To see the other types of publications on this topic, follow the link: Composite materials - Data processing.

Dissertations / Theses on the topic 'Composite materials - Data processing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Composite materials - Data processing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zhu, Feng, and 朱峰. "Visualized CAD modeling and layered manufacturing modeling for components made of a multiphase perfect material." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30073844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xiujuan, and 張秀娟. "An effective design method for components made of a multiphase perfectmaterial." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30267018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nezamian, Abolghasem 1968. "Bond strength of concrete plugs embedded in tubular steel piles." Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/5601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Madra, Anna. "Analyse et visualisation de la géométrie des matériaux composites à partir de données d’imagerie 3D." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2387/document.

Full text
Abstract:
Le sujet du projet de thèse réalisée en cotutelle entre Laboratoire Roberval à l'Université de Technologie de Compiègne et le Centre de Composites à Haute Performance d'École Polytechnique de Montréal porté sur une proposition de l'architecture du deep learning avec sémantique pour la création automatisée des modèles de la microstructure de matériaux composites à partir d'imagerie de la micrographie aux rayons X. La thèse consiste de trois parties principales : d'abord les méthodes du prétraitement de données microtomographiques sont relevées, avec l'accent sur la segmentation de phases à partir d'images 2D. Ensuite, les propriétés géométriques des éléments de phases sont extraites et utilisées pour classifier et identifier de nouvelles morphologies. Cela est démontré pour le cas de composites chargés par les fibres courtes naturelles. L'approche de classification à l'aide des algorithmes d'apprentissage est reprise pour étudier les défauts dans un composite, mais en ajoutant les aspects spatiaux. En plus, un descripteur de haut niveau "génome de défauts" est introduit, qui permet de comparer l'état de défauts dans les différents échantillons. La deuxième partie introduit la segmentation structurelle sur l'exemple du renfort tissé du composite. La méthode repose sur un modèle du krigeage dual, calibré par l'erreur de segmentation provenant d'algorithme d'apprentissage. Finalement, le modèle krigé est repris pour construire une formulation stochastique du renfort à travers de processus gaussien et la distribution des propriétés physiques de la microstructure est extraite et prête pour la simulation numérique de la fabrication ou du comportement mécanique
The subject of the thesis project between Laboratoire Roberval at Université de Technologie Compiègne and Center for High-Performance Composites at Ecole Polytechnique de Montréal considered the design of a deep learning architecture with semantics for automatic generation of models of composite materials microstructure based on X-ray microtomographic imagery. The thesis consists of three major parts. Firstly, the methods of microtomographic image processing are presented, with an emphasis on phase segmentation. Then, the geometric features of phase elements are extracted and used to classify and identify new morphologies. The method is presented for composites filled with short natural fibers. The classification approach is also demonstrated for the study of defects in composites, but with spatial features added to the process. A high-level descriptor "defect genome" is proposed, that permits comparison of the state o defects between specimens. The second part of the thesis introduces structural segmentation on the example of woven reinforcement in a composite. The method relies on dual kriging, calibrated by the segmentation error from learning algorithms. In the final part, a stochastic formulation of the kriging model is presented based on Gaussian Processes, and distribution of physical properties of a composite microstructure is retrieved, ready for numerical simulation of the manufacturing process or of mechanical behavior
APA, Harvard, Vancouver, ISO, and other styles
5

Fang, Liming. "Processing of HA/UHMWPE for orthopaedic applications /." View abstract or full-text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MECH%202003%20FANG.

Full text
Abstract:
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 128-138). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Heechun. "Modeling the processing science of thermoplastic composite tow prepreg materials." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sidbury, Carmen Kay. "Effect of processing conditions on cast particulate reinforced composite materials." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/17607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rhodes, James A. "Processing parameters and microstructure of intermetallic bonded diamond composite materials /." Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674101441&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rhodes, James Anthony. "Processing Parameters and Microstructure of Intermetallic Bonded Diamond Composite Materials." OpenSIUC, 2008. https://opensiuc.lib.siu.edu/theses/484.

