Journal articles on the topic 'Complexe C9ORF72'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Complexe C9ORF72.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tang, Dan, Jingwen Sheng, Liangting Xu, et al. "Cryo-EM structure of C9ORF72–SMCR8–WDR41 reveals the role as a GAP for Rab8a and Rab11a." Proceedings of the National Academy of Sciences 117, no. 18 (2020): 9876–83. http://dx.doi.org/10.1073/pnas.2002110117.
Full textAlvarez-Mora, Maria Isabel, Gloria Garrabou, Tamara Barcos, et al. "Bioenergetic and Autophagic Characterization of Skin Fibroblasts from C9orf72 Patients." Antioxidants 11, no. 6 (2022): 1129. http://dx.doi.org/10.3390/antiox11061129.
Full textNörpel, Julia, Simone Cavadini, Andreas D. Schenk, et al. "Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture." PLOS Biology 19, no. 7 (2021): e3001344. http://dx.doi.org/10.1371/journal.pbio.3001344.
Full textAmick, Joseph, Arun Kumar Tharkeshwar, Catherine Amaya,, and Shawn M. Ferguson. "WDR41 supports lysosomal response to changes in amino acid availability." Molecular Biology of the Cell 29, no. 18 (2018): 2213–27. http://dx.doi.org/10.1091/mbc.e17-12-0703.
Full textYang, Mei, Chen Liang, Kunchithapadam Swaminathan, et al. "A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy." Science Advances 2, no. 9 (2016): e1601167. http://dx.doi.org/10.1126/sciadv.1601167.
Full textAmick, Joseph, Agnes Roczniak-Ferguson, and Shawn M. Ferguson. "C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling." Molecular Biology of the Cell 27, no. 20 (2016): 3040–51. http://dx.doi.org/10.1091/mbc.e16-01-0003.
Full textIyer, Shalini, Vasanta Subramanian, and K. Ravi Acharya. "C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor." PeerJ 6 (October 17, 2018): e5815. http://dx.doi.org/10.7717/peerj.5815.
Full textChong, Zhao Zhong, and Nizar Souayah. "Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis." International Journal of Molecular Sciences 26, no. 9 (2025): 4276. https://doi.org/10.3390/ijms26094276.
Full textChandra, Sunandini, and C. Patrick Lusk. "Emerging Connections between Nuclear Pore Complex Homeostasis and ALS." International Journal of Molecular Sciences 23, no. 3 (2022): 1329. http://dx.doi.org/10.3390/ijms23031329.
Full textAbabneh, Nidaa A., Jakub Scaber, Rowan Flynn, et al. "Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair." Human Molecular Genetics 29, no. 13 (2020): 2200–2217. http://dx.doi.org/10.1093/hmg/ddaa106.
Full textLiang, Chen, Qiang Shao, Wei Zhang, et al. "Smcr8 deficiency disrupts axonal transport-dependent lysosomal function and promotes axonal swellings and gain of toxicity in C9ALS/FTD mouse models." Human Molecular Genetics 28, no. 23 (2019): 3940–53. http://dx.doi.org/10.1093/hmg/ddz230.
Full textVidhyasagar, Venkatasubramanian, Yujiong He, Manhong Guo, et al. "Biochemical characterization of INTS3 and C9ORF80, two subunits of hNABP1/2 heterotrimeric complex in nucleic acid binding." Biochemical Journal 475, no. 1 (2018): 45–60. http://dx.doi.org/10.1042/bcj20170351.
Full textMcAlpine, William, Lei Sun, Kuan-wen Wang, et al. "Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function." Proceedings of the National Academy of Sciences 115, no. 49 (2018): E11523—E11531. http://dx.doi.org/10.1073/pnas.1814753115.
Full textTalaia, Gabriel, Joseph Amick, and Shawn M. Ferguson. "Receptor-like role for PQLC2 amino acid transporter in the lysosomal sensing of cationic amino acids." Proceedings of the National Academy of Sciences 118, no. 8 (2021): e2014941118. http://dx.doi.org/10.1073/pnas.2014941118.
Full textFumagalli, Laura, Florence L. Young, Steven Boeynaems, et al. "C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility." Science Advances 7, no. 15 (2021): eabg3013. http://dx.doi.org/10.1126/sciadv.abg3013.
Full textFukatsu, Shoya, Hinami Sashi, Remina Shirai, et al. "Rab11a Controls Cell Shape via C9orf72 Protein: Possible Relationships to Frontotemporal Dementia/Amyotrophic Lateral Sclerosis (FTDALS) Type 1." Pathophysiology 31, no. 1 (2024): 100–116. http://dx.doi.org/10.3390/pathophysiology31010008.
Full textCook, Casey N., Yanwei Wu, Hana M. Odeh, et al. "C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy." Science Translational Medicine 12, no. 559 (2020): eabb3774. http://dx.doi.org/10.1126/scitranslmed.abb3774.
