grain on the electron-dust grain collisions are investigated in complex dusty plasmas. The stationary phase analysis and the effective potential due to the renormalized dust charge are employed to obtain the phase shift for the scattering of the electron and the spherically charged dust grain as a function of the impact parameter, collision energy, Debye length, and dust radius. It is found that the size effect of the dust grain enhances the electron-dust grain scattering cross section in dusty plasmas. It is also found that the size effect on the sc
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, E., A. M. DuBois, B. Lynch, et al. "Preliminary characteristics of magnetic field and plasma performance in the Magnetized Dusty Plasma Experiment (MDPX)." Journal of Plasma Physics 80, no. 6 (2014): 803–8. http://dx.doi.org/10.1017/s0022377814000270.

Full text
Abstract:
The Magnetized Dusty Plasma Experiment (MDPX) device is a newly constructed research instrument for the study of dusty (complex) plasmas. The MDPX device is envisioned as an experimental platform in which the dynamical behavior of all three charged plasma components, the electrons, ions, and charged microparticles (i.e., the ‘dust’) will be significantly influenced by the magnetic force. This brief paper will provide a short overview of the design, magnetic performance, and initial plasma measurements in the MDPX device.
APA, Harvard, Vancouver, ISO, and other styles
3

KOURAKIS, IOANNIS, and PADMA KANT SHUKLA. "NONLINEAR EXCITATIONS IN STRONGLY-COUPLED PLASMA LATTICES: ENVELOPE SOLITONS, KINKS AND INTRINSIC LOCALIZED MODES." International Journal of Bifurcation and Chaos 16, no. 06 (2006): 1711–25. http://dx.doi.org/10.1142/s0218127406015623.

Full text
Abstract:
Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experiments. In this paper, the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal) are discussed. Different types of collective excitations are review
APA, Harvard, Vancouver, ISO, and other styles
4

Nosenko, V., A. V. Ivlev, S. K. Zhdanov, M. Fink, and G. E. Morfill. "Rotating electric fields in complex (dusty) plasmas." Physics of Plasmas 16, no. 8 (2009): 083708. http://dx.doi.org/10.1063/1.3194272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shahzad, Aamir, and Mao-Gang He. "Thermal conductivity calculation of complex (dusty) plasmas." Physics of Plasmas 19, no. 8 (2012): 083707. http://dx.doi.org/10.1063/1.4748526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MANWEILER, J. W., T. P. ARMSTRONG, and T. E. CRAVENS. "Complex charge distributions of dielectric dust grains due to plasma flow." Journal of Plasma Physics 63, no. 3 (2000): 269–83. http://dx.doi.org/10.1017/s0022377899008314.

Full text
Abstract:
We examine the charging of dielectric dust grains embedded in a plasma. Our work is a continuation and refinement of our previous research into grain charging problems. In 1993, we discussed preliminary simulation results regarding the charging and intergrain forces between two dielectric dust particles [J. W. Manweiler et al., Adv. Space Res. 13, 10175 (1993)]. Then, in 1996, we discussed preliminary results with respect to dust grain charging within asymmetric plasma conditions and how these affect grain–grain collisional cross-sections [J. W. Manweiler et al., In: The Physics of Dusty Plasm
APA, Harvard, Vancouver, ISO, and other styles
7

Kersten, H., G. Thieme, M. Fröhlich, et al. "Complex (dusty) plasmas: Examples for applications and observation of magnetron-induced phenomena." Pure and Applied Chemistry 77, no. 2 (2005): 415–28. http://dx.doi.org/10.1351/pac200577020415.

Full text
Abstract:
Low-pressure plasmas offer a unique possibility of confinement, control, and fine tailoring of particle properties. Hence, dusty plasmas have grown into a vast field, and new applications of plasma-processed dust particles are emerging.During the deposition of thin amorphous films onto melamine formaldehyde (MF) microparticles in a C2H2 plasma, the generation of nanosized carbon particles was also studied. The size distribution of those particles is quite uniform.In another experiment, the stability of luminophore grains could be improved by coating with protective Al2O3 films that are deposit
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, E., R. L. Merlino, and M. Rosenberg. "Magnetized dusty plasmas: the next frontier for complex plasma research." Plasma Physics and Controlled Fusion 54, no. 12 (2012): 124034. http://dx.doi.org/10.1088/0741-3335/54/12/124034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

