Dissertations / Theses on the topic 'Complex dynamical network models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Complex dynamical network models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Spencer, Matthew. "Evolving complex network models of functional connectivity dynamics." Thesis, University of Reading, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590143.
Full textPreciado, Víctor Manuel. "Spectral analysis for stochastic models of large-scale complex dynamical networks." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45873.
Full textIncludes bibliographical references (p. 179-196).
Research on large-scale complex networks has important applications in diverse systems of current interest, including the Internet, the World-Wide Web, social, biological, and chemical networks. The growing availability of massive databases, computing facilities, and reliable data analysis tools has provided a powerful framework to explore structural properties of such real-world networks. However, one cannot efficiently retrieve and store the exact or full topology for many large-scale networks. As an alternative, several stochastic network models have been proposed that attempt to capture essential characteristics of such complex topologies. Network researchers then use these stochastic models to generate topologies similar to the complex network of interest and use these topologies to test, for example, the behavior of dynamical processes in the network. In general, the topological properties of a network are not directly evident in the behavior of dynamical processes running on it. On the other hand, the eigenvalue spectra of certain matricial representations of the network topology do relate quite directly to the behavior of many dynamical processes of interest, such as random walks, Markov processes, virus/rumor spreading, or synchronization of oscillators in a network. This thesis studies spectral properties of popular stochastic network models proposed in recent years. In particular, we develop several methods to determine or estimate the spectral moments of these models. We also present a variety of techniques to extract relevant spectral information from a finite sequence of spectral moments. A range of numerical examples throughout the thesis confirms the efficacy of our approach. Our ultimate objective is to use such results to understand and predict the behavior of dynamical processes taking place in large-scale networks.
by Víctor Manuel Preciado.
Ph.D.
Zschaler, Gerd. "Adaptive-network models of collective dynamics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89260.
Full textZschaler, Gerd. "Adaptive-network models of collective dynamics." Doctoral thesis, Max-Planck-Institut für Physik komplexer Systeme, 2011. https://tud.qucosa.de/id/qucosa%3A26056.
Full textKolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Full textPeron, Thomas Kauê Dal\'Maso. "Dynamics of Kuramoto oscillators in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-21092017-100820/.
Full textSincronização de conjuntos de osciladores é um fenômeno emergente que permeia sistemas complexos de diversas naturezas, como por exemplo, sistemas biológicos, físicos, naturais e tecnológicos. A abordagem mais bem sucedida na descrição da emergência de comportamento coletivo em sistemas complexos é fornecida pelo modelo de Kuramoto. Durante décadas, este modelo foi tradicionalmente estudado em topologias completamente conectadas. Entretanto, além de ser intrinsecamente dinâmicos, tais sistemas complexos possuem uma estrutura altamente heterogênea que pode ser apropriadamente representada por redes complexas. Esta tese é dedicada à investigação de problemas fundamentais da dinâmica coletiva de osciladores de Kuramoto acoplados em redes. Primeiramente, abordamos os efeitos sobre a dinâmica das redes causados pela presença de triângulos padrões que estão omnipresentes em redes reais mas estão ausentes em redes gerados por modelos aleatórios. Estendemos a abordagem via campo-médio para uma variação do modelo de configuração tradicional capaz de criar topologias com número variável de triângulos. Através desta abordagem, mostramos que tais padrões estruturais pouco influenciam a emergência de comportamento coletivo em redes, podendo a dinâmica destas ser descrita em termos de teorias desenvolvidas para redes com topologia local semelhante a grafos de tipo árvore. Em seguida, analisamos a influência de inércia na evolução das fases. Mais precisamente, generalizamos cálculos de campo-médio para osciladores de segunda-ordem acoplados em redes sem correlação de grau. Demonstramos que na presença de efeitos inerciais o parâmetro de ordem do sistema se comporta de forma histerética. Ademais, efeitos oriundos de correlações de grau são examinados. Em particular, verificamos uma interessante equivalência dinâmica entre variações nos coeficientes de assortatividade e amortecimento dos osciladores. Possíveis aplicações para situações reais são discutidas. Finalmente, abordamos o problema de duas populações de osciladores estocásticos sob a influência de acoplamentos atrativos e repulsivos. Através da aplicação da aproximação Gaussiana, derivamos um conjunto reduzido de EDOs através do qual as bifurcações do sistema foram analisadas. Além dos estados asíncrono e síncrono, verificamos a existência de padrões peculiares na dinâmica de tal sistema. Mais precisamente, observamos a formação de estados caracterizados pelo surgimento de dois aglomerados de osciladores. Caso a defasagem entre estes grupos é inferior a π, um novo ritmo de oscilação diferente da frequência natural dos vértices emerge. Comportamentos dinâmicos similares são observados em osciladores caóticos sujeitos a acoplamentos análogos.