Full textCoyne, Alyssa N., Victoria Baskerville, Benjamin L. Zaepfel, et al. "Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS." Science Translational Medicine 13, no. 604 (2021): eabe1923. http://dx.doi.org/10.1126/scitranslmed.abe1923.
Full textCosta, Beatrice, Claudia Manzoni, Manuel Bernal-Quiros, et al. "C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts." Neurology 95, no. 24 (2020): e3288-e3302. http://dx.doi.org/10.1212/wnl.0000000000010914.
Full textLee, Jongbo, Jumin Park, Ji-hyung Kim, et al. "LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient." PLOS Biology 18, no. 12 (2020): e3001002. http://dx.doi.org/10.1371/journal.pbio.3001002.
Full textPilotto, Andrea, Mattia Carini, Roberto Bresciani, et al. "Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases." International Journal of Molecular Sciences 26, no. 6 (2025): 2397. https://doi.org/10.3390/ijms26062397.
Full textKaur, Jaslovleen, Shaista Parveen, Uzma Shamim, et al. "Investigations of Huntington’s Disease and Huntington’s Disease-Like Syndromes in Indian Choreatic Patients." Journal of Huntington's Disease 9, no. 3 (2020): 283–89. http://dx.doi.org/10.3233/jhd-200398.
Full textGonzález-Sánchez, María, María Jesús Ramírez-Expósito, and José Manuel Martínez-Martos. "Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies." Life 15, no. 4 (2025): 647. https://doi.org/10.3390/life15040647.
Full textTakada, Leonel T. "The Genetics of Monogenic Frontotemporal Dementia." Dementia & Neuropsychologia 9, no. 3 (2015): 219–29. http://dx.doi.org/10.1590/1980-57642015dn93000003.
Full textMagrath-Guimet, Nahuel. "Frontotemporal dementia: past, present and future." Journal of Applied Cognitive Neuroscience 5, no. 1 (2024): e5566. http://dx.doi.org/10.17981/jacn.5.1.2024.06.
Full textShi, Kevin Y., Eiichiro Mori, Zehra F. Nizami, et al. "Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export." Proceedings of the National Academy of Sciences 114, no. 7 (2017): E1111—E1117. http://dx.doi.org/10.1073/pnas.1620293114.
Full textWong, Ching-On, and Kartik Venkatachalam. "Motor neurons from ALS patients with mutations in C9ORF72 and SOD1 exhibit distinct transcriptional landscapes." Human Molecular Genetics 28, no. 16 (2019): 2799–810. http://dx.doi.org/10.1093/hmg/ddz104.
Full textMorello, Giovanna, Giulia Gentile, Rossella Spataro, et al. "Genomic Portrait of a Sporadic Amyotrophic Lateral Sclerosis Case in a Large Spinocerebellar Ataxia Type 1 Family." Journal of Personalized Medicine 10, no. 4 (2020): 262. http://dx.doi.org/10.3390/jpm10040262.
Full textde Boer, Eva Maria Johanna, Viyanti K. Orie, Timothy Williams, et al. "TDP-43 proteinopathies: a new wave of neurodegenerative diseases." Journal of Neurology, Neurosurgery & Psychiatry 92, no. 1 (2020): 86–95. http://dx.doi.org/10.1136/jnnp-2020-322983.
Full textOrtiz, Genaro Gabriel, Javier Ramírez-Jirano, Raul L. Arizaga, Daniela L. C. Delgado-Lara, and Erandis D. Torres-Sánchez. "Frontotemporal-TDP and LATE Neurocognitive Disorders: A Pathophysiological and Genetic Approach." Brain Sciences 13, no. 10 (2023): 1474. http://dx.doi.org/10.3390/brainsci13101474.
Full textFletcher, Phillip, Jonathan Schott, Martin Rossor, and Jason Warren. "ABNORMAL SOUND AND MUSIC REWARD PROCESSING IN DEMENTIA: A BEHAVIOURAL AND NEUROANATOMICAL ANALYSIS." Journal of Neurology, Neurosurgery & Psychiatry 86, no. 11 (2015): e4.136-e4. http://dx.doi.org/10.1136/jnnp-2015-312379.46.
Full textMassano, João, Miguel Leão, Carolina Garrett, and On behalf of Grupo de Neurogenética do Centro Hospitalar São João. "Investigação de Etiologia Genética nas Demências Neurodegenerativas: Recomendações do Grupo de Neurogenética do Centro Hospitalar São João." Acta Médica Portuguesa 29, no. 10 (2016): 675. http://dx.doi.org/10.20344/amp.7583.
Full textBono, Nina, Flaminia Fruzzetti, Giorgia Farinazzo, Gabriele Candiani, and Stefania Marcuzzo. "Perspectives in Amyotrophic Lateral Sclerosis: Biomarkers, Omics, and Gene Therapy Informing Disease and Treatment." International Journal of Molecular Sciences 26, no. 12 (2025): 5671. https://doi.org/10.3390/ijms26125671.
