Academic literature on the topic 'Complex Ginzburg-Landau equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complex Ginzburg-Landau equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Complex Ginzburg-Landau equation"
Gao, Hongjun, and Keng-Huat Kwek. "Global existence for the generalised 2D Ginzburg-Landau equation." ANZIAM Journal 44, no. 3 (January 2003): 381–92. http://dx.doi.org/10.1017/s1446181100008099.
Full textHuang, Chunyan. "On the Analyticity for the Generalized Quadratic Derivative Complex Ginzburg-Landau Equation." Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/607028.
Full textIpsen, M., F. Hynne, and P. G. Sørensen. "Amplitude Equations and Chemical Reaction–Diffusion Systems." International Journal of Bifurcation and Chaos 07, no. 07 (July 1997): 1539–54. http://dx.doi.org/10.1142/s0218127497001217.
Full textGarcía-Morales, Vladimir, and Katharina Krischer. "The complex Ginzburg–Landau equation: an introduction." Contemporary Physics 53, no. 2 (March 2012): 79–95. http://dx.doi.org/10.1080/00107514.2011.642554.
Full textGraham, R., and T. Tél. "Potential for the Complex Ginzburg-Landau Equation." Europhysics Letters (EPL) 13, no. 8 (December 15, 1990): 715–20. http://dx.doi.org/10.1209/0295-5075/13/8/008.
Full textZubrzycki, Andrzej. "A complex Ginzburg-Landau equation in magnetism." Journal of Magnetism and Magnetic Materials 150, no. 2 (October 1995): L143—L145. http://dx.doi.org/10.1016/0304-8853(95)00391-6.
Full textMirzazadeh, Mohammad, Mehmet Ekici, Abdullah Sonmezoglu, Mostafa Eslami, Qin Zhou, Abdul H. Kara, Daniela Milovic, Fayequa B. Majid, Anjan Biswas, and Milivoj Belić. "Optical solitons with complex Ginzburg–Landau equation." Nonlinear Dynamics 85, no. 3 (May 9, 2016): 1979–2016. http://dx.doi.org/10.1007/s11071-016-2810-5.
Full textSalete, Eduardo, Antonio M. Vargas, Ángel García, Mihaela Negreanu, Juan J. Benito, and Francisco Ureña. "Complex Ginzburg–Landau Equation with Generalized Finite Differences." Mathematics 8, no. 12 (December 20, 2020): 2248. http://dx.doi.org/10.3390/math8122248.
Full textRosier, Lionel, and Bing-Yu Zhang. "Null controllability of the complex Ginzburg–Landau equation." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 26, no. 2 (February 2009): 649–73. http://dx.doi.org/10.1016/j.anihpc.2008.03.003.
Full textCazenave, Thierry, Flávio Dickstein, and Fred B. Weissler. "Standing waves of the complex Ginzburg–Landau equation." Nonlinear Analysis: Theory, Methods & Applications 103 (July 2014): 26–32. http://dx.doi.org/10.1016/j.na.2014.03.001.
Full textDissertations / Theses on the topic "Complex Ginzburg-Landau equation"
Liu, Weigang. "A General Study of the Complex Ginzburg-Landau Equation." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90886.
Full textDoctor of Philosophy
The complex Ginzburg-Landau equation is one of the most studied nonlinear partial differential equation in the physics community. I study this equation using both analytical and numerical methods. First, I employed the field theory approach to extract the critical initial-slip exponent, which emerges due to the breaking of time translation symmetry and describes the intermediate temporal window between microscopic time scales and the asymptotic long-time regime. I also numerically solved this equation on a two-dimensional square lattice. I studied the scaling behavior in non-equilibrium relaxation processes in situations where defects are interactive but not subject to strong fluctuations. I observed nucleation processes when the system under goes a transition from a strongly fluctuating disordered state to the relatively stable “frozen” state where its dynamics cease. I extracted a finite dimensionless barrier for systems that are quenched deep into the frozen state regime. An exponentially decaying long tail in the nucleation time distribution is found, which suggests a discontinuous transition. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-SC0002308.
Braun, Robert, and Fred Feudel. "Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation." Universität Potsdam, 1996. http://opus.kobv.de/ubp/volltexte/2007/1409/.
Full textCruz-Pacheco, Gustavo. "The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187238.
Full textHorsch, Karla 1968. "Attractors for Lyapunov cases of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282419.
Full textAguareles, Carrero Maria. "Interaction of spiral waves in the general complex Ginzburg-Landau equation." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5854.