Lenormand, Maxime. "Initialize and Calibrate a Dynamic Stochastic Microsimulation Model: Application to the SimVillages Model." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00764929.
Full textGuan, Jinyan. "Bayesian Generative Modeling of Complex Dynamical Systems." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612950.
Full textSchmeltzer, Christian. "Dynamical properties of neuronal systems with complex network structure." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17470.
Full textAn important question in neuroscience is how the structure and dynamics of a neuronal network relate to each other. We approach this problem by modeling the spiking activity of large-scale neuronal networks that exhibit several complex network properties. Our main focus lies on the relevance of two particular attributes for the dynamics, namely structural heterogeneity and degree correlations. As a central result, we introduce a novel mean-field method that makes it possible to calculate the average activity of heterogeneous, degree-correlated neuronal networks without having to simulate each neuron explicitly. We find that the connectivity structure is sufficiently captured by a reduced matrix that contains only the coupling between the populations. With the mean-field method and numerical simulations we demonstrate that assortative degree correlations enhance the network’s ability to sustain activity for low external excitation, thus making it more sensitive to small input signals.
Colombini, Giulio. "Synchronisation phenomena in complex neuronal networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23904/.
Full textChinellato, David Dobrigkeit 1983. "Processos dinâmicos em redes complexas." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278371.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-10T18:23:05Z (GMT). No. of bitstreams: 1 Chinellato_DavidDobrigkeit_M.pdf: 15300810 bytes, checksum: 36fdea424f1c7f83a5f50742e82465f8 (MD5) Previous issue date: 2007
Resumo: Nesta tese, estudamos as propriedades estatísticas de processos dinâmicos de influência em redes complexas sujeitas a perturbações externas. Consideramos redes cujos nós admitem dois estados internos, digamos 0 e 1. Os estados internos se alteram de acordo com os estados dos nós vizinhos. Supomos que há N1 nós com estado interno fixo em 1, N0 elementos com estado interno fixo em 0 e outros N elementos com estado interno livre. Os nós com estado interno ½xo podem ser interpretados como perturbações externas à subrede de N elementos livres. Este sistema é uma generalização do modelo do eleitor [25] e pode descrever diversas situações interessantes, indo de sistemas sociais [26] para a física e a genética. Neste trabalho, calcularemos analiticamente a evolução de um sistema de rede totalmente conectada, obtendo expressões para as distribuições de equilíbrio de uma rede qualquer e também de todas as probabilidades de transição. Em seguida, generalizamos os resultados para o caso em que N0 e N1 são menores do que 1, representando um acoplamento fraco do sistema com um reservatório externo. Mostramos que os resultados exatos são excelentes aproximações para várias outras redes, incluindo redes aleatórias, reticuladas, livres de escala, estrela e mundo pequeno, e estudamos a dinâmica destas outras redes numericamente. Finalmente, demonstramos que, se os dois parâmetros da solução para redes totalmente conectadas, N0 e N1, forem alterados para valores efetivos para cada tipo de rede específico, o nosso resultado analítico explica satisfatoriamente todas as dinâmicas e estados assintóticos de outras topologias. O nosso modelo é portanto bastante geral, se aplicado cuidadosamente
Abstract: We study the statistical properties of in²uence networks subjected to external perturbations. We consider networks whose nodes have internal states that can assume the values 0 or 1. The internal states can change depending on the state of the neighboring nodes. We let N1 nodes be frozen in the state 1, N0 be frozen in the state 0 and the remaining N nodes be free to change their internal state. The frozen nodes are interpreted as external perturbations to the sub-network of N free nodes. The system is a generalization of the voter model [25] and can describe a variety of interesting situations, from social systems [26] to physics and genetics. In this thesis, we calculate analytically the equilibrium distribution and the transition probabilities between any two states for arbitrary values of N, N1 and N0 for the case of fully connected networks. Next we generalize the results for the case where N0 and N1 are smaller than 1, representing the weak coupling of the network to an external reservoir. We show that our exact results are excellent approximations for several other topologies, including random, regular lattices, scale-free, star and small world networks, and study the dynamics of these other networks numerically. We then proceed to show that, by appropriately tuning the two parameters from the solution from fully connected networks, N0and N1, to eÿective values when dealing with other, more sophisticated network types, we can easily explain their asymptotic network behaviour. Our model is therefore quite general in applicability, if used consciously
Mestrado
Física Estatistica e Termodinamica
Mestre em Física
Chetty, Vasu Nephi. "Theory and Applications of Network Structure of Complex Dynamical Systems." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6270.