Full textSkaar, Jeffrey R., Derek J. Richard, Anita Saraf, et al. "INTS3 controls the hSSB1-mediated DNA damage response." Journal of Cell Biology 187, no. 1 (2009): 25–32. http://dx.doi.org/10.1083/jcb.200907026.
Full textWallace, Amelia D., Thomas A. Sasani, Jordan Swanier, et al. "CaBagE: A Cas9-based Background Elimination strategy for targeted, long-read DNA sequencing." PLOS ONE 16, no. 4 (2021): e0241253. http://dx.doi.org/10.1371/journal.pone.0241253.
Full textLeray, Xavier, Rossella Conti, Yan Li, et al. "Arginine-selective modulation of the lysosomal transporter PQLC2 through a gate-tuning mechanism." Proceedings of the National Academy of Sciences 118, no. 32 (2021): e2025315118. http://dx.doi.org/10.1073/pnas.2025315118.
Full textScholz, Sonja W., and Inma Cobos. "Genetics and Neuropathology of Neurodegenerative Dementias." CONTINUUM: Lifelong Learning in Neurology 30, no. 6 (2024): 1801–22. https://doi.org/10.1212/con.0000000000001505.
Full textBožič, Tim, Matja Zalar, Boris Rogelj, Janez Plavec, and Primož Šket. "Structural Diversity of Sense and Antisense RNA Hexanucleotide Repeats Associated with ALS and FTLD." Molecules 25, no. 3 (2020): 525. http://dx.doi.org/10.3390/molecules25030525.
Full textAmador, Maria-Del-Mar, François Muratet, Elisa Teyssou, et al. "Spastic paraplegia due to recessive or dominant mutations in ERLIN2 can convert to ALS." Neurology Genetics 5, no. 6 (2019): e374. http://dx.doi.org/10.1212/nxg.0000000000000374.
Full textTang, Dan, Kaixuan Zheng, Jiangli Zhu, et al. "ALS-linked C9orf72–SMCR8 complex is a negative regulator of primary ciliogenesis." Proceedings of the National Academy of Sciences 120, no. 50 (2023). http://dx.doi.org/10.1073/pnas.2220496120.
Full textAmick, Joseph, Arun Kumar Tharkeshwar, Gabriel Talaia, and Shawn M. Ferguson. "PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation." Journal of Cell Biology 219, no. 1 (2019). http://dx.doi.org/10.1083/jcb.201906076.
Full textXiao, Shangxi, Paul M. McKeever, Agnes Lau, and Janice Robertson. "Synaptic localization of C9orf72 regulates post-synaptic glutamate receptor 1 levels." Acta Neuropathologica Communications 7, no. 1 (2019). http://dx.doi.org/10.1186/s40478-019-0812-5.
Full textZhang, Shen, Mindan Tong, Denghao Zheng, et al. "C9orf72-catalyzed GTP loading of Rab39A enables HOPS-mediated membrane tethering and fusion in mammalian autophagy." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-42003-0.
Full textSu, Ming-Yuan, Simon A. Fromm, Jonathan Remis, Daniel B. Toso, and James H. Hurley. "Structural basis for the ARF GAP activity and specificity of the C9orf72 complex." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24081-0.
Full textCoyne, Alyssa N., and Jeffrey D. Rothstein. "Nuclear lamina invaginations are not a pathological feature of C9orf72 ALS/FTD." Acta Neuropathologica Communications 9, no. 1 (2021). http://dx.doi.org/10.1186/s40478-021-01150-5.
Full textJo, Yunhee, Jiwon Lee, Seul-Yi Lee, Ilmin Kwon, and Hana Cho. "Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS." Proceedings of the National Academy of Sciences 119, no. 11 (2022). http://dx.doi.org/10.1073/pnas.2113813119.
Full textNishimura, Agnes L., and Natalia Arias. "Synaptopathy Mechanisms in ALS Caused by C9orf72 Repeat Expansion." Frontiers in Cellular Neuroscience 15 (June 1, 2021). http://dx.doi.org/10.3389/fncel.2021.660693.
Full textDickson, Dennis W., Matthew C. Baker, Jazmyne L. Jackson, et al. "Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers." Acta Neuropathologica Communications 7, no. 1 (2019). http://dx.doi.org/10.1186/s40478-019-0797-0.
Full textViera Ortiz, Ashley P., Gregory Cajka, Olamide A. Olatunji, Bailey Mikytuck, Ophir Shalem, and Edward B. Lee. "Impaired ribosome-associated quality control of C9orf72 arginine-rich dipeptide-repeat proteins." Brain, December 14, 2022. http://dx.doi.org/10.1093/brain/awac479.
Full textAzimian, Fereshteh, Yan‐Hua Chen, and Qun Lu. "Targeting the Interactions of Small GTPase ARF with C9ORF72:SMCR8:WDR41 Complexes Implicated in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia." Alzheimer's & Dementia 19, S21 (2023). http://dx.doi.org/10.1002/alz.076804.
Full text