Academic literature on the topic 'Complexe de Morse-Smale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complexe de Morse-Smale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Complexe de Morse-Smale"

1

Cho, Cheol-Hyun, and Hansol Hong. "Orbifold Morse–Smale–Witten complexes." International Journal of Mathematics 25, no. 05 (2014): 1450040. http://dx.doi.org/10.1142/s0129167x14500402.

Full text
Abstract:
Given a Morse–Smale function on an effective orientable orbifold, we construct its Morse–Smale–Witten complex. We show that critical points of a certain type have to be discarded to build a complex properly, and that gradient flows should be counted with suitable weights. Its homology is proven to be isomorphic to the singular homology of the quotient space under the self-indexing assumption. For a global quotient orbifold [M/G], such a complex can be understood as the G-invariant part of the Morse complex of M, where the G-action on generators of the Morse complex has to be defined including
APA, Harvard, Vancouver, ISO, and other styles
2

Gyulassy, Attila, David Gunther, Joshua A. Levine, Julien Tierny, and Valerio Pascucci. "Conforming Morse-Smale Complexes." IEEE Transactions on Visualization and Computer Graphics 20, no. 12 (2014): 2595–603. http://dx.doi.org/10.1109/tvcg.2014.2346434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grines, V. Z., E. Ya Gurevich, and O. V. Pochinka. "On Embedding of the Morse-Smale Diffeomorphisms in a Topological Flow." Contemporary Mathematics. Fundamental Directions 66, no. 2 (2020): 160–81. http://dx.doi.org/10.22363/2413-3639-2020-66-2-160-181.

Full text
Abstract:
This review presents the results of recent years on solving of the Palis problem on finding necessary and sufficient conditions for the embedding of Morse-Smale cascades in topological flows. To date, the problem has been solved by Palis for Morse-Smale diffeomorphisms given on manifolds of dimension two. The result for the circle is a trivial exercise. In dimensions three and higher new effects arise related to the possibility of wild embeddings of closures of invariant manifolds of saddle periodic points that leads to additional obstacles for Morse-Smale diffeomorphisms to embed in topologic
APA, Harvard, Vancouver, ISO, and other styles
4

Chattopadhyay, Amit, Gert Vegter, and Chee K. Yap. "Certified computation of planar Morse–Smale complexes." Journal of Symbolic Computation 78 (January 2017): 3–40. http://dx.doi.org/10.1016/j.jsc.2016.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shivashankar, Nithin, and Vijay Natarajan. "Parallel Computation of 3D Morse-Smale Complexes." Computer Graphics Forum 31, no. 3pt1 (2012): 965–74. http://dx.doi.org/10.1111/j.1467-8659.2012.03089.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gyulassy, A., N. Kotava, M. Kim, C. D. Hansen, H. Hagen, and V. Pascucci. "Direct Feature Visualization Using Morse-Smale Complexes." IEEE Transactions on Visualization and Computer Graphics 18, no. 9 (2012): 1549–62. http://dx.doi.org/10.1109/tvcg.2011.272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shivashankar, Nithin, Senthilnathan M, and Vijay Natarajan. "Parallel Computation of 2D Morse-Smale Complexes." IEEE Transactions on Visualization and Computer Graphics 18, no. 10 (2012): 1757–70. http://dx.doi.org/10.1109/tvcg.2011.284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gyulassy, A., P. Bremer, and V. Pascucci. "Computing Morse-Smale Complexes with Accurate Geometry." IEEE Transactions on Visualization and Computer Graphics 18, no. 12 (2012): 2014–22. http://dx.doi.org/10.1109/tvcg.2012.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rot, T. O., and R. C. A. M. Vandervorst. "Morse–Conley–Floer homology." Journal of Topology and Analysis 06, no. 03 (2014): 305–38. http://dx.doi.org/10.1142/s1793525314500174.