Full text
Abstract:
AN ABSTRACT OF THE THESIS OF James A. Rhodes, for the Master of Science degree in Mechanical Engineering, presented November 3, 2008, at Southern Illinois University Carbondale. TITLE: PROCESSING PARAMETERS AND MICROSTRUCTURE OF INTERMETALLIC BONDED DIAMOND COMPOSITE MATERIALS MAJOR PROFESSORS: Drs. Dale E. Wittmer and Peter J. Filip The general purpose of this research was to produce a material that can outperform conventional materials used in high wear applications such as mining, drilling, and sawing. These types of applications are well suited for diamond materials because of the hardness and wear resistance of diamonds, yet the material must also show an ability to withstand impact loading, and perform at high temperatures. Research in the area of intermetallic bonded diamond (IBD) composites is on-going with the goal of achieving a set of processing parameters which can reliably and repeatedly produce IBD materials with high density and low porosity. The material investigated was composite of nickel aluminide, with a molybdenum dopant, tungsten carbide, and diamond. Experimentation has shown that hot pressing, at appropriate pressures in the range of 1350 - 1450 ° C, can yield results near 100% theoretical density. These experiments have also yielded apparent porosities below 1%. Still, much care must be taken to control time, temperature, and pressure in order to avoid unwanted metal leakage and diamond degradation, and to yield the proper phase formation. In this research, the parameters investigated for specific IBD composites included a range of hot-pressing temperatures and pressures, and the properties measured were porosity, density, and impact resistance. Also included were material analysis done by means of X-ray analysis and SEM with EDS inspection. From the research it was concluded that the ideal set of parameters for processing the intermetallic bonded diamond composite material in a hot press operation lie between 1350 and 1375 °C, and a pressure of between 26.3 and 52.7 MPa. It should also be noted that the process requires strict control on the cycle's heat ramp-up, pressure application, pressure reduction, and cool down cycle. As with most material processing, failure can result from sloppy handling of the die set, and material contamination.
APA, Harvard, Vancouver, ISO, and other styles
10

SONG, HYO-JIN. "PROCESSING PHASE TRANS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1132249697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Butcher, Ronald K. "COMPOSITE DATA FROM CENTRIFUGAL EXPERIMENTATION REGARDING HUMAN INFORMATION PROCESSING." Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1182285671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Teitelbaum, Michael E. "Optical data porting to networks embedded in composite materials." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 160 p, 2009. http://proquest.umi.com/pqdweb?did=1674096491&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Caccia, Mario. "Synthesis and Processing of SiC-based Composite Materials by Reactive Infiltration." Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/72732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kugler, Danielle. "Experimental investigation of the effect of changes in processing history on compositie laminates and cylinders /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yu, Liyang. "Composite stacked organic semiconductors : materials and processing towards large area organic electronics." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10679.

Full text
Abstract:
Over the last three decades, organic semiconductors, both polymeric and small-molecule compounds, have raised significant interest in academia and industry in view of the attractive combination of their versatile optoelectronic properties, lightness, flexibility and potential for low-cost and straight-forward manufacturing that makes them a valid alternative to conventional inorganic semiconductors. Thereby, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene and other pentacene and anthradithiophene derivatives are interesting candidate materials for electronic applications such as organic field-effect transistors (OFETs) as they feature highly promising device performance and offer the possibility of processing them from solution, originating from their good solubility in common solvents. However, the small-molecule nature of these compounds often renders the control of the solid-state morphology of architectures deposited from solution challenging, thus, resulting in low reproducibility of their transistor characteristics. This thesis explores possible pathways to control the thin-film microstructure of such small molecules. By doing so, we aim to provide model systems that permit the elucidation of relevant electronic processes in these materials and to provide architectures for future technological exploitation. A thorough analysis is presented including the influence of the selection of solvent, casting temperature, coating techniques and the presence of small-molecular additives on the morphology of such semiconducting small-molecule thin films. Various strategies for chemical modification of TIPS pentacene are also discussed with focus of the effect of sidechain substitution on the electronic properties of the resulting architectures. Furthermore, investigations into the supramolecular arrangements that can be realised with some of those low-molecular-weight materials are presented and how this affects their optoelectronic features.
APA, Harvard, Vancouver, ISO, and other styles
16

Norpoth, Lawrence R. "Processing parameters for the consolidation of thermoplastic composites." Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/19099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kumar, Amit. "Data Analytics Approach for studying Structure-Property Relationships in Gradient Aluminum Composite." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1458907518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Leach, David W. "An experimental study of the processing parameters in thermoplastic filament winding." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Masi, Barbara Ann. "Fabrication methods and costs for thermoset and thermoplastic composite processing for aerospace applications." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/72739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Amouroux-Berthe, Solange Claire. "Pressure driven transport of non-wetting fluids in membranes used in composite processing." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 254 p, 2009. http://proquest.umi.com/pqdweb?did=1885755801&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Longun, Jimmy. "Processing and Evaluation of Multifunctional Polyimide Composite Coatings and Membranes." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367938249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Alston, Jarrod John. "Room/Corner Fire Calibration Data: Marine Composite Screening Specimens." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0527104-180727/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kelly, Aoife. "Processing of bulk hierarchical metal-metal composites." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559831.