FORTOV, V., A. IVLEV, S. KHRAPAK, A. KHRAPAK, and G. MORFILL. "Complex (dusty) plasmas: Current status, open issues, perspectives." Physics Reports 421, no. 1-2 (2005): 1–103. http://dx.doi.org/10.1016/j.physrep.2005.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Avinash, K. "“Voids” and phase separation in complex (dusty) plasmas." Physics of Plasmas 8, no. 6 (2001): 2601–4. http://dx.doi.org/10.1063/1.1368876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tsytovich, V. N., U. de Angelis, A. V. Ivlev, and G. E. Morfill. "Kinetic theory of partially ionized complex (dusty) plasmas." Physics of Plasmas 12, no. 8 (2005): 082103. http://dx.doi.org/10.1063/1.1991847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ki, Dae-Han, and Young-Dae Jung. "Ion temperature effect on the electron-dust collisions in complex dusty plasmas." Journal of Applied Physics 108, no. 8 (2010): 086101. http://dx.doi.org/10.1063/1.3498820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jung, Young-Dae, and Dai-Gyoung Kim. "Polarization Effects on the Elastic Dust Grain Collisions in Complex Dusty Plasmas." Japanese Journal of Applied Physics 49, no. 12 (2010): 120205. http://dx.doi.org/10.1143/jjap.49.120205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Morfill, Gregor E., Alexei V. Ivlev, and Hubertus M. Thomas. "Complex (dusty) plasmas—kinetic studies of strong coupling phenomena." Physics of Plasmas 19, no. 5 (2012): 055402. http://dx.doi.org/10.1063/1.4717979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Block, Dietmar, and Andre Melzer. "Dusty (complex) plasmas—routes towards magnetized and polydisperse systems." Journal of Physics B: Atomic, Molecular and Optical Physics 52, no. 6 (2019): 063001. http://dx.doi.org/10.1088/1361-6455/ab023f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Khrapak, Sergey A. "Electron and ion thermal forces in complex (dusty) plasmas." Physics of Plasmas 20, no. 1 (2013): 013703. http://dx.doi.org/10.1063/1.4774407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Khrapak, S., D. Samsonov, G. Morfill, et al. "Compressional waves in complex (dusty) plasmas under microgravity conditions." Physics of Plasmas 10, no. 1 (2003): 1–4. http://dx.doi.org/10.1063/1.1525283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yaroshenko, V., and G. E. Morfill. "Parametric excitation of low frequency waves in complex (dusty) plasmas." Physics of Plasmas 9, no. 11 (2002): 4495–99. http://dx.doi.org/10.1063/1.1509454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shahzad, Aamir, Mao-Gang He, and Kai He. "Diffusion motion of two-dimensional weakly coupled complex (dusty) plasmas." Physica Scripta 87, no. 3 (2013): 035501. http://dx.doi.org/10.1088/0031-8949/87/03/035501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shahzad, Aamir, Arffa Aslam, Mariam Sultana, and Mao-Gang He. "Shear viscosity of two-dimensional strongly coupled complex (dusty) plasmas." IOP Conference Series: Materials Science and Engineering 60 (June 17, 2014): 012014. http://dx.doi.org/10.1088/1757-899x/60/1/012014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vasilyak, L. M., S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov. "Formation of complex structures in dusty plasmas under temperature gradients." Journal of Experimental and Theoretical Physics 100, no. 5 (2005): 1029–34. http://dx.doi.org/10.1134/1.1947327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tsytovich, V. N., and G. E. Morfill. "General features and master equations for structurization in complex dusty plasmas." Journal of Experimental and Theoretical Physics 114, no. 2 (2012): 183–93. http://dx.doi.org/10.1134/s1063776112010074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Khrapak, S. A., and G. E. Morfill. "A note on the binary interaction potential in complex (dusty) plasmas." Physics of Plasmas 15, no. 8 (2008): 084502. http://dx.doi.org/10.1063/1.2967483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

El-Taibany, W. F., A. Mushtaq, W. M. Moslem, and Miki Wadati. "Finite amplitude solitary excitations in rotating magnetized nonthermal complex (dusty) plasmas." Physics of Plasmas 17, no. 3 (2010): 034501. http://dx.doi.org/10.1063/1.3314719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Totsuji, Hiroo. "Possible Observation of Critical Phenomena in Fine Particle (Dusty, Complex) Plasmas." Microgravity Science and Technology 23, no. 2 (2010): 159–67. http://dx.doi.org/10.1007/s12217-010-9231-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

KHRAPAK, SERGEY A. "Practical expression for an effective ion-neutral collision frequency in flowing plasmas of some noble gases." Journal of Plasma Physics 79, no. 6 (2013): 1123–24. http://dx.doi.org/10.1017/s0022377813001025.