Full textYang, Ang Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "A networked multi-agent combat model : emergence explained." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering, 2007. http://handle.unsw.edu.au/1959.4/38823.
Full textMartinet, Lucie. "Réseaux dynamiques de terrain : caractérisation et propriétés de diffusion en milieu hospitalier." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1010/document.
Full textIn this thesis, we focus on tools whose aim is to extract structural and temporal properties of dynamic networks as well as diffusion characteristics which can occur on these networks. We work on specific data, from the European MOSAR project, including the network of individuals proximity from time to time during 6 months at the Brek-sur-Mer Hospital. The studied network is notable because of its three dimensions constitution : the structural one induced by the distribution of individuals into distinct services, the functional dimension due to the partition of individual into groups of socio-professional categories and the temporal dimension.For each dimension, we used tools well known from the areas of statistical physics as well as graphs theory in order to extract information which enable to describe the network properties. These methods underline the specific structure of the contacts distribution which follows the individuals distribution into services. We also highlight strong links within specific socio-professional categories. Regarding the temporal part, we extract circadian and weekly patterns and quantify the similarities of these activities. We also notice distinct behaviour within patients and staff evolution. In addition, we present tools to compare the network activity within two given periods. To finish, we use simulations techniques to extract diffusion properties of the network to find some clues in order to establish a prevention policy
Zhou, Shu. "Exploring network models under sampling." Kansas State University, 2015. http://hdl.handle.net/2097/20349.
Full textDepartment of Statistics
Perla Reyes
Networks are defined as sets of items and their connections. Interconnected items are represented by mathematical abstractions called vertices (or nodes), and the links connecting pairs of vertices are known as edges. Networks are easily seen in everyday life: a network of friends, the Internet, metabolic or citation networks. The increase of available data and the need to analyze network have resulted in the proliferation of models for networks. However, for networks with billions of nodes and edges, computation and inference might not be achieved within a reasonable amount of time or budget. A sampling approach seems a natural choice, but traditional models assume that we can have access to the entire network. Moreover, when data is only available for a sampled sub-network conclusions tend to be extrapolated to the whole network/population without regard to sampling error. The statistical problem this report addresses is the issue of how to sample a sub-network and then draw conclusions about the whole network. Are some sampling techniques better than others? Are there more efficient ways to estimate parameters of interest? In which way can we measure how effectively my method is reproducing the original network? We explore these questions with a simulation study on Mesa High School students' friendship network. First, to assess the characteristics of the whole network, we applied the traditional exponential random graph model (ERGM) and a stochastic blockmodel to the complete population of 205 students. Then, we drew simple random and stratified samples of 41 students, applied the traditional ERGM and the stochastic blockmodel again, and defined a way to generalized the sample findings to the population friendship network of 205 students. Finally, we used the degree distribution and other network statistics to compare the true friendship network with the projected one. We achieved the following important results: 1) as expected stratified sampling outperforms simple random sampling when selecting nodes; 2) ERGM without restrictions offers a poor estimate for most of the tested parameters; and 3) the Bayesian stochastic blockmodel estimation using a strati ed sample of nodes achieves the best results.
Cantin, Guillaume. "Étude de réseaux complexes de systèmes dynamiques dissipatifs ou conservatifs en dimension finie ou infinie. Application à l'analyse des comportements humains en situation de catastrophe." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMLH16/document.
Full textThis thesis is devoted to the study of the dynamics of complex systems. We consider coupled networks built with multiple instances of deterministicdynamical systems, defined by ordinary differential equations or partial differential equations of parabolic type, which describe an evolution problem.We study the link between the internal dynamics of each node in the network, its topology, and its global dynamics. We analyze the coupling conditions which favor a particular dynamics at the network's scale, and study the impact of the interactions on the bifurcations identified on each node. In particular, we consider coupled networks of reaction-diffusion systems; we analyze their asymptotic behavior by searching positively invariant regions, and proving the existence of exponential attractors of finite fractal dimension, derived from energy estimates which suggest the dissipative nature of those networks of reaction-diffusion systems.Our framework includes the study of multiple applications. Among them, we consider a mathematical model for the geographical analysis of behavioral reactions of individuals facing a catastrophic event. We present the modeling choices that led to the study of this evolution problem, and its mathematical study, with a stability and bifurcation analysis of the equilibria. We highlight the decisive role of evacuation paths in coupled networks built from this model, in order to reach the expected equilibrium corresponding to a global return of all individuals to the daily behavior, avoiding a propagation of panic. Furthermore, the research of emergent periodic solutions in complex networks of oscillators brings us to consider coupled networks of hamiltonian systems, for which we construct polynomial perturbationswhich provoke the emergence of limit cycles, question which is related to the sixteenth Hilbert's problem
Dalle, Pezze Piero. "Dynamical models of the mammalian target of rapamycin network in ageing." Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2183.