Full text
Abstract:
Spray forming with eo-injection of a solid particulate phase to form a metal-metal composite has been studied as a new route for manufacture. Two Al-based matrices were investigated: AI-12Si for testing the feasibility of the new manufacturing route and Al-4Cu for providing better mechanical performance. For both composite types, Ti was chosen as the particulate phase and the processing-microstructure-property relationships then studied. At Peak Werkstoff GmbH, Germany 12 wt%Ti particles were eo-injected into an atomised Al alloy droplet spray and eo-deposited to form a rv300 kg billet. The microstructure comprised refined equiaxed a-AI grains (rv5fLm), spherical Si particles (rv5fLm) and uniformly distributed Ti particles (rv80fLm). Sections of the billet were extruded under a range of conditions into long strips 20mm wide and 6mm, 2.5mm and 1mm thickness. At high strains, the Ti particles were deformed into continuous fibres of a few microns in thickness. Accumulative roll bonding was then performed to higher total strains, while maintaining a constant cross-section, reducing the Ti fibres to sub-micron thickness. The fibres were studied by extraction after selective dissolution of the a-AI matrix. There was no interfacial reaction between a-AI and Ti or any measurable oxide formation, thus providing encouragement for the manufacture of metal-metal composites by eo-spray forming. A powder injection pump was successfully integrated and commissioned on the spray forming facility at Oxford University. The pump was calibrated to optimise powder flow rates. Three AI-4Cu+ Ti composite billets were processed with each containing Ti powder with a different processing history. Up to 20vol%Ti was successfully incorporated, however due to the cooling effect from powder injection, porosity was significant. The quenching effect provided a finer AI-4Cu grain structure in the region of Ti injection, and also promoted precipitation of O'-AbCu precipitates. A Ti/ Al-4Cu interfacial reaction was more prominent in the billet spray formed at 850°C than those spray formed at 750°C. Angular Ti processed by a hydride-dehydride route had better deformation characteristics than spherical gas atomised Ti. Deformation processing by extrusion and rolling was investigated for Al-4Cu+20vol%Ti using SEM, EBSD and FIB. After extrusion to a strain of 5, the composite contained elongated reinforcing fibres characteristic of metal-metal composites. The microstructure studied by EBSD revealed equiaxed polygonal Al-4Cu matrix grains. Rolling was not as efficient as extrusion in producing elongated Ti fibres and was attributed to a lower deformation processing temperature. The rolled composites consisted of elongated Al-4Cu grains 1-5J1m in thickness. An UTS of 339MPa at a strain of 3 was attributed to texture strengthening in the Q- AI.
APA, Harvard, Vancouver, ISO, and other styles
24

Delgado, Hugo. "Characterization and surface reconstruction of objects in tomographic images of composite materials." Master's thesis, Faculdade de Ciencias e Tecnologia, 2013. http://hdl.handle.net/10362/13141.

Full text
Abstract:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
In the scope of the project Tomo-GPU supported by FCT / MCTES the aim is to build an interactive graphical environment that allows a Materials specialist to define their own programs for analysis of 3D tomographic images. This project aims to build a tool to characterize and investigate the identified objects, where the user can define search criteria such as size, orientation, bounding boxes, among others. All this processing will be done on a desktop computer equipped with a graphics card with some processing power. On the proposed solution the modules for characterizing objects, received from the identification phase, will be implemented using some existing software libraries, most notably the CGAL library. The characterization modules with bigger execution times will be implemented using OpenCL and GPUs. With this work the characterization and reconstruction of objects and their research can now be done on conventional machines, using GPUs to accelerate the most time-consuming computations. After the conclusion of this thesis, new tools that will help to improve the current development cycle of new materials will be available for Materials Science specialists.
APA, Harvard, Vancouver, ISO, and other styles
25

Muhlbauer, Rachel Lynn. "Investigation of the structure-property-processing relationships in paper and carbon nanotube composite materials." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54022.