Full textEn aquesta tesi s'analitza l'equació de Ginzburg-Landau complexa general, que és una equació en derivades parcials de reacció-difusió que s'utilitza sovint com a model matemàtic per a descriure sistemes oscil·latoris en dominis extensos. En particular estudiem els patrons que sorgeixen en el pla quan s'imposa que el grau de Brouwer de la solució no sigui nul. Aquests patrons estan formats per ones de rotació en forma d'espirals, és a dir, les corbes de nivell de la solució formen espirals que emanen dels punts on la funció s'anul·la. Quan la solució s'anul·la només en un punt i per tant només hi ha una espiral, tota la dependència temporal apareix en el terme de freqüència. Així doncs, la funció solució es pot expressar com a funció del radi polar i en termes del seu grau topològic i la freqüència de l'ona. Per tant, aquestes solucions es poden expressar en termes d'un sistema d'equacions diferencials ordinàries. Aquestes solucions només existeixen per una certa freqüència que depèn unívocament dels paràmetres de l'equació i, com a conseqüència i degut a la relació de dispersió entre el nombre d'ones i la freqüència, el nombre d'ones a l'infinit, l'anomenat nombre d'ones asimptòtic, ve també determinat unívocament pels paràmetres. Quan les solucions tenen més d'un zero aïllat la condició sobre el grau de la funció fa que de cada zero sorgeixi una espiral diferent i aquestes es mouen en el pla mantenint la seva estructura local. En aquest treball s'usen tècniques d'anàlisi asimptòtica per trobar equacions del moviment per als centres de les espirals i es troba que aquesta evolució temporal és lenta. En concret, per la distàncies relatives grans entre els centres de les espirals, l'escala de temps per a la seva dinàmica ve donada pel logaritme de l'invers d'aquesta distància. Es demostra que aquestes equacions del moviment són diferents en funció de la relació entre els paràmetres de l'equació de Ginzburg-Landau complexa i la separació entre els centres de les espirals, i que la forma com es passa d'unes equacions a les altres és molt singular. També es demostra que el nombre d'ones asimptòtic per al cas de sistemes amb diverses espirals també està unívocament determinat pels paràmetres però no obstant, el cas de sistemes amb diverses espirals es diferencia del cas d'una única ona en què deixa de ser constant i evoluciona al mateix ritme que la velocitat dels centres de les espirals.
Many physical systems have the property that its dynamics is driven by some kind of spatical diffusion that is in competition with a reaction, like for instance two chemical species that react at the same time that there is a diffusion of each of them into the other. This interplay between reaction and diffusion produce non-homogeneous patterns that can sometimes be very rich. The mathematical models that describe this kind of behaviours are usually nonlinear partial differential equations whose solutions represent these patterns.
In this thesis we focus on an especific reaction-diffusion equation that is the so-called general complex Ginzburg-Landau equation that is used as a model for oscillatory systems in extended domains. In particular we are interested in the type of patterns in the plane that arise when the solutions have a non-vanishing Brouwer degree. These patterns have the property that they exhibit rotating waves in the shape of spirals, which means that the contour lines arrange in the shape of spirals that emerge from the points where the solution vanishes. When the solution vanishes only at one point all the time dependence appears as a frequency term so the solutions can be expressed as a function of the polar radius and in terms of the topological degree of the solution and the frequency of the wave. Therefore, these solutions can be expressed in terms of a system of ordinary differential equations. These solutions do only exist with a given frequency, and as a consequence and due to the existence of a dispresion relation, the wavenumber far from the origin, the so-called asymptotic wavenumber, is also unique. When the solutions have more than one isolated zero, the condition on the degree of the function has the effect of producing several spirals that emerge from the different zeros of the solution. These spirals evolve in time keeping their structure but moving around on the plane. In this work we use asymptotic analysis techniques to derive laws of motion for the centres of the spirals and we show that the time evolution of these patterns is slow and, for large relative separations of the centres of the spirals, the time scale for the their dynamics is logarithmic in the inverse of this distance. These laws of motion are different depending on the relation between the parameters of the complex Ginzburg-Landau equation and the relative separation of the spirals. We show that the way these laws change as the spirals separate or approach is highly singular. We also show that the asymptotic wavenumber in the case of multiple spirals is as well unique and that it evolves in time at the same rate as the velocity of the centres.
Mancas, Ciprian. "DISSIPATIVE SOLITONS IN THE CUBIC–QUINTIC COMPLEX GINZBURG–LANDAU EQUATION:BIFURCATIONS AND SPATIOTEMPORAL STRUCTURE." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2912.
Full textPh.D.
Department of Mathematics
Sciences
Mathematics PhD
Stark, Donald Richard. "Structure and turbulence in the complex Ginzburg-Landau equation with a nonlinearity of arbitrary order." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187363.
Full textBrusch, Lutz. "Complex Patterns in Extended Oscillatory Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-1006416783250-74051.
Full textMacKenzie, Tony. "Create accurate numerical models of complex spatio-temporal dynamical systems with holistic discretisation." University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001466/.
Full textBlockley, Edward William. "Nonlinear solutions of the amplitude equations governing fluid flow in rotating spherical geometries." Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/41950.
Full textBook chapters on the topic "Complex Ginzburg-Landau equation"
Akhmediev, Nail, and Adrian Ankiewicz. "Solitons of the Complex Ginzburg—Landau Equation." In Springer Series in Optical Sciences, 311–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44582-1_12.
