Journal articles on the topic 'Complex photonics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Complex photonics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Chuang, Chang-Ling Zou, Yan Zhao, et al. "Organic printed photonics: From microring lasers to integrated circuits." Science Advances 1, no. 8 (2015): e1500257. http://dx.doi.org/10.1126/sciadv.1500257.
Full textMaram, Reza, Saket Kaushal, José Azaña, and Lawrence Chen. "Recent Trends and Advances of Silicon-Based Integrated Microwave Photonics." Photonics 6, no. 1 (2019): 13. http://dx.doi.org/10.3390/photonics6010013.
Full textSun, Shuai, Mario Miscuglio, Xiaoxuan Ma, et al. "Induced homomorphism: Kirchhoff’s law in photonics." Nanophotonics 10, no. 6 (2021): 1711–21. http://dx.doi.org/10.1515/nanoph-2020-0655.
Full textFerreira de Lima, Thomas, Alexander N. Tait, Armin Mehrabian, et al. "Primer on silicon neuromorphic photonic processors: architecture and compiler." Nanophotonics 9, no. 13 (2020): 4055–73. http://dx.doi.org/10.1515/nanoph-2020-0172.
Full textLin, Qian, Xiao-Qi Sun, Meng Xiao, Shou-Cheng Zhang, and Shanhui Fan. "A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension." Science Advances 4, no. 10 (2018): eaat2774. http://dx.doi.org/10.1126/sciadv.aat2774.
Full textNovack, Ari, Matt Streshinsky, Ran Ding, et al. "Progress in silicon platforms for integrated optics." Nanophotonics 3, no. 4-5 (2014): 205–14. http://dx.doi.org/10.1515/nanoph-2013-0034.
Full textZhao, Han, and Liang Feng. "Parity–time symmetric photonics." National Science Review 5, no. 2 (2018): 183–99. http://dx.doi.org/10.1093/nsr/nwy011.
Full textHayran, Zeki, Seyyed Ali Hassani Gangaraj, and Francesco Monticone. "Topologically protected broadband rerouting of propagating waves around complex objects." Nanophotonics 8, no. 8 (2019): 1371–78. http://dx.doi.org/10.1515/nanoph-2019-0075.
Full textAgio, Mario, Xunya Jiang, Maria Kafesaki, and Thomas Koschny. "Light-matter interaction in complex photonics systems: introduction." Journal of the Optical Society of America B 38, no. 9 (2021): LMI1. http://dx.doi.org/10.1364/josab.441711.
Full textGuo, Xuexue, Yimin Ding, Xi Chen, Yao Duan, and Xingjie Ni. "Molding free-space light with guided wave–driven metasurfaces." Science Advances 6, no. 29 (2020): eabb4142. http://dx.doi.org/10.1126/sciadv.abb4142.
Full textYou, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.
Full textManoccio, Mariachiara, Marco Esposito, Adriana Passaseo, Massimo Cuscunà, and Vittorianna Tasco. "Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures." Micromachines 12, no. 1 (2020): 6. http://dx.doi.org/10.3390/mi12010006.
Full textLarkin, A. I., and K. A. Trukhanov. "OPERATIONAL ANALYSIS OF COMPLEX MEDICAL STATES BY PHOTONICS METHODS." Biomedical Photonics 7, no. 1 (2018): 28–31. http://dx.doi.org/10.24931/2413-9432-2018-7-1-28-31.
Full textCong, Longqing, Prakash Pitchappa, Nan Wang, and Ranjan Singh. "Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control." Research 2019 (February 27, 2019): 1–11. http://dx.doi.org/10.34133/2019/7084251.
Full textCong, Longqing, Prakash Pitchappa, Nan Wang, and Ranjan Singh. "Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control." Research 2019 (February 27, 2019): 1–11. http://dx.doi.org/10.1155/2019/7084251.
Full textKobayashi, Norihisa, Haruki Minami, and Kazuki Nakamura. "Photonics of DNA/ruthenium(II) complexes." Nanophotonics 7, no. 8 (2018): 1373–85. http://dx.doi.org/10.1515/nanoph-2018-0029.
Full textShi, Peng, Luping Du, Congcong Li, Anatoly V. Zayats, and Xiaocong Yuan. "Transverse spin dynamics in structured electromagnetic guided waves." Proceedings of the National Academy of Sciences 118, no. 6 (2021): e2018816118. http://dx.doi.org/10.1073/pnas.2018816118.