Full textTupikina, Liubov. "Temporal and spatial aspects of correlation networks and dynamical network models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17746.
Full textIn the thesis I studied the complex architectures of networks, the network evolution in time, the interpretation of the networks measures and a particular class of processes taking place on complex networks. Firstly, I derived the measures to characterize temporal networks evolution in order to detect spatial variability patterns in evolving systems. Secondly, I introduced a novel flow-network method to construct networks from flows, that also allows to modify the set-up from purely relying on the velocity field. The flow-network method is developed for correlations of a scalar quantity (temperature, for example), which satisfies advection-diffusion dynamics in the presence of forcing and dissipation. This allows to characterize transport in the fluids, to identify various mixing regimes in the flow and to apply this method to advection-diffusion dynamics, data from climate and other systems, where particles transport plays a crucial role. Thirdly, I developed a novel Heterogeneous Opinion-Status model (HOpS) and analytical technique to study dynamical processes on networks. All in all, methods, derived in the thesis, allow to quantify evolution of various classes of complex systems, to get insight into physical meaning of correlation networks and analytically to analyze processes, taking place on networks.
Grau, Leguia Marc. "Automatic reconstruction of complex dynamical networks." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666631.
Full textUn problema principal de la ciencia de redes es cómo reconstruir (inferir) la topología de una red real usando la señales medidas de sus unidades internas. Entender la arquitectura de redes complejas es clave, no solo para entender su funcionamiento pero también para predecir y controlar su comportamiento. Los métodos existentes se focalizan en la detección de redes no direccionales y normalmente requieren fuertes suposicio- nes sobre el sistema. Sin embargo, muchos de estos métodos no pueden ser aplicados en redes con conexiones direccionales. Para abordar este problema, en esta tesis estudiamos la reconstrucción de redes direccio- nales. En concreto, desarrollamos un método de reconstrucción basado en modelos que combina estadísticas de correlaciones de derivadas con recocido simulado. Además, desarrollamos un método basado en datos cimentado en una medida d’interdependencia no lineal. Este método permite inferir la topología de redes direccionales de osciladores caóticos de Lorenz para un subrango de la fuerza de acoplamiento y densidad de la red. Finalmente, aplicamos el método basado en datos a grabaciones electroencefalográficas de un paciente con epilepsia. Las redes cerebra- les funcionales obtenidas usando este método son consistentes con la información médica disponible.
A foremost problem in network science is how to reconstruct (infer) the topology of a real network from signals measured from its internal units. Grasping the architecture of complex networks is key, not only to understand their functioning, but also to predict and control their behaviour. Currently available methods largely focus on the detection of links of undirected networks and often require strong assumptions about the system. However, many of these methods cannot be applied to networks with directional connections. To address this problem, in this doctoral work we focus at the inference of directed networks. Specifically, we develop a model-based network reconstruction method that combines statistics of derivative-variable correlations with simulated annealing. We furthermore develop a data-driven reconstruction method based on a nonlinear interdependence measure. This method allows one to infer the topology of directed networks of chaotic Lorenz oscillators for a subrange of the coupling strength and link density. Finally, we apply the data-driven method to multichannel electroencephalographic recordings from an epilepsy patient. The functional brain networks obtained from this approach are consistent with the available medical information.
Maloo, Akshay. "Dynamic Behavior Visualizer: A Dynamic Visual Analytics Framework for Understanding Complex Networked Models." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25296.
Full textMaster of Science
Hui, Zi. "Spatial structure of complex network and diffusion dynamics." Thesis, Le Mans, 2013. http://www.theses.fr/2013LEMA1005/document.