Full text
Abstract:
AbstractA simple expression for the effective ion-neutral collision frequency in weakly ionized drifting plasmas of helium, neon, and argon is suggested. This expression can be useful for practical estimations related to the problems of particle charging and ion drag force in complex (dusty) plasmas.
APA, Harvard, Vancouver, ISO, and other styles
27

Hong, Woo-Pyo, and Young-Dae Jung. "Nonthermal Lorentzian wake-field effects on collision processes in complex dusty plasmas." Physics of Plasmas 21, no. 10 (2014): 103708. http://dx.doi.org/10.1063/1.4900645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ki, Dae-Han, and Young-Dae Jung. "Ion wake effects on the Coulomb ion drag in complex dusty plasmas." Applied Physics Letters 97, no. 10 (2010): 101502. http://dx.doi.org/10.1063/1.3488816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Khrapak, S. A., H. M. Thomas, and G. E. Morfill. "Multiple phase transitions associated with charge cannibalism effect in complex (dusty) plasmas." EPL (Europhysics Letters) 91, no. 2 (2010): 25001. http://dx.doi.org/10.1209/0295-5075/91/25001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Khrapak, S., and G. Morfill. "Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force." Contributions to Plasma Physics 49, no. 3 (2009): 148–68. http://dx.doi.org/10.1002/ctpp.200910018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dzhumagulova, K. N., T. S. Ramazanov, and R. U. Masheeva. "Velocity Autocorrelation Functions and Diffusion Coefficient of Dusty Component in Complex Plasmas." Contributions to Plasma Physics 52, no. 3 (2012): 182–85. http://dx.doi.org/10.1002/ctpp.201100070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pustylnik, M. Y., A. V. Ivlev, N. Sadeghi, et al. "On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas." Physics of Plasmas 19, no. 10 (2012): 103701. http://dx.doi.org/10.1063/1.4757213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kryuchkov, Nikita P., Alexei V. Ivlev, and Stanislav O. Yurchenko. "Dissipative phase transitions in systems with nonreciprocal effective interactions." Soft Matter 14, no. 47 (2018): 9720–29. http://dx.doi.org/10.1039/c8sm01836g.

Full text
Abstract:
The reciprocity of effective interparticle forces can be violated in various open and nonequilibrium systems, in particular, in colloidal suspensions and complex (dusty) plasmas. The results indicate the realization of bistability and dissipative spinodal decomposition.
APA, Harvard, Vancouver, ISO, and other styles
34

Khrapak, Sergey A., Boris A. Klumov, and Hubertus M. Thomas. "Fingerprints of different interaction mechanisms on the collective modes in complex (dusty) plasmas." Physics of Plasmas 24, no. 2 (2017): 023702. http://dx.doi.org/10.1063/1.4976124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shahzad, Aamir, Arffa Aslam, and Mao-Gang He. "Equilibrium molecular dynamics simulation of shear viscosity of two-dimensional complex (dusty) plasmas." Radiation Effects and Defects in Solids 169, no. 11 (2014): 931–41. http://dx.doi.org/10.1080/10420150.2014.968852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Shahzad, Aamir, and Mao-Gang He. "Calculations of thermal conductivity of complex (dusty) plasmas using homogenous nonequilibrium molecular simulations." Radiation Effects and Defects in Solids 170, no. 9 (2015): 758–70. http://dx.doi.org/10.1080/10420150.2015.1108316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Martynova, I. A., and I. L. Iosilevskiy. "Problem of phase transitions and thermodynamic stability in complex (dusty, colloid etc) plasmas." Journal of Physics: Conference Series 774 (November 2016): 012173. http://dx.doi.org/10.1088/1742-6596/774/1/012173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kopnin, S. I., S. I. Popel, and M. Y. Yu. "Phenomena associated with complex (dusty) plasmas in the ionosphere during high-speed meteor showers." Physics of Plasmas 16, no. 6 (2009): 063705. http://dx.doi.org/10.1063/1.3147931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

JUNG, YOUNG-DAE, and WOO-PYO HONG. "Influence of the ion wake-field on the eikonal cross section for the electron–dust collision in dusty plasmas." Journal of Plasma Physics 78, no. 5 (2012): 559–63. http://dx.doi.org/10.1017/s0022377812000402.

