Academic literature on the topic 'Complex dynamical network models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complex dynamical network models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Complex dynamical network models"
WANG, XIAO FAN. "COMPLEX NETWORKS: TOPOLOGY, DYNAMICS AND SYNCHRONIZATION." International Journal of Bifurcation and Chaos 12, no. 05 (May 2002): 885–916. http://dx.doi.org/10.1142/s0218127402004802.
Full textWu, Xu, Guo-Ping Jiang, and Xinwei Wang. "A New Model for Complex Dynamical Networks Considering Random Data Loss." Entropy 21, no. 8 (August 15, 2019): 797. http://dx.doi.org/10.3390/e21080797.
Full textGupta, Abhinav, and Pierre F. J. Lermusiaux. "Neural closure models for dynamical systems." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2252 (August 2021): 20201004. http://dx.doi.org/10.1098/rspa.2020.1004.
Full textTADIĆ, BOSILJKA, G. J. RODGERS, and STEFAN THURNER. "TRANSPORT ON COMPLEX NETWORKS: FLOW, JAMMING AND OPTIMIZATION." International Journal of Bifurcation and Chaos 17, no. 07 (July 2007): 2363–85. http://dx.doi.org/10.1142/s0218127407018452.
Full textO'Dea, Reuben, Jonathan J. Crofts, and Marcus Kaiser. "Spreading dynamics on spatially constrained complex brain networks." Journal of The Royal Society Interface 10, no. 81 (April 6, 2013): 20130016. http://dx.doi.org/10.1098/rsif.2013.0016.
Full textHouse, Thomas, and Matt J. Keeling. "Insights from unifying modern approximations to infections on networks." Journal of The Royal Society Interface 8, no. 54 (June 10, 2010): 67–73. http://dx.doi.org/10.1098/rsif.2010.0179.
Full textUthamacumaran, A. "A Review of Complex Systems Approaches to Cancer Networks." Complex Systems 29, no. 4 (December 15, 2020): 779–835. http://dx.doi.org/10.25088/complexsystems.29.4.779.
Full textHOLME, PETTER. "CONGESTION AND CENTRALITY IN TRAFFIC FLOW ON COMPLEX NETWORKS." Advances in Complex Systems 06, no. 02 (June 2003): 163–76. http://dx.doi.org/10.1142/s0219525903000803.
Full textHanel, Rudolf, Manfred Pöchacker, and Stefan Thurner. "Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1933 (December 28, 2010): 5583–96. http://dx.doi.org/10.1098/rsta.2010.0267.
Full textMa’ayan, Avi. "Colliding Dynamical Complex Network Models: Biological Attractors versus Attractors from Material Physics." Biophysical Journal 103, no. 9 (November 2012): 1816–17. http://dx.doi.org/10.1016/j.bpj.2012.09.019.
Full textDissertations / Theses on the topic "Complex dynamical network models"
Spencer, Matthew. "Evolving complex network models of functional connectivity dynamics." Thesis, University of Reading, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590143.
Full textPreciado, Víctor Manuel. "Spectral analysis for stochastic models of large-scale complex dynamical networks." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45873.
Full textIncludes bibliographical references (p. 179-196).
Research on large-scale complex networks has important applications in diverse systems of current interest, including the Internet, the World-Wide Web, social, biological, and chemical networks. The growing availability of massive databases, computing facilities, and reliable data analysis tools has provided a powerful framework to explore structural properties of such real-world networks. However, one cannot efficiently retrieve and store the exact or full topology for many large-scale networks. As an alternative, several stochastic network models have been proposed that attempt to capture essential characteristics of such complex topologies. Network researchers then use these stochastic models to generate topologies similar to the complex network of interest and use these topologies to test, for example, the behavior of dynamical processes in the network. In general, the topological properties of a network are not directly evident in the behavior of dynamical processes running on it. On the other hand, the eigenvalue spectra of certain matricial representations of the network topology do relate quite directly to the behavior of many dynamical processes of interest, such as random walks, Markov processes, virus/rumor spreading, or synchronization of oscillators in a network. This thesis studies spectral properties of popular stochastic network models proposed in recent years. In particular, we develop several methods to determine or estimate the spectral moments of these models. We also present a variety of techniques to extract relevant spectral information from a finite sequence of spectral moments. A range of numerical examples throughout the thesis confirms the efficacy of our approach. Our ultimate objective is to use such results to understand and predict the behavior of dynamical processes taking place in large-scale networks.
by Víctor Manuel Preciado.