Full text
Abstract:
In this research, multiwalled carbon nanotube (MWNT) and paper composite materials were fabricated by dropcasting aqueous dispersions containing MWNTs onto filter paper using vacuum filtration, a highly unidirectional drying technique. By varying the pore size of the paper backbone as well as the number of deposited MWNT layers, composites with distinct architectures and properties were created. This thesis provides numerous examples that show how the processing methodology used influences the location of the MWNTs, the amount of MWNTs deposited, and the interaction between the MWNTs and the paper backbone. These three factors work in tandem to form the structures and properties presented. Understanding how the structures and properties come about allows for the tailorability of these composites for different applications and devices. The pore size of the backbone material combined with the directionality of the drying methodology controlled the location of MWNT deposition. MWNT deposition occurred in three ways: on the paper surface only, within the paper material only, or combined surface and internal deposition. By varying the number of deposition steps, the properties of the composite could be altered in the location of deposition. Surface charge, dispersion concentration, paper pore size, drying methodology, MWNT length, the number of deposited MWNT layers, and post-processing techniques were all factors studied in this thesis which could successfully vary the interaction between the MWNTs and between the MWNT and paper materials and, ultimately, alter the properties of the composite. Regardless of the processing methodology employed and the starting materials used, structure and property evolutions in the composite materials were characterized using impedance spectroscopy, optical microscopy, scanning electron microscopy, and Current-AFM. Combining equivalent circuit fitting of the impedance data with the information obtained from the imaging techniques allowed for the elucidation of structural mechanisms which contribute to the electronic response measured for each composite. An overall equivalent circuit was built for each composite plane which could then be used to extract the electrical properties of the individual conduction mechanisms within the composite. In the in-plane, the electrical properties of the paper backbone, MWNT-MWNT junctions, MWNT bundles, and MWNT curved bundles could be determined. In the thru-plane, the electrical properties within the paper thickness, either paper-dominated or MWNT-dominated, could be measured. The resistance through the thickness of a bulk MWNT surface network could be also measured when the density of the MWNT network is sufficiently high.
APA, Harvard, Vancouver, ISO, and other styles
26

Kaforey, Monica L. "Solid state thermal gradient processing of Y₁Ba₂Cu₃O₇₋x/Ag superconducting composite ribbons." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28038.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1994.
Vita. Title as it appears in the Feb. 1994 MIT Graduate List: Solid state temperature gradient processing of Y₁Ba₂Cu₃O₇₋x/Ag superconducting composite ribbons.
Includes bibliographical references (leaves 197-202).
by Monical L. Kaforey.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
27

Mani, Rajesh. "Processing and characterization of polymer-ceramic composite thin film dielectrics for embedded decoupling applications." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/20840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Begg, Henry S. "Processing, structure and properties of Al-matrix composites." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6b825394-f5a0-4087-a89a-1ec6ca091426.

Full text
Abstract:
Three classes of Al-matrix composite were manufactured to combine dissimilar metals and incorporate structural hierarchy, in an attempt to develop unusual combinations of mechanical properties. The first class combined a brittle, nano-quasicrystalline forming Al-3Fe-2Cr-2Ti phase with a ductile Al-4Cu phase into a layered structure using low pressure plasma spraying (LPPS). By using a substrate with multi-scale topological features, an ultra-thick (>2mm) deposit was successfully sprayed, which was subsequently consolidated by hot rolling to reduce residual porosity. The microstructure comprised a 'brick-wall' structure consisting of a convoluted arrangement of inter-leaved discreet droplet splats. Structure-property relationships were studied for four volume fractions of ductile additions and in-situ electron microscopy of beams subjected to 3-point bending suggested the ductile additions were providing additional toughening to the composite by a crack-bridging mechanism. The second class of composite investigated highly deformed microstructures of Al with 20vol% additions of either Sn or Ti. Nano-scale fibrous structures of the minority additions were achieved via an accumulative extrusion method, where extruded rod was abraded, degreased, bundled and re-extruded. This process was repeated to create refined microstructures while retaining a large material section. Fracture properties were studied in three point bending and crack growth monitored using Digital Image Correlation (DIC) to produce strain fields of the deforming beam surface. Modest changes were observed in mechanical properties with weak interfaces between poorly bonded extruded rods dominating fracture behaviour. Whiskers formed on polished surfaces of extruded Al-20vol%Sn and were monitored in real time by electron microscopy. Growth rates of up to 2.8nm/s were measured, which exceeds re- ported values in the literature on electroplated coatings by at least one order of magnitude. This may provide a convenient new means of studying whisker formation and calls into question current growth models. The third class of composite combined heavily rolled sheets of Al-20vol%Sn and Al-20vol%Ti with glass fibre/epoxy sheets to produce a laminate with multi-scale architecture. This laminate was designed as a proof-of-concept hierarchical material with structures ranging from the near millimetre scale of the metal-polymer layers, to the micro-sized glass fibre reinforcement of the epoxy and the nano-scale filamentary/lamellar microstructure of the highly deformed metal sheets. Fracture of such laminates was investigated in 3-point bending with continuous optical monitoring.
APA, Harvard, Vancouver, ISO, and other styles
29

Hannibal, Paul. "Compressibility Measurement and Modeling to Optimize Flow Simulation of Vacuum Infusion Processing for Composite Materials." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/4433.