Full textPiramidowicz, R., S. Stopiński, K. Ławniczuk, et al. "Photonic integrated circuits – a new approach to laser technology." Bulletin of the Polish Academy of Sciences: Technical Sciences 60, no. 4 (2012): 683–89. http://dx.doi.org/10.2478/v10175-012-0079-5.
Full textKhriachtchev, Leonid, Stefano Ossicini, Fabio Iacona, and Fabrice Gourbilleau. "Silicon Nanoscale Materials: From Theoretical Simulations to Photonic Applications." International Journal of Photoenergy 2012 (2012): 1–21. http://dx.doi.org/10.1155/2012/872576.
Full textMao, Simei, Lirong Cheng, Caiyue Zhao, Faisal Nadeem Khan, Qian Li, and H. Y. Fu. "Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks." Applied Sciences 11, no. 9 (2021): 3822. http://dx.doi.org/10.3390/app11093822.
Full textGao, Wenlong, and Yao-Ting Wang. "Ideal Photonic Weyl Nodes Stabilized by Screw Rotation Symmetry in Space Group 19." Crystals 10, no. 7 (2020): 605. http://dx.doi.org/10.3390/cryst10070605.
Full textSoriano, Miguel C., Jordi García-Ojalvo, Claudio R. Mirasso, and Ingo Fischer. "Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers." Reviews of Modern Physics 85, no. 1 (2013): 421–70. http://dx.doi.org/10.1103/revmodphys.85.421.
Full textUCHIDA, Atsushi. "Progress in Fast Physical Random Number Generation with Complex Photonics." Review of Laser Engineering 47, no. 6 (2019): 310. http://dx.doi.org/10.2184/lsj.47.6_310.
Full textChen, Weijin, Qingdong Yang, Yuntian Chen, and Wei Liu. "Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies." Proceedings of the National Academy of Sciences 118, no. 12 (2021): e2019578118. http://dx.doi.org/10.1073/pnas.2019578118.
Full textAbbaszadeh, Hamed, Michel Fruchart, Wim van Saarloos, and Vincenzo Vitelli. "Liquid-crystal-based topological photonics." Proceedings of the National Academy of Sciences 118, no. 4 (2021): e2020525118. http://dx.doi.org/10.1073/pnas.2020525118.
Full textMäntynen, Henrik, Nicklas Anttu, Zhipei Sun, and Harri Lipsanen. "Single-photon sources with quantum dots in III–V nanowires." Nanophotonics 8, no. 5 (2019): 747–69. http://dx.doi.org/10.1515/nanoph-2019-0007.
Full textOKAMOTO, Atsushi, and Tomohiro MAEDA. "Perspectives and Observations of Information Photonics using Optical Complex-Amplitude Control Technology." Journal of The Institute of Electrical Engineers of Japan 140, no. 5 (2020): 299–302. http://dx.doi.org/10.1541/ieejjournal.140.299.
Full textGrosmann, M. H., A. I. Larkin, and J. P. Massue. "Methods of Correlation Digital Photonics in the Diagnosis of Complex Medical Conditions." KnE Energy 3, no. 2 (2018): 107. http://dx.doi.org/10.18502/ken.v3i2.1800.
Full textGbur, Greg, and Konstantinos Makris. "Introduction to non-Hermitian photonics in complex media: PT-symmetry and beyond." Photonics Research 6, no. 5 (2018): PTS1. http://dx.doi.org/10.1364/prj.6.00pts1.
Full textLarger, Laurent. "Complexity in electro-optic delay dynamics: modelling, design and applications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1999 (2013): 20120464. http://dx.doi.org/10.1098/rsta.2012.0464.
Full textJiang, Jiaqi, and Jonathan A. Fan. "Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks." Nanophotonics 10, no. 1 (2020): 361–69. http://dx.doi.org/10.1515/nanoph-2020-0407.
Full textKudyshev, Zhaxylyk A., Alexander V. Kildishev, Vladimir M. Shalaev, and Alexandra Boltasseva. "Machine learning–assisted global optimization of photonic devices." Nanophotonics 10, no. 1 (2020): 371–83. http://dx.doi.org/10.1515/nanoph-2020-0376.
Full textLee, Hyoung In, and El Hang Lee. "The Minimum Wave Damping Selects the Most Favored Solution from Multiple Ones to Acoustic-Like Problems." Materials Science Forum 673 (January 2011): 11–20. http://dx.doi.org/10.4028/www.scientific.net/msf.673.11.
