Academic literature on the topic 'Component mode syntheys'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Component mode syntheys.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Component mode syntheys"

1

Castanier, Matthew P., Yung-Chang Tan, and Christophe Pierre. "Characteristic Constraint Modes for Component Mode Synthesis." AIAA Journal 39, no. 6 (2001): 1182–87. http://dx.doi.org/10.2514/2.1433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Apiwattanalunggarn, Polarit, Steven W. Shaw, and Christophe Pierre. "Component Mode Synthesis Using Nonlinear Normal Modes." Nonlinear Dynamics 41, no. 1-3 (2005): 17–46. http://dx.doi.org/10.1007/s11071-005-2791-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Castanier, Matthew P., Yung-Chang Tan, and Christophe Pierre. "Characteristic constraint modes for component mode synthesis." AIAA Journal 39 (January 2001): 1182–87. http://dx.doi.org/10.2514/3.14854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karpel, M., B. Moulin, and V. Feldgun. "Component Mode Synthesis of a Vehicle System Model Using the Fictitious Mass Method." Journal of Vibration and Acoustics 129, no. 1 (2006): 73–83. http://dx.doi.org/10.1115/1.2202156.

Full text
Abstract:
A new procedure for dynamic analysis of complex structures, based on the fictitious-mass component mode synthesis method, is presented. Normal modes of separate components are calculated by finite-element analysis with the interface coordinates loaded with fictitious masses that generate local boundary deformations in the low-frequency modes. The original fictitious-mass method is extended to include three types of component interconnections: displacement constraints, connection elements, and structural links. The connection elements allow the introduction of springs and dampers between the in
APA, Harvard, Vancouver, ISO, and other styles
5

Spanos, P. D., and A. Majed. "A Residual Flexibility Approach for Decoupled Analysis of Systems of Combined Components." Journal of Vibration and Acoustics 118, no. 4 (1996): 682–86. http://dx.doi.org/10.1115/1.2888352.

Full text
Abstract:
A residual flexibility approach for the analysis of systems involving multiple components subjected to dynamic loading is presented. The reactive forces at the junctions of the components are computed directly without synthesis of component modes or determination of system modes. This is accomplished by expressing the displacements at the junction coordinates of the components in terms of the retained component modes and a first-order account of the residual flexibility of the unretained modes. Once the components are represented in this manner, the requirements of displacement compatibility a
APA, Harvard, Vancouver, ISO, and other styles
6

FUNAMOTO, Kenichi, and Masayoshi MISAWA. "Component Mode Synthesis Using Component Test Results." Proceedings of the JSME annual meeting 2002.1 (2002): 297–98. http://dx.doi.org/10.1299/jsmemecjo.2002.1.0_297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

YASUI, Yoshitsugu, and Tetsuo YASAKA. "Improvement component mode synthesis by using orthogonalized attached modes." Transactions of the Japan Society of Mechanical Engineers Series C 55, no. 511 (1989): 517–24. http://dx.doi.org/10.1299/kikaic.55.517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Papadimitriou, Costas, and Dimitra-Christina Papadioti. "Component mode synthesis techniques for finite element model updating." Computers & Structures 126 (September 2013): 15–28. http://dx.doi.org/10.1016/j.compstruc.2012.10.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seshu, P. "Substructuring and Component Mode Synthesis." Shock and Vibration 4, no. 3 (1997): 199–210. http://dx.doi.org/10.1155/1997/147513.

Full text
Abstract:
Substructuring and component mode synthesis (CMS), is a very popular method of model reduction for large structural dynamics problems. Starting from the pioneering works on this technique in the early 1960s, many researchers have studied and used this technique in a variety of applications. Besides model reduction, CMS offers several other crucial advantages. The present work aims to provide a review of the available literature on this important technique.
APA, Harvard, Vancouver, ISO, and other styles
10

Greif, R. "Substructuring and Component Mode Synthesis." Shock and Vibration Digest 18, no. 7 (1986): 3–8. http://dx.doi.org/10.1177/058310248601800703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!