Academic literature on the topic 'Composite ceramic materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Composite ceramic materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Composite ceramic materials"

1

Kim, Jeongguk. "Investigation of Failure Mechanisms in Ceramic Composites as Potential Railway Brake Disc Materials." Materials 13, no. 22 (2020): 5141. http://dx.doi.org/10.3390/ma13225141.

Full text
Abstract:
Ceramic composite materials have been efficiently used for high-temperature structural applications with improved toughness by complementing the shortcomings of monolithic ceramics. In this study, the fracture characteristics and fracture mechanisms of ceramic composite materials were studied. The ceramic composite material used in this study is Nicalon ceramic fiber reinforced ceramic matrix composites. The tensile failure behavior of two types of ceramic composites with different microstructures, namely, plain-weave and cross-ply composites, was studied. Tensile tests were performed on two t
APA, Harvard, Vancouver, ISO, and other styles
2

Lagerlof, K. P. D. "Transmission electron microscopy of composite materials." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 1012–15. http://dx.doi.org/10.1017/s0424820100107125.

Full text
Abstract:
Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to
APA, Harvard, Vancouver, ISO, and other styles
3

Fridlyander, I. N., V. Ya Shevchenko, and S. M. Barinov. "Ceramic composite materials." Metal Science and Heat Treatment 34, no. 2 (1992): 133–38. http://dx.doi.org/10.1007/bf00769881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Chuan, Yun Kai Li, Hu Wang, Ming Ming Wan, Yun Fei Wang, and Quan Zhen Jiang. "On the “Ceramic Constrained by Metal” Composite Materials." Advanced Materials Research 833 (November 2013): 266–70. http://dx.doi.org/10.4028/www.scientific.net/amr.833.266.

Full text
Abstract:
Ceramics are widely used in every field of contemporary industrial because of its many excellent properties. However, its mechanical property is great brittleness and small toughness for the characteristics of internal chemical bond, which restricts its application range to a large extent. Therefore, how to improve mechanical properties of ceramic materials has been attracted a great attention in the relevant area. For ceramics using at room temperature, a method which can avoid brittle failure by metal confinement outside of ceramics is given. And the feasibility of this method is discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Newkirk, M. S., A. W. Urquhart, H. R. Zwicker, and E. Breval. "Formation of LanxideTM ceramic composite materials." Journal of Materials Research 1, no. 1 (1986): 81–89. http://dx.doi.org/10.1557/jmr.1986.0081.

Full text
Abstract:
An overview is given of a new process that has been used successfully to make numerous ceramic/metal composite materials by directed oxidation of molten metallic precursors. As an example, the formation of A12O3/A1 composites from Al is discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Zhao Hui, Wei Pan, Long Hao Qi, and He Zhuo Miao. "Erosive Wear Behavior of Reaction Sintered Si3N4-SiCp Composite Ceramic in Liquid-Solid Flow." Key Engineering Materials 280-283 (February 2007): 1317–18. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1317.

Full text
Abstract:
Si3N4-SiCp composites were prepared using fine Si powders as the starting materials for Si3N4, and SiCp as the aggregates. The erosive wear behavior of reaction sintered Si3N4-SiCp composite ceramic was investigated in liquid-solid flow. The results display that the composite ceramic hold a better capability of erosive wear resistance than 92 Al2O3 ceramics. The SEM pictures of the worn surface indicate that the main erosive wear mechanism of the composite ceramic is coexistence of micro-cutting and chisel-cutting.
APA, Harvard, Vancouver, ISO, and other styles
7

Jeon, Jae Ho, Hai Tao Fang, Zhong Hong Lai, and Zhong Da Yin. "Development of Functionally Graded Anti-Oxidation Coatings for Carbon/Carbon Composites." Key Engineering Materials 280-283 (February 2007): 1851–56. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1851.

Full text
Abstract:
The concept of functionally graded materials (FGMs) was originated in the research field of thermal barrier coatings. Continuous changes in the composition, grain size, porosity, etc., of these materials result in gradients in such properties as mechanical strength and thermal conductivity. In recent years, functionally graded structural composite materials have received increased attention as promising candidate materials to exhibit better mechanical and functional properties than homogeneous materials or simple composite materials. Therefore the research area of FGMs has been expending in th
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Penghu, Haiyun Jin, Shichao Wei, Huaidong Liu, Naikui Gao, and Zhongqi Shi. "Ceramization Mechanism of Ceramizable Silicone Rubber Composites with Nano Silica at Low Temperature." Materials 13, no. 17 (2020): 3708. http://dx.doi.org/10.3390/ma13173708.

Full text
Abstract:
Ceramizable composite is a kind of polymer matrix composite that can turn into ceramic material at a high temperature. It can be used for the ceramic insulation of a metal conductor because of its processability. However, poor low-temperature ceramization performance is a problem of ceramizable composites. In this paper, ceramizable composites were prepared by using silicone rubber as a matrix. Ceramic samples were sintered at different temperatures no more than 1000 °C, according to thermogravimetric analysis results of the composites. The linear contraction and flexural strength of the ceram
APA, Harvard, Vancouver, ISO, and other styles
9

Paknahad, Elham, and Andrew P. Grosvenor. "Investigation of CeTi2O6- and CaZrTi2O7-containing glass–ceramic composite materials." Canadian Journal of Chemistry 95, no. 11 (2017): 1110–21. http://dx.doi.org/10.1139/cjc-2016-0633.

Full text
Abstract:
Glass–ceramic composite materials are being investigated for numerous applications (i.e., textile, energy storage, nuclear waste immobilization applications, etc.) due to the chemical durability and flexibility of these materials. Borosilicate and Fe–Al–borosilicate glass–ceramic composites containing brannerite (CeTi2O6) or zirconolite (CaZrTi2O7) crystallites were synthesized at different annealing temperatures. The objective of this study was to understand the interaction of brannerite or zirconolite-type crystallites within the glass matrix and to investigate how the local structure of the
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Yonggen, Yanhan Fei, Yanchun Wang, et al. "Preparation and properties of ZrO2-5CrMnMo composites by ceramic injection molding." Materials Express 11, no. 9 (2021): 1594–601. http://dx.doi.org/10.1166/mex.2021.2058.

Full text
Abstract:
ZrO2-5CrMnMo composites were fabricated by ceramic injection molding in this research. The hardness and wear properties of ZrO2 ceramic layer and 5CrMnMo substrate were investigated. Moreover, physical properties and microstructures of ZrO2 ceramic coatings were studied and the interfaces of composite samples were observed. The results illustrated that the interface was smooth and properly bonded, and it was concluded that the 5CrMnMo substrate ceramic layer could be provided effectively by ZrO2 ceramic coating. Thermal insulation and thermal shock cycle tests were carried out. The heat insula
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!