Full textCoppolaro, Marino, Massimo Moccia, Giuseppe Castaldi, Nader Engheta, and Vincenzo Galdi. "Non-Hermitian doping of epsilon-near-zero media." Proceedings of the National Academy of Sciences 117, no. 25 (2020): 13921–28. http://dx.doi.org/10.1073/pnas.2001125117.
Full textTurtaev, Sergey, Ivo T. Leite, Kevin J. Mitchell, Miles J. Padgett, David B. Phillips, and Tomáš Čižmár. "Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics." Optics Express 25, no. 24 (2017): 29874. http://dx.doi.org/10.1364/oe.25.029874.
Full textKamali, Seyedeh Mahsa, Ehsan Arbabi, Hyounghan Kwon, and Andrei Faraon. "Metasurface-generated complex 3-dimensional optical fields for interference lithography." Proceedings of the National Academy of Sciences 116, no. 43 (2019): 21379–84. http://dx.doi.org/10.1073/pnas.1908382116.
Full textLi, Shuang, Yewang Su, and Rui Li. "Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2190 (2016): 20160087. http://dx.doi.org/10.1098/rspa.2016.0087.
Full textWoliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, et al. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.
Full textMorozov, Oleg, Airat Sakhabutdinov, Vladimir Anfinogentov, Rinat Misbakhov, Artem Kuznetsov, and Timur Agliullin. "Multi-Addressed Fiber Bragg Structures for Microwave-Photonic Sensor Systems." Sensors 20, no. 9 (2020): 2693. http://dx.doi.org/10.3390/s20092693.
Full textAMIN, RASHID, SOYEON KIM, SUNG HA PARK, and THOMAS HENRY LABEAN. "ARTIFICIALLY DESIGNED DNA NANOSTRUCTURES." Nano 04, no. 03 (2009): 119–39. http://dx.doi.org/10.1142/s1793292009001666.
Full textZhang, Chenxi, Xiaohui Li, Yamin Wang, Mingqi An та Zhipeng Sun. "A hydrazone organic optical modulator with a π electronic system for ultrafast photonics". Journal of Materials Chemistry C 9, № 34 (2021): 11306–13. http://dx.doi.org/10.1039/d1tc02434e.
Full textRomaniuk, R. S. "Instrumentation optical fibres for wave transformation, signal processing, sensors, and photonic functional components, manufactured at Białystok University of Technology in Dorosz Fibre Optics Laboratory." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 4 (2014): 607–18. http://dx.doi.org/10.2478/bpasts-2014-0066.
Full textLi, Jiafang, and Zhiguang Liu. "Focused-ion-beam-based nano-kirigami: from art to photonics." Nanophotonics 7, no. 10 (2018): 1637–50. http://dx.doi.org/10.1515/nanoph-2018-0117.
Full textYao, Kan, Rohit Unni, and Yuebing Zheng. "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale." Nanophotonics 8, no. 3 (2019): 339–66. http://dx.doi.org/10.1515/nanoph-2018-0183.
Full textChiarello, Fabio, and Maria Gabriella Castellano. "Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts." International Journal of Game-Based Learning 6, no. 2 (2016): 1–14. http://dx.doi.org/10.4018/ijgbl.2016040101.
Full textMasada, Genta, and Akira Furusawa. "On-chip continuous-variable quantum entanglement." Nanophotonics 5, no. 3 (2016): 469–82. http://dx.doi.org/10.1515/nanoph-2015-0142.
Full textOsuch, T., P. Gąsior, K. Markowski, and K. Jędrzejewski. "Development of fiber Bragg gratings technology and their complex structures for sensing, telecommunications and microwave photonics applications." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 4 (2014): 627–33. http://dx.doi.org/10.2478/bpasts-2014-0068.
Full textHe, Huimei, and Li Wang. "Numerical analysis of birefringence and coupling length on dual-core photonics crystal fiber with complex air holes." Optik 124, no. 23 (2013): 5941–44. http://dx.doi.org/10.1016/j.ijleo.2013.04.124.
Full textWang, Yunjia, Shunxiang Liu, Feng Zhu, Yiyu Gan, and Qiao Wen. "MXene Core-Shell Nanosheets: Facile Synthesis, Optical Properties, and Versatile Photonics Applications." Nanomaterials 11, no. 8 (2021): 1995. http://dx.doi.org/10.3390/nano11081995.
Full textPierangeli, Davide, Giulia Marcucci, Daniel Brunner, and Claudio Conti. "Noise-enhanced spatial-photonic Ising machine." Nanophotonics 9, no. 13 (2020): 4109–16. http://dx.doi.org/10.1515/nanoph-2020-0119.
Full text