Ph.D.
Zschaler, Gerd. "Adaptive-network models of collective dynamics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89260.
Full textZschaler, Gerd. "Adaptive-network models of collective dynamics." Doctoral thesis, Max-Planck-Institut für Physik komplexer Systeme, 2011. https://tud.qucosa.de/id/qucosa%3A26056.
Full textKolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Full textPeron, Thomas Kauê Dal\'Maso. "Dynamics of Kuramoto oscillators in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-21092017-100820/.
Full textSincronização de conjuntos de osciladores é um fenômeno emergente que permeia sistemas complexos de diversas naturezas, como por exemplo, sistemas biológicos, físicos, naturais e tecnológicos. A abordagem mais bem sucedida na descrição da emergência de comportamento coletivo em sistemas complexos é fornecida pelo modelo de Kuramoto. Durante décadas, este modelo foi tradicionalmente estudado em topologias completamente conectadas. Entretanto, além de ser intrinsecamente dinâmicos, tais sistemas complexos possuem uma estrutura altamente heterogênea que pode ser apropriadamente representada por redes complexas. Esta tese é dedicada à investigação de problemas fundamentais da dinâmica coletiva de osciladores de Kuramoto acoplados em redes. Primeiramente, abordamos os efeitos sobre a dinâmica das redes causados pela presença de triângulos padrões que estão omnipresentes em redes reais mas estão ausentes em redes gerados por modelos aleatórios. Estendemos a abordagem via campo-médio para uma variação do modelo de configuração tradicional capaz de criar topologias com número variável de triângulos. Através desta abordagem, mostramos que tais padrões estruturais pouco influenciam a emergência de comportamento coletivo em redes, podendo a dinâmica destas ser descrita em termos de teorias desenvolvidas para redes com topologia local semelhante a grafos de tipo árvore. Em seguida, analisamos a influência de inércia na evolução das fases. Mais precisamente, generalizamos cálculos de campo-médio para osciladores de segunda-ordem acoplados em redes sem correlação de grau. Demonstramos que na presença de efeitos inerciais o parâmetro de ordem do sistema se comporta de forma histerética. Ademais, efeitos oriundos de correlações de grau são examinados. Em particular, verificamos uma interessante equivalência dinâmica entre variações nos coeficientes de assortatividade e amortecimento dos osciladores. Possíveis aplicações para situações reais são discutidas. Finalmente, abordamos o problema de duas populações de osciladores estocásticos sob a influência de acoplamentos atrativos e repulsivos. Através da aplicação da aproximação Gaussiana, derivamos um conjunto reduzido de EDOs através do qual as bifurcações do sistema foram analisadas. Além dos estados asíncrono e síncrono, verificamos a existência de padrões peculiares na dinâmica de tal sistema. Mais precisamente, observamos a formação de estados caracterizados pelo surgimento de dois aglomerados de osciladores. Caso a defasagem entre estes grupos é inferior a π, um novo ritmo de oscilação diferente da frequência natural dos vértices emerge. Comportamentos dinâmicos similares são observados em osciladores caóticos sujeitos a acoplamentos análogos.
Lenormand, Maxime. "Initialize and Calibrate a Dynamic Stochastic Microsimulation Model: Application to the SimVillages Model." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00764929.
Full textGuan, Jinyan. "Bayesian Generative Modeling of Complex Dynamical Systems." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612950.
Full textSchmeltzer, Christian. "Dynamical properties of neuronal systems with complex network structure." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17470.