Full textIn the recent development of network sciences, spatial constrained networks have become an object of extensive investigation. Spatial constrained networks are embedded in configuration space. Their structures and dynamics are influenced by spatial distance. This is proved by more and more empirical data on real Systems showing exponential or power laws spatial distance distribution of links. In this dissertation, we focus on the structure of spatial network with power law spatial distribution. Several mechanisms of structure formation and diffusion dynamics on these networks are considered. First we propose an evolutionary network constructed in the configuration space with a competing mechanism between the degree and the spatial distance preferences. This mechanism is described by a ki + (1 — a), where ki is the degree of node i and rni is the spatial distance between nodes n and i. By adjusting parameter a, the network can be made to change continuously from the spatial driven network (a = 0) to the scale-free network (a = 1). The topological structure of our model is compared to the empirical data from email network with good agreement. On this basis, we focus on the diffusion dynamics on spatial driven network (a = 0). The first model we used is frequently employed in the study of epidemie spreading : the spatial susceptible-infected-susceptible (SIS) model. Here the spreading rate between two connected nodes is inversely proportional to their spatial distance. The result shows that the effective spreading time increases with increasing a. The existence of generic epidemic threshold is observed, whose value dépends on parameter a. The maximum épidemic threshold and the minimum stationary ratio of infected nodes simultaneously locate in the interval 1.5 < a < 2. Since the spatial driven network has well defined spatial distance, this model offers an occasion to study the diffusion dynamics by using the usual techniques of statistical mechanics. First, considering the fact that the diffusion is anomalous in general due to the important long-range spreading, we introduce a composite diffusion coefficient which is the sum of the usual diffusion constant D of the Fick's laws applied over different possible transfer distances on the network. As expected, this composite coefficient decreases with increasing a and is a good measure of the efficiency of the diffusion. Our second approach to this anomalous diffusion is to calculate the mean square displacement (l²) to identify a diffusion constant D' and the degree of thé anomalousness y with the help of the power law {l²} = 4D'ty. D' behaviors in the same way as D, i.e., it decreases with increasing a. y is smaller than unity (subdiffusion) and tends to one (normal diffusion) as a increases
Baek, Seong Cheol. "Dynamical Analysis and Decentralized Control of Power Packet Network." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263664.
Full textMacKenzie, Tony. "Create accurate numerical models of complex spatio-temporal dynamical systems with holistic discretisation." University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001466/.
Full textChoe, Sehyo Charley. "Models of complex adaptive systems with underlying network structure." Thesis, University of Oxford, 2007. https://ora.ox.ac.uk/objects/uuid:1cb8cb96-d27f-4543-9065-0e38a4297435.
Full textAgostinho, Carlos Manuel Melo. "Sustainability of systems interoperability in dynamic business networks." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8582.
Full textCollaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property to support businesses development. When achieved seamlessly, efficiency is increased in the entire product life cycle support. However, due to the different sources of knowledge, models and semantics, enterprise organisations are experiencing difficulties exchanging critical information, even when they operate in the same business environments. To solve this issue, most of them try to attain interoperability by establishing peer-to-peer mappings with different business partners, or use neutral data and product standards as the core for information sharing, in optimized networks. In current industrial practice, the model mappings that regulate enterprise communications are only defined once, and most of them are hardcoded in the information systems. This solution has been effective and sufficient for static environments, where enterprise and product models are valid for decades. However, more and more enterprise systems are becoming dynamic, adapting and looking forward to meet further requirements; a trend that is causing new interoperability disturbances and efficiency reduction on existing partnerships. Enterprise Interoperability (EI) is a well established area of applied research, studying these problems, and proposing novel approaches and solutions. This PhD work contributes to that research considering enterprises as complex and adaptive systems, swayed to factors that are making interoperability difficult to sustain over time. The analysis of complexity as a neighbouring scientific domain, in which features of interoperability can be identified and evaluated as a benchmark for developing a new foundation of EI, is here proposed. This approach envisages at drawing concepts from complexity science to analyse dynamic enterprise networks and proposes a framework for sustaining systems interoperability, enabling different organisations to evolve at their own pace, answering the upcoming requirements but minimizing the negative impact these changes can have on their business environment.
Passey, Jr David Joseph. "Growing Complex Networks for Better Learning of Chaotic Dynamical Systems." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8146.
Full textSousa, Fabiano Berardo de. "Análise de modelo de Hopfield com topologia de rede complexa." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30012014-111520/.