Full text
Abstract:
AbstractThe ion wake-field effects on the elastic electron–dust collisions are investigated in complex dusty plasmas. The eikonal method is employed to investigate the behaviors of the scattering phase shift and scattering cross section due to the variation of the strength of the wake-field. It is shown that the eikonal phase shift decreases with an increase of the Mach number and increases with an increase of the impact parameter. It is also shown that the eikonal phase shift decreases with increasing Debye length. The eikonal cross section for the elastic electron–dust collision is found to
APA, Harvard, Vancouver, ISO, and other styles
40

Jung, Young-Dae, and Woo-Pyo Hong. "Influence of the ion wake-field on the collisional entanglement fidelity in complex dusty plasmas." Physics of Plasmas 19, no. 3 (2012): 034502. http://dx.doi.org/10.1063/1.3691942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zafiu, C., A. Melzer, and A. Piel. "Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas." Physics of Plasmas 10, no. 5 (2003): 1278–82. http://dx.doi.org/10.1063/1.1569486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Phelps, Alan. "Complex and Dusty Plasmas: From Laboratory to Space, edited by Vladimir E. Fortov and Gregor E. Morfill." Contemporary Physics 52, no. 6 (2011): 600–601. http://dx.doi.org/10.1080/00107514.2011.587531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Khrapak, S. A., A. V. Ivlev, G. E. Morfill, et al. "Comment on “Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas” [Phys. Plasmas 10, 1278 (2003)]." Physics of Plasmas 10, no. 11 (2003): 4579–81. http://dx.doi.org/10.1063/1.1612942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Upadhyaya, N., V. Nosenko, Z. L. Mišković, L. J. Hou, A. V. Ivlev, and G. E. Morfill. "A full account of compressional wave in 2D strongly coupled complex (dusty) plasmas: Theory, experiment and numerical simulation." EPL (Europhysics Letters) 94, no. 6 (2011): 65001. http://dx.doi.org/10.1209/0295-5075/94/65001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zafiu, C., A. Melzer, and A. Piel. "Response to “Comment on ‘Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas’ ” [Phys. Plasmas 10, 4579 (2003)]." Physics of Plasmas 10, no. 11 (2003): 4582–83. http://dx.doi.org/10.1063/1.1612943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

ØIEN, ALF H. "Interaction energy and closest approach of moving charged particles on a plasma and neutral gas background." Journal of Plasma Physics 78, no. 1 (2011): 11–19. http://dx.doi.org/10.1017/s0022377811000286.

Full text
Abstract:
AbstractElectric interaction between two negatively charged particles of different sizes on a mixed background of positive, negative, and neutral particles is complex and has relevance both to dusty plasmas and to transports in ionized fluids in general. We consider particularly effects during interaction that particle velocity and neutrals in the background may have on the well-known “dressing” and electric shielding that is due to the charged part of the background and how the interaction energy is modified because of this. Without such effects earlier works show the interaction becomes attr
APA, Harvard, Vancouver, ISO, and other styles
47

Mousavi, Somayeh. "The Suprathermal Particles and Charge Fluctuation Effects on Waves in Complex Plasma." JOURNAL OF ADVANCES IN PHYSICS 17 (April 10, 2020): 245–81. http://dx.doi.org/10.24297/jap.v17i.8708.

Full text
Abstract:
In the frame of kinetic theory we investigated the effects of suprathermal particles and dust charge fluctuations due to the inelastic collision between the dust grains and plasma particles by calculating the longitudinal dielectric permittivity in an unmagnetized dusty plasma on the wave modes propagating in a complex plasma. The ion and electron distribution were assumed to be Maxwell and Kapa distribution in the systems. It was shown that the wave frequency can be analyzed for various values of the spectral index K and the dust charge fluctuations. The landau damping rate and Propagation ra
APA, Harvard, Vancouver, ISO, and other styles
48

El-Taibany, W. F., and Miki Wadati. "Nonlinear quantum dust acoustic waves in nonuniform complex quantum dusty plasma." Physics of Plasmas 14, no. 4 (2007): 042302. http://dx.doi.org/10.1063/1.2717883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ghosh, S. "Damped dust lattice shock wave in a strongly coupled complex (dusty) plasma." JETP Letters 87, no. 6 (2008): 281–84. http://dx.doi.org/10.1134/s0021364008060039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ghosh, S. "“Damped Dust Lattice Shock Wave in a Strongly Coupled Complex (Dusty) Plasma,”." JETP Letters 88, no. 6 (2008): 402. http://dx.doi.org/10.1134/s0021364008180136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!