Full text
Abstract:
The gradient flow of a Morse function on a smooth closed manifold generates, under suitable transversality assumptions, the Morse–Smale–Witten complex. The associated Morse homology is an invariant for the manifold, and equals the singular homology, which yields the classical Morse relations. In this paper we define Morse–Conley–Floer homology, which is an analogous homology theory for isolated invariant sets of smooth, not necessarily gradient-like, flows. We prove invariance properties of the Morse–Conley–Floer homology, and show how it gives rise to the Morse–Conley relations.
APA, Harvard, Vancouver, ISO, and other styles
10

Edelsbrunner, Herbert, John Harer, and Afra Zomorodian. "Hierarchical Morse--Smale Complexes for Piecewise Linear 2-Manifolds." Discrete and Computational Geometry 30, no. 1 (2003): 87–107. http://dx.doi.org/10.1007/s00454-003-2926-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Complexe de Morse-Smale"

1

Allemand, Giorgis Leo. "Visualisation de champs scalaires guidée par la topologie." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM091/document.

Full text
Abstract:
Les points critiques d’une fonction scalaire (minima, points col et maxima) sont des caractéristiques importantes permettant de décrire de gros ensembles de données, comme par exemple les données topographiques. L’acquisition de ces données introduit souvent du bruit sur les valeurs. Un grand nombre de points critiques sont créés par le bruit, il est donc important de supprimer ces points critiques pour faire une bonne analyse de ces données. Le complexe de Morse-Smale est un objet mathématique qui est étudié dans le domaine de la Visualisation Scientifique car il permet de simplifier des fonc
APA, Harvard, Vancouver, ISO, and other styles
2

Gallais, Étienne. "CONTRIBUTIONS À LA THÉORIE DE MORSE DISCRÈTE ET À L'HOMOLOGIE DE HEEGAARD-FLOER COMBINATOIRE." Phd thesis, Université de Bretagne Sud, 2007. http://tel.archives-ouvertes.fr/tel-00265283.

Full text
Abstract:
Cette thèse porte sur deux aspects de la théorie de Morse: théorie de Morse discrète de Forman (cas de la dimension finie) et homologie de Heegaard-Floer (cas de la dimension infinie).<br />Dans une première partie, on s'intéresse au problème de relèvement de signe pour l'homologie de Heegaard-Floer combinatoire. On montre que la construction originale faite par Manolescu, Ozsváth, Szabó et D. Thurston peut être refaite de manière plus conceptuelle. On donne ensuite le lien entre ces deux constructions puis finalement on décrit un algorithme qui permet de calculer les signes.<br />La seconde p
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Feng, and 孙峰. "Shape-preserving meshes and generalized Morse-Smale complexes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B4786963X.

Full text
Abstract:
Discrete representation of a surface, especially the triangle mesh, is ubiquitous in numerical simulation and computer graphics. Compared with isotropic triangle meshes, anisotropic triangle meshes provide more accurate results in numerical simulation by capturing anisotropic features more faithfully. Furthermore, emerging applications in computer graphics and geometric modeling require reliable differential geometry information estimated on these anisotropic meshes. The first part of this thesis proposes a special type of anisotropic meshes, called shape-preserving meshes, provides gua
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Wenqi. "Out-of-core construction and simplification of Morse-Smale complexes /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CSED%202008%20ZHUW.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Šenk, Miroslav. "Využití spektrální analýzy pro převod trojúhelníkových polygonálních 3D sítí na 3D spline plochy." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2007. http://www.nusl.cz/ntk/nusl-412770.

Full text
Abstract:
In this work we deal with conversion of 3D triagonal polygonal meshes to the 3D spline patches using spectral analysis. The converted mesh is divided into quadrilaterals using eigenvectors of Laplacian operator. These quadrilaterals will be converted into spline patches. We will present some interesting results of this method. The assets and imperfections of this method will be briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Shivashankar, Nithin. "Morse-Smale Complexes : Computation and Applications." Thesis, 2014. http://hdl.handle.net/2005/3045.

Full text
Abstract:
In recent decades, scientific data has become available in increasing sizes and precision. Therefore techniques to analyze and summarize the ever increasing datasets are of vital importance. A common form of scientific data, resulting from simulations as well as observational sciences, is in the form of scalar-valued function on domains of interest. The Morse-Smale complex is a topological data-structure used to analyze and summarize the gradient behavior of such scalar functions. This thesis deals with efficient parallel algorithms to compute the Morse-Smale complex as well as its application
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Complexe de Morse-Smale"