Full textBiological neural networks contain billions of neurons divided in spatial and functional clusters to perform dierent tasks. It also operates with complex dynamics such as periodic and chaotic ones. It has been shown that Chaotic Neural Networks are more efficient than conventional recurrent neural networks in avoiding spurious memory. Inspired by the fact that the cerebral cortex has speficic groups of cells and motivated by the efficiency of complex behaviors, in this document we investigate the dynamics of a recurrent neural network, as the Hopfield one, but with neurons coupled in such a way to form a complex network community structure. Also, we generate an asymmetric weight matrix placing pattern cycles during learning. Our study shows that the network can operate with periodic and chaotic dynamics, depending on the degree of the connection\'s fragmentation. For low fragmentation degree, the network operates with periodic dynamic duo to the employed learning rule. Chaotic behavior seems to rise for a high fragmentation degree. We also show that the neural network can hold both chaotic dynamic and a high value of modularity measure at the same time, indicating an acceptable community structure. These findings provide an alternative way to design dynamical neural networks to perform pattern recognition tasks exploiting periodic and chaotic dynamics by using a more similar topology to the topology of the brain
Viamontes, Esquivel Alcides. "Narrowing the gap between network models and real complex systems." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89149.
Full textFerrat, L. "Machine learning and statistical analysis of complex mathematical models : an application to epilepsy." Thesis, University of Exeter, 2019. http://hdl.handle.net/10871/36090.
Full textArat, Seda. "A Mathematical Model of a Denitrification Metabolic Network in Pseudomonas aeruginosa." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/46208.
Full textMaster of Science
Wei, Zheng S. M. Massachusetts Institute of Technology. "Critical enhancements of a dynamic traffic assignment model for highly congested, complex urban network." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58283.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 109-115).
To accurately replicate the highly congested traffic situation of a complex urban network, significant challenges are posed to current simulation-based dynamic traffic assignment (DTA) models. This thesis discusses these challenges and corresponding solutions with consideration of model accuracy and computational efficiency. DynaMITP, an off-line mesoscopic DTA model is enhanced. Model success is achieved by several critical enhancements aimed to better capture the traffic characteristics in urban networks. A Path-Size Logit route choice model is implemented to address the overlapping routes problem. The explicit representation of lane-groups accounts for traffic delays and queues at intersections. A modified treatment of acceptance capacity is required to deal with the large number of short links in the urban network. The network coding is revised to maintain enough loader access capacity in order to avoid artificial bottlenecks. In addition, the impacts of bicycles and pedestrians on automobile traffic is modeled by calibrating dynamic road segment capacities. The enhanced model is calibrated and applied to a case study network extracted from the city of Beijing, China. Data used in the calibration include sensor counts and floating car travel time. The improvements of the model performance are indicated by promising results from validation tests.
by Zheng Wei.
S.M.
Cupertino, Thiago Henrique. "Machine learning via dynamical processes on complex networks." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032014-154520/.
Full textA extração de conhecimento útil a partir de conjuntos de dados é um conceito chave em sistemas de informação modernos. Por conseguinte, a necessidade de técnicas eficientes para extrair o conhecimento desejado vem crescendo ao longo do tempo. Aprendizado de máquina é uma área de pesquisa dedicada ao desenvolvimento de técnicas capazes de permitir que uma máquina \"aprenda\" a partir de conjuntos de dados. Muitas técnicas já foram propostas, mas ainda há questões a serem reveladas especialmente em pesquisas interdisciplinares. Nesta tese, exploramos as vantagens da representação de dados em rede para desenvolver técnicas de aprendizado de máquina baseadas em processos dinâmicos em redes. A representação em rede unifica a estrutura, a dinâmica e as funções do sistema representado e, portanto, é capaz de capturar as relações espaciais, topológicas e funcionais dos conjuntos de dados sob análise. Desenvolvemos técnicas baseadas em rede para os três paradigmas de aprendizado de máquina: supervisionado, semissupervisionado e não supervisionado. O processo dinâmico de passeio aleatório é utilizado para caracterizar o acesso de dados não rotulados às classes de dados configurando uma nova heurística no paradigma supervisionado, a qual chamamos de facilidade de acesso. Também propomos uma técnica de classificação de dados que combina a visão de alto nível dos dados, por meio da caracterização topológica de rede, com relações de baixo nível, por meio de medidas de similaridade, em uma estrutura geral. Ainda no aprendizado supervisionado, as medidas de rede modularidade e centralidade Katz são aplicadas para classificar conjuntos de múltiplas observações, e um método de construção evolutiva de rede é aplicado ao problema de redução de dimensionalidade. O paradigma semissupervisionado é abordado por meio da extensão da heurística de facilidade de acesso para os casos em que apenas algumas amostras de dados rotuladas e muitas amostras não rotuladas estão disponíveis. É também proposta uma técnica semissupervisionada baseada em forças de interação, para a qual fornecemos heurísticas para selecionar parâmetros e uma análise de estabilidade mediante uma função de Lyapunov. Finalmente, uma técnica não supervisionada baseada em rede utiliza os conceitos de controle pontual e tempo de consenso de processos dinâmicos para derivar uma medida de similaridade usada para agrupar dados. Os dados são representados por uma rede conectada e esparsa na qual os vértices são elementos dinâmicos. Simulações com dados de referência e comparações com técnicas de aprendizado de máquina conhecidas são fornecidos para todas as técnicas propostas. As vantagens da representação de dados em rede e de processos dinâmicos para o aprendizado de máquina são evidenciadas em todos os casos
Carro, Patiño Adrián. "Individual-based models of collective dynamics in socio-economic systems." Doctoral thesis, Universitat de les Illes Balears, 2016. http://hdl.handle.net/10803/396311.