Full textElphick, Christian, and Ehud Meron. "Vortex Interactions in the Complex Ginzburg-Landau Equation." In Growth and Form, 263–70. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-1357-1_25.
Full textDattagupta, Sushanta, and Sanjay Puri. "Phase Ordering Dynamics in the Complex Ginzburg-Landau Equation." In Dissipative Phenomena in Condensed Matter, 147–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06758-1_6.
Full textOkazawa, Noboru. "Semilinear Elliptic Problems Associated with the Complex Ginzburg-Landau Equation." In Partial Differential Equations and Functional Analysis, 169–87. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/3-7643-7601-5_11.
Full textGibbon, J. D. "Weak and Strong Turbulence in the Complex Ginzburg Landau Equation." In Turbulence in Fluid Flows, 33–48. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-4346-5_2.
Full textPumir, A., B. I. Shraiman, W. van Saarloos, P. C. Hohenberg, H. Chaté, and M. Holen. "Phase VS. Defect Turbulence in the 1D Complex Ginzburg-Landau Equation." In NATO ASI Series, 173–77. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3438-9_18.
Full textConte, R., and M. Musette. "Exact Solutions to the Complex Ginzburg-Landau Equation from a Linear System." In Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, 281–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2082-1_27.
Full textZhang, Lu, Lei Chen, and Xiao Song. "Preconditioned Iteration Method for the Nonlinear Space Fractional Complex Ginzburg-Landau Equation." In Simulation Tools and Techniques, 351–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72795-6_29.
Full textZhang, Lu, Lei Chen, and Wenyu Zhou. "Fast Preconditioned Iterative Method for the Space Fractional Complex Ginzburg-Landau Equation." In Simulation Tools and Techniques, 78–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72792-5_8.
Full textGrossauer, Harald, and Otmar Scherzer. "Using the Complex Ginzburg-Landau Equation for Digital Inpainting in 2D and 3D." In Scale Space Methods in Computer Vision, 225–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44935-3_16.
Full textConference papers on the topic "Complex Ginzburg-Landau equation"
Brand, Helmut R., Orazio Descalzi, and Jaime Cisternas. "Hole Solutions in the Cubic Complex Ginzburg-Landau Equation versus Holes in the Cubic-Quintic Complex Ginzburg-Landau Equation." In NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS: XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics. AIP, 2007. http://dx.doi.org/10.1063/1.2746737.
Full textLi, Jing, and Zhixiong Zhang. "Complex Ginzburg-Landau equation with boundary control and observation." In 2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, 2016. http://dx.doi.org/10.1109/ccsse.2016.7784365.
Full textXiang, Chunhuan, and Honglei Wang. "An approximate method for solving complex Ginzburg-Landau equation." In 2018 8th International Conference on Manufacturing Science and Engineering (ICMSE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icmse-18.2018.111.
Full textBazhenov, M., M. Rabinovich, and L. Rubchinsky. "Time periodic spatial disorder in a complex Ginzburg–Landau equation." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51051.
Full textBARASHENKOV, I. V., and S. D. CROSS. "LOCALISED SOLUTIONS OF THE PARAMETRICALLY DRIVEN COMPLEX GINZBURG-LANDAU EQUATION." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810175_0043.
Full textGutiérrez, Pablo, and Orazio Descalzi. "Existence Range of Pulses in the Quintic Complex Ginzburg-Landau Equation." In NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS: XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics. AIP, 2007. http://dx.doi.org/10.1063/1.2746736.
Full textLatas, Sofia C. V., Mário F. S. Ferreira, and Margarida V. Facão. "Dynamics of ultrashort pulse solutions of the complex Ginzburg-Landau equation." In SPIE LASE, edited by Peter E. Powers. SPIE, 2010. http://dx.doi.org/10.1117/12.841634.
Full textTuraev, D., S. Zelik, and A. G. Vladimirov. "Chaotic bound state of localized structures in the complex Ginzburg-Landau equation." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/nlgw.2005.wd9.
Full textHawick, Kenneth A., and Daniel P. Playne. "Numerical Simulation of the Complex Ginzburg-Landau Equation on GPUs with CUDA." In Parallel and Distributed Computing and Networks / Software Engineering. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.719-036.
Full textGitterman, M. "Wave Propagation in Inhomogeneous Media: From the Helmholtz to the Ginzburg-Landau Equation." In Wave Propagation: Scattering and Emission in Complex Media - International Workshop. CO-PUBLISHED WITH WORLD SCIENTIFIC PUBLISHING CO AND SCIENCE PRESS, CHINA, 2005. http://dx.doi.org/10.1142/9789812702869_0018.
Full textReports on the topic "Complex Ginzburg-Landau equation"
Takac, P. Dynamics on the attractor for the complex Ginzburg-Landau equation. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10174640.
Full textVernov, Sergey Yu. Construction of Elliptic Solutions to the Quintic Complex One-dimensional Ginzburg–Landau Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-322-333.
Full text