1

Čomić, Lidija, Leila De Floriani, and Federico Iuricich. "Modeling Three-Dimensional Morse and Morse-Smale Complexes." In Mathematics and Visualization. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34141-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gyulassy, Attila, Peer-Timo Bremer, Bernd Hamann, and Valerio Pascucci. "Practical Considerations in Morse-Smale Complex Computation." In Mathematics and Visualization. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15014-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gyulassy, Attila, Harsh Bhatia, Peer-Timo Bremer, and Valerio Pascucci. "Computing Accurate Morse-Smale Complexes from Gradient Vector Fields." In Mathematics and Visualization. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44900-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Günther, David, Jan Reininghaus, Hans-Peter Seidel, and Tino Weinkauf. "Notes on the Simplification of the Morse-Smale Complex." In Mathematics and Visualization. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04099-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Čomić, Lidija, and Leila De Floriani. "Cancellation of Critical Points in 2D and 3D Morse and Morse-Smale Complexes." In Discrete Geometry for Computer Imagery. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79126-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gyulassy, Attila, and Valerio Pascucci. "Computing Simply-Connected Cells in Three-Dimensional Morse-Smale Complexes." In Mathematics and Visualization. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23175-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shivashankar, Nithin, and Vijay Natarajan. "Efficient Software for Programmable Visual Analysis Using Morse-Smale Complexes." In Mathematics and Visualization. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44684-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allemand-Giorgis, Léo, Georges-Pierre Bonneau, and Stefanie Hahmann. "Piecewise Polynomial Reconstruction of Scalar Fields from Simplified Morse-Smale Complexes." In Mathematics and Visualization. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44684-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"The Morse-Smale Complex Algorithm." In Topology for Computing. Cambridge University Press, 2005. http://dx.doi.org/10.1017/cbo9780511546945.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Complexe de Morse-Smale"

1

Vegter, Gert, Amit Chattopadhyay, and Chee Keng Yap. "Certified computation of planar morse-smale complexes." In the 2012 symposuim. ACM Press, 2012. http://dx.doi.org/10.1145/2261250.2261288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gyulassy, Attila, Valerio Pascucci, Tom Peterka, and Robert Ross. "The Parallel Computation of Morse-Smale Complexes." In 2012 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE, 2012. http://dx.doi.org/10.1109/ipdps.2012.52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subhash, Varshini, Karran Pandey, and Vijay Natarajan. "GPU Parallel Computation of Morse-Smale Complexes." In 2020 IEEE Visualization Conference (VIS). IEEE, 2020. http://dx.doi.org/10.1109/vis47514.2020.00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Edelsbrunner, Herbert, John Harer, Vijay Natarajan, and Valerio Pascucci. "Morse-smale complexes for piecewise linear 3-manifolds." In the nineteenth conference. ACM Press, 2003. http://dx.doi.org/10.1145/777792.777846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Danovaro, Emanuele, Leila De Floriani, and Maria Vitali. "Multi-resolution Morse-Smale Complexes for Terrain Modeling." In 2007 14th International Conference on Image Analysis and Processing - ICIAP 2007. IEEE, 2007. http://dx.doi.org/10.1109/iciap.2007.4362801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LUDWIG, URSULA. "MORSE-SMALE-WITTEN COMPLEX FOR GRADIENT-LIKE VECTOR FIELDS ON STRATIFIED SPACES." In Proceedings of the 2005 Marseille Singularity School and Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812707499_0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cazals, F., F. Chazal, and T. Lewiner. "Molecular shape analysis based upon the morse-smale complex and the connolly function." In the nineteenth conference. ACM Press, 2003. http://dx.doi.org/10.1145/777792.777845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Pinghai, Kang Li, and Xiaoping Qian. "Topologically Enhanced Slicing of MLS Surfaces." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29125.

Full text
Abstract:
Growing use of massive scan data in various engineering applications has necessitated research on point-set surfaces. A point-set surface is a continuous surface defined directly with a set of discrete points. This paper presents a new approach that extends our earlier work on slicing point-set surfaces into planar contours for rapid prototyping usage. This extended approach can decompose a point-set surface into slices with guaranteed topology. Such topological guarantee stems from the use of Morse theory based topological analysis of the slicing operation. The Morse function for slicing is a
APA, Harvard, Vancouver, ISO, and other styles
9

Ryuji, Enomoto, and Hamaguchi Saori. "Numerical Realization of Plane CW Complexes Under a Given `Flow Condition' in Gradient-like Morse-Smale Controlled Systems." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4347561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!