Full textAn important question in neuroscience is how the structure and dynamics of a neuronal network relate to each other. We approach this problem by modeling the spiking activity of large-scale neuronal networks that exhibit several complex network properties. Our main focus lies on the relevance of two particular attributes for the dynamics, namely structural heterogeneity and degree correlations. As a central result, we introduce a novel mean-field method that makes it possible to calculate the average activity of heterogeneous, degree-correlated neuronal networks without having to simulate each neuron explicitly. We find that the connectivity structure is sufficiently captured by a reduced matrix that contains only the coupling between the populations. With the mean-field method and numerical simulations we demonstrate that assortative degree correlations enhance the network’s ability to sustain activity for low external excitation, thus making it more sensitive to small input signals.
Colombini, Giulio. "Synchronisation phenomena in complex neuronal networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23904/.
Full textBooks on the topic "Complex dynamical network models"
1965-, Barthélemy Marc, and Vespignani Alessandro 1965-, eds. Dynamical processes on complex networks. Cambridge: Cambridge University Press, 2009.
Find full textG, Chen. Fundamentals of complex networks: Models, structures, and dynamics. Singapore: John Wiley & Sons Inc., 2015.
Find full textShoikhet, David, and Mark Elin. Linearization Models for Complex Dynamical Systems. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0509-0.
Full text1964-, Beim Graben P., ed. Lectures in supercomputational neuroscience: Dynamics in complex brain networks. Berlin: Springer, 2008.
Find full textAbarbanel, Henry. Predicting the Future: Completing Models of Observed Complex Systems. New York, NY: Springer New York, 2013.
Find full textKuipers, Benjamin. Self-calibrating models for dynamic monitoring and diagnosis: Final report covering the period 1 February 1992 to 31 March 1995. Austin, Tex: University of Texas at Austin, 1996.
Find full textMikhailov, A. S. From cells to societies: Models of complex coherent action. Berlin: Springer, 2002.
Find full textMukherjee, Animesh. Dynamics On and Of Complex Networks, Volume 2: Applications to Time-Varying Dynamical Systems. New York, NY: Springer New York, 2013.
Find full textWuyi, Yue, Takahashi Yataka, and Takagi Hideaki, eds. Advances in queueing theory and network applications. New York, N.Y: Springer, 2009.
Find full textBook chapters on the topic "Complex dynamical network models"
Friesz, Terry L., and David Bernstein. "Normative Network Models and Their Solution." In Complex Networks and Dynamic Systems, 207–64. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7594-2_6.
Full textBenner, Peter, Sara Grundel, and Petar Mlinarić. "Clustering-Based Model Order Reduction for Nonlinear Network Systems." In Model Reduction of Complex Dynamical Systems, 75–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72983-7_4.
Full textBeyer, Andreas. "Network-Based Models in Molecular Biology." In Dynamics On and Of Complex Networks, 35–56. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4751-3_3.
Full textVarela, Luis M., Giulia Rotundo, Marcel Ausloos, and Jesús Carrete. "Complex Network Analysis in Socioeconomic Models." In Dynamic Modeling and Econometrics in Economics and Finance, 209–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12805-4_9.
Full textBecker, Till, and Darja Wagner-Kampik. "Complex Networks in Manufacturing and Logistics: A Retrospect." In Dynamics in Logistics, 57–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88662-2_3.
Full textGhoshal, Gourab. "Some New Applications of Network Growth Models." In Dynamics On and Of Complex Networks, 217–36. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4751-3_13.
Full textOliveira, Douglas, and Marco Carvalho. "Empirical Models for Complex Network Dynamics: A Preliminary Study." In Lecture Notes in Computer Science, 637–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08783-2_55.
Full textGao, Yanhui. "Synchronization Dynamics of Complex Network Models with Impulsive Control." In Information Computing and Applications, 553–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25255-6_70.
Full textSalii, Yaroslav V. "Benchmarking Optimal Control for Network Dynamic Systems with Plausible Epidemic Models." In Complex Networks & Their Applications X, 194–206. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93413-2_17.
Full textKorošak, Dean, and Sacha Jon Mooney. "Applications of Complex Network Models to Describe Soil Porous Systems." In Quantifying and Modeling Soil Structure Dynamics, 75–92. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2134/advagricsystmodel3.c4.
Full textConference papers on the topic "Complex dynamical network models"
Yang, Chun-Lin, and C. Steve Suh. "On the Dynamics of Complex Network." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71994.