Full textEl propósito principal de esta tesis es el de contribuir a la comprensión del modo en el que comportamientos colectivos complejos emergen en sistemas sociales y económicos. En particular, nos centramos en tres temas principales: dinámica de opiniones, comportamiento gregario en mercados financieros y competición lingüística. Los modelos de dinámica de opiniones se centran en los procesos de formación de opiniones en el seno de una sociedad compuesta por un conjunto de individuos en interacción y con opiniones diversas. Uno de los principales problemas abordados por estos modelos es el de determinar si estos procesos de formación de opiniones llevan a la emergencia de un consenso en la sociedad, o si llevan a la segregación de los individuos en diferentes grupos. Nos interesamos aquí por situaciones en las que el asunto que se discute permite la existencia de un contínuo de opiniones y por tanto las opiniones pueden ser modeladas como variables reales. En particular, nos centramos en un modelo consistente en dos mecanismos para la evolución de las opiniones: un mecanismo de influencia social, por el cual dos agentes interaccionantes llegan a un compromiso en el punto medio entre sus opiniones, y un mecanismo de homofilia, por el cual dos agentes interaccionan únicamente si la diferencia entre sus opiniones es inferior a un cierto umbral. En este contexto, estudiamos la influencia de la distribución inicial de opiniones. Las series temporales financieras están caracterizadas por una serie de hechos estilizados o regularidades estadísticas no gaussianas observadas en un amplio rango de mercados, activos y períodos temporales, como el agrupamiento de la volatilidad o las distribuciones de retornos con colas pesadas. Un número creciente de contribuciones basadas en agentes heterogéneos en interacción han venido a ofrecer una interpretación de estos hechos estilizados como el resultado emergente de la diversidad entre actores económicos y de las interacciones y conexiones entre ellos. En particular, nos centramos aquí en un modelo estocástico de transmisión de información en mercados financieros basado en una competición entre interacciones de copia a pares entre agentes de mercado (comportamiento gregario) y cambios de estado aleatorios (comportamiento idiosincrático). Por un lado, desarrollamos una generalización de este modelo de comportamiento gregario para tener en cuenta la llegada de información desde fuentes externas y estudiamos la influencia de esta información entrante en el mercado. Por otro lado, estudiamos una versión en red del modelo de comportamiento gregario y nos centramos en la influencia de la topología subyacente en el comportamiento asintótico del sistema. Los modelos de competición lingüística abordan la dinámica del uso de lenguas en sistemas sociales multilingües debida a interacciones sociales. El principal objetivo de estos modelos es el de diferenciar entre aquellos mecanismos de interacción que llevan a la coexistencia de diferentes lenguas y aquellos que llevan a la extinción de todas menos una. Aunque tradicionalmente se ha conceptualizado como una propiedad del hablante, recientemente se ha propuesto que el uso de una lengua puede ser más claramente descrito como una propiedad de la relación entre dos hablantes ---un estado del enlace--- que como una propiedad de los hablantes ---un estado del nodo---. Inspirados por esta perspectiva, desarrollamos primero un modelo de coevolución que acopla una dinámica de estados en los enlaces basada en una regla de mayoría con la evolución de la topología de la red debida al re-enlace aleatorio de enlaces en una minoría local. Finalmente, desarrollamos un modelo en el que las dinámicas acopladas de uso de la lengua, como propiedad de los enlaces entre hablantes, y preferencia lingüística, como propiedad de los hablantes mismos, son consideradas en una topología de red fija.
Kamapantula, Bhanu K. "In-silico Models for Capturing the Static and Dynamic Characteristics of Robustness within Complex Networks." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/4049.
Full textNath, Madhurima. "Application of Network Reliability to Analyze Diffusive Processes on Graph Dynamical Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/86841.
Full textPh. D.