Full text
Abstract:
Out-of-autoclave manufacturing processes for composite materials are increasing in importance for aerospace and automotive industries. Vacuum Infusion processes are leading the push to move out of the autoclave. An understanding of the various process parameters associated with resin infusion is necessary to produce quality product. Variance in compaction, resin, and vacuum pressures are studied, concentrating on developing a compaction pressure profile as it relates to fiber volume fraction. The purpose of this research is twofold: (1) to show and quantify the existence of a resin pressure gradient in compression testing using rigid tooling, and (2) to use measured test data to validate and improve resin flow simulation models. One-dimensional compression tests revealed a pressure gradient across the diameter of the compression tool. The pressure gradient follows trends consistent with Darcy's Law. Compression tests revealed fabric hysteresis during compaction as shown in previous studies. Fiber compaction pressure was found to not be directly equal to compressive forces of the Instron when resin is present in the system. The relationship between Instron, resin and compaction pressures is defined. The compression study was used to validate previously developed flow simulation models. Resin pressures are critical to developing an accurate two-dimensional radial flow simulation for low permeability fabrics. It is feasible to determine final fiber volume fraction at a given compaction pressure.
APA, Harvard, Vancouver, ISO, and other styles
30

Feng, Jian-Huei. "Colloidal processing, tape casting and sintering of PLZT for development of piezoceramic/polymer interlayered composites /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kumar, Dharmendra. "A COMPUTATIONALLY EFFICIENT METHOD OF ANALYZING THE PARAMETRIC SUBSTRUCTURES." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Varde, Aparna S. "Graphical data mining for computational estimation in materials science applications." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-081506-152633/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Anderson, Scott Powell. "Wood fiber reinforced bacterial biocomposites effects of interfacial modifers and processing on mechanical and physical properties /." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/S_Anderson_100507.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Taveri, Gianmarco. "Geopolymers Incorporating Wastes and Composites Processing." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-403861.

Full text
Abstract:
Buildings construction and realization of public infrastructures have always been a primary need in the human society, developing low cost and user-friendly materials which also encounter safety and durability requirements. Portland cement is the most used material in construction industry from the industrial revolution up to date, but the raising concerns related to the climate change are pushing the governments worldwide to replace it with more eco-friendly and greener materials. Geopolymers are considered to be best alternatives to Portland cement in construction industry, but issues related to cost and mechanical properties are still hindering the commercialization of this material. Geopolymer incorporating wastes is one of the solutions. Fly ash, a thermal power plant by-product, and borosilicate glass, a recycled glass from pharmaceutical vials, are suitable candidates in geopolymers activation. NMR and FTIR spectroscopies demonstrated that borates from borosilicate glass are active compounds in geopolymerization, substituting the alumina is its role, composing a B-Al-Si network never observed before. Various fly ash and borosilicate glass weight contents were studied in terms of mechanical properties (compression test, 3-point bending test). It was found that fly ash 55 wt.% and borosilicate 45 wt.% composition activated in 13 M NaOH solution holds the best compressive and flexural strength (45 and 4 MPa respectively), 25% stronger than similar counterparts found in literature. Cellulose fibres in different weight contents were dispersed into the geopolymeric paste to produce geopolymer composites, with the aim to render the material more suitable for structural applications. 3-point bending test showed an improvement of the flexural strength of about 165% (12 MPa), while the chevron notch method displayed a fracture toughness of 0.7 MPam1/2, in line with the results of geopolymer composites found in literature. In this thesis work, fly ash was also successfully densified in 3 M NaOH solution and distilled water through a new method based on hydraulic pressure, called hydro-pressure sintering. This innovative technology involves a drastic reduction of NaOH utilization in geopolymerization, rendering the material more eco-friendly. XRD spectroscopy conducted on produced samples revealed a higher formation of crystals, most likely induced by the application of hydraulic pressure (450 MPa).
APA, Harvard, Vancouver, ISO, and other styles
35

Ruggeri, Charles R. "High Strain Rate Data Acquisition of 2D Braided Composite Substructures." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1255968114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ellerby, Donald Thomas. "Processing and mechanical properties of metal-ceramic composites with controlled microstructure formed by reactive metal penetration /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/10583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rubink, William S. "Processing-Structure-Property Relationships of Spark Plasma Sintered Boron Carbide and Titanium Diboride Ceramic Composites." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157631/.

Full text
Abstract:
The aim of this study was to understand the processing – structure – property relationships in spark plasma sintered (SPS) boron carbide (B4C) and B4C-titanium diboride (TiB2) ceramic composites. SPS allowed for consolidation of both B4C and B4C-TiB2 composites without sintering additives, residual phases, e.g., graphite, and excessive grain growth due to long sintering times. A selection of composite compositions in 20% TiB2 feedstock powder increments from 0% to 100%, was sintered at 1900°C for 25 minutes hold time. A homogeneous B4C-TiB2 composite microstructure was determined with excellent distribution of TiB2 phase, while achieving ~99.5% theoretical density. An optimum B4C-23 vol.% TiB2 composite composition with low density of ~3.0 g/cm3 was determined that exhibited ~30-35% increase in hardness, fracture toughness, and flexural bend strength compared to commercial armor-grade B4C. This is a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a strengthening and toughening agent, and SPS shows promise for the manufacture of hybrid ceramic composites.
APA, Harvard, Vancouver, ISO, and other styles
38

Gooch, Christie M. "The effects of processing on the mechanical properties and durability of PETI-5 resins." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhao, Lei. "Novel bio-composites based on whole utilisation of wheat straw." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7359.

Full text
Abstract:
This thesis reports research work in the development of biocomposites based on whole utilisation of renewable wheat straw for industrial applications. The concept of “whole utilisation” is based on a previous work on a novel twin-screw extrusion technology for processing of feedstock in wheat straw reinforced bio-composites. It demonstrated that straw raw material could be restructurised into a feedstock with cellulose fibre finely dispersed in the non-cellulose matrix, which can be utilised as a bonding phase without having to be removed as in conventional processes to extract the cellulose. The whole straw can thus be utilised to avoid waste of materials and the negative impacts to environment associated with the extraction process. Raw wheat straw in this research was prepared in three ways: size reduction through mechanical milling, pre-treatment by aqueous NaOH solution and deep preparation with aqueous NaOH solution soaking followed by extrusion fractionation. Prepared wheat straws were processed into varieties of forms according to the applications. They were hot-compressed into self-reinforced composite with good flow ability and also processed through extrusion and compression moulding to compound with other biopolymers as good filler. The relationships of processing parameter and property, as well as formulation and property were established for each form of product, which provides a key understanding of the whole development circle of an end product. Through this research, scientific and technical problems has been addressed in materials formulation/processing, product design/manufacturing, enhancement of functionality/ performance as well as economical/environmental assessment so as to develop a series of cost-effective bio-composites and products, which satisfy diverse technical and environmental performance requirements in the industrial sectors across packaging, horticulture, building/construction and shooting sports.
APA, Harvard, Vancouver, ISO, and other styles
40

Malik, Rachit. "Processing, Characterization and Applications of Aligned Carbon Nanotube Sheets." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490353998113856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mahadevegowda, Amoghavarsha. "Processing, microstructure and properties of polymer-based nano-composite dielectrics for capacitor applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:fb974b13-2ec5-4104-9f80-45d1cb97eb48.

Full text
Abstract:
The processing and properties of novel polymer-based nano-composite (PNC) dielectrics for capacitor applications has been studied. PNCs were fabricated via a vacuum based deposition technique and their micro/nano-structure, chemical and dielectric properties investigated. After process development and optimisation, co-deposited Al and nylon-6 PNCs had a dielectric constant k∼7 at an approximate Al volume fraction of 0.3 that agreed with analytical predictions if it was assumed that the Al transformed to an oxide in-situ and/or after deposition. The significant effect of absorbed water vapour and temperature on PNC dielectric properties was revealed using different types of post-deposition heat treatment. Alternately-deposited PNCs consisting of Al or Ag 2-20 nm layers sandwiched between nylon-6 layers were fabricated in which the overall PNC Al or Ag volume fraction was controlled by varying the nominal Al or Ag layer thickness. Ag layers comprised of discrete nano-islands that produced a nano-capacitor network effect that increased k to ∼11. In the case of Al layers, when the layer thickness was ≥ 5 nm, corresponding to a nominal volume fraction of 0.1, Al (core)-oxide (shell) nanoparticles were formed and the