Full textAbdelbari, Hassan, and Kamran Shafi. "Optimising a constrained echo state network using evolutionary algorithms for learning mental models of complex dynamical systems." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727822.
Full textGao, Ming, and Li Sheng. "Local and global synchronization criteria for a generalized complex dynamical network model." In 2011 23rd Chinese Control and Decision Conference (CCDC). IEEE, 2011. http://dx.doi.org/10.1109/ccdc.2011.5968287.
Full textMahajan, R. L. "Strategies for Building Artificial Neural Network Models." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1464.
Full textFretheim, Tor, Rahmat Shoureshi, Tyrone Vincent, Duane Torgerson, and John Work. "Machine Diagnostics Using Nonlinear Output Observer and Neural Network Models." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2324.
Full textZhan, Gao, Zhu Qingbo, and Song Tingxin. "Analysis and Research on Dynamic Models of Complex Manufacturing Network Cascading Failures." In 2014 6th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2014. http://dx.doi.org/10.1109/ihmsc.2014.101.
Full textShettigar, Nandan, Chun-Lin Yang, and C. Steve Suh. "On the Efficacy of Information Transfer in Complex Networks." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73710.
Full textDuhé, Jean-François, Stéphane Victor, Pierre Melchior, Youssef Abdelmounen, and François Roubertie. "Thermal Modeling Using Two-Port Network Impedance Fractional-Order Approximations." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69968.
Full textStankevich, Nataliya V., and Aneta Koseska. "Inhibition Of Oscillations In A Heterogeneous Network Of Hodgkin-Huxley-Type Of Models." In 2018 2nd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). IEEE, 2018. http://dx.doi.org/10.1109/dcnair.2018.8589222.
Full textMatuzas, Vaidas, Juozas Augutis, and Eugenijus Uspuras. "Degradation Assessment in Complex Systems." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89190.
Full textReports on the topic "Complex dynamical network models"
Hovakimyan, Naira, Hunmin Kim, Wenbin Wan, and Chuyuan Tao. Safe Operation of Connected Vehicles in Complex and Unforeseen Environments. Illinois Center for Transportation, August 2022. http://dx.doi.org/10.36501/0197-9191/22-016.
Full textСоловйов, В. М., and В. В. Соловйова. Моделювання мультиплексних мереж. Видавець Ткачук О.В., 2016. http://dx.doi.org/10.31812/0564/1253.
Full textRupe, Adam. Learning Implicit Models of Complex Dynamical Systems From Partial Observations. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1808822.
Full textSoloviev, Vladimir, Natalia Moiseienko, and Olena Tarasova. Modeling of cognitive process using complexity theory methods. [б. в.], 2019. http://dx.doi.org/10.31812/123456789/3609.
Full textRabitz, Herschel. Closed Loop Adaptive Refinement of Dynamical Models for Complex Chemical Reactions. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada499595.
Full textСоловйов, Володимир Миколайович, Наталя Володимирівна Моісеєнко, and Олена Юріївна Тарасова. Complexity theory and dynamic characteristics of cognitive processes. Springer, January 2020. http://dx.doi.org/10.31812/123456789/4143.
Full textВодолєєва, І. С., А. О. Лазаренко, and В. М. Соловйов. Дослідження стійкості мультиплексних мереж під час кризових явищ. Видавець Вовчок О.Ю., 2017. http://dx.doi.org/10.31812/0564/1259.
Full textNechaev, V., Володимир Миколайович Соловйов, and A. Nagibas. Complex economic systems structural organization modelling. Politecnico di Torino, 2006. http://dx.doi.org/10.31812/0564/1118.
Full textThai, My. Combating Weapons of Mass Destruction: Models, Complexity, and Algorithms in Complex Dynamic and Evolving Networks. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada625120.
Full textSoloviev, Volodymyr Mykolayovych, and Viktoriya Volodymyrivna Solovyova. Universal tools of modeling different nature complex systems. ФОП Однорог Т.В., 2018. http://dx.doi.org/10.31812/123456789/2865.
Full text