The research presented here explores the effects of the structural properties of an interacting system on the outcomes of a diffusive process using Moore-Shannon network reliability. The network reliability is a finite degree polynomial which provides the probability of observing a certain configuration for a diffusive process on networks. Examples of such processes analyzed here are outbreak of an epidemic in a population, spread of an invasive species through international trade of commodities and spread of a perturbation in a physical system with discrete magnetic spins. Network reliability is a novel tool which can be used to compare the efficiency of network models with the observed data, to find important components of the system as well as to estimate the functions of thermodynamic state variables.
Ahn, Sungwoo. "Transient and Attractor Dynamics in Models for Odor Discrimination." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1280342970.
Full textPowell, Sean K. "A quantitative study of diffusion in quasi-periodic fibre networks and complex porous media." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/92506/12/92506%28thesis%29.pdf.
Full textXin, Ying. "Complex Dynamical Systems: Definitions of Entropy, Proliferation of Epithelia and Spread of Infections and Information." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1522955730251256.
Full textSchmeltzer, Christian [Verfasser], Sten [Akademischer Betreuer] Rüdiger, Alexandre [Akademischer Betreuer] Kihara, and Enrique Alvarez [Akademischer Betreuer] Lacalle. "Dynamical properties of neuronal systems with complex network structure / Christian Schmeltzer. Gutachter: Sten Rüdiger ; Alexandre Kihara ; Enrique Alvarez Lacalle." Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://d-nb.info/1096286297/34.
Full textAlqithami, Saad. "Network Organization Paradigm." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1293.
Full textMagri, Glaucia Ligia Kelly Priscilla Midori Funakura Gondo. "Simulação baseada em agentes para a análise do comportamento do contribuinte quanto à sonegação: um modelo de evasão fiscal em redes complexas aleatórias." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-05052015-233144/.
Full textTaxes are charged to citizens because they are the cost of the social contract, that is an agreement between people to a life in society. Directly, they convert to society into public goods and services; indirectly, are a means of the government to intervene in the economy, for example, the reduction of social inequalities in the regulation of domestic and foreign trade etc. A taxpayer is required to pay a tax because of a formal rule (law) determined by the public institutions. Institutions are created to structure human interactions through incentives. Our intention is to present an alternative analysis of the state-citizen relations in tax revenue and cost related to tax avoidance and tax audit. The object of study is tax compliance under taxpayer behavior. We present an agent-based simulation for analyzing the evasion behavior of the taxpayer, a model of tax evasion in random complex networks. Our main contribution is to include the evolution of the taxpayer perceptions on the government actions oversight in a model with the complexity approach. From the convergence of individual aspects (agents decision under acceptable risk), social influences (social interaction) and environmental factors (dynamic with the government) to tax evasion behavior, is analized the evolution of tax compliance (by tax declaration) and tax audit in order to understand the dynamic behavior between taxpayer and government.
Johnson, Sandra. "Integrated Bayesian network frameworks for modelling complex ecological issues." Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/32002/1/Sandra_Johnson_Thesis.pdf.
Full textWang, Zhen. "Human disease-behavior interactions on complex networks models: incorporating evolutionary game into epidemiology." HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/22.
Full textWu, Sichao. "Computational Framework for Uncertainty Quantification, Sensitivity Analysis and Experimental Design of Network-based Computer Simulation Models." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78764.
Full textPh. D.
Hu, Qiong. "Statistical parametric speech synthesis based on sinusoidal models." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28719.
Full textMolter, Colin. "Storing information through complex dynamics in recurrent neural networks." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211039.
Full textIn this thesis, it is shown experimentally that the more information is to be stored in robust cyclic attractors, the more chaos appears as a regime in the back, erratically itinerating among brief appearances of these attractors. Chaos does not appear to be the cause but the consequence of the learning. However, it appears as an helpful consequence that widens the net's encoding capacity. To learn the information to be stored, an unsupervised Hebbian learning algorithm is introduced. By leaving the semantics of the attractors to be associated with the feeding data unprescribed, promising results have been obtained in term of storing capacity.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Padmanabhan, Sathya. "Broad-band space conservative on wafer network analyzer calibrations with more complex SOLT definitions." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000318.
Full textImam, Ayad Tareq. "Relative-fuzzy : a novel approach for handling complex ambiguity for software engineering of data mining models." Thesis, De Montfort University, 2010. http://hdl.handle.net/2086/3909.
Full textStolk, Henk. "Emergent models in hierarchical and distributed simulation of complex systems : with applications to ecosystem and genetic network modelling /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19095.pdf.
Full textNguyen, Viet Pham Quoc. "A characteristic-preserving technique for lossless and invertible simpification of large complex three-dimensional Triangulated Irregular Network models." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/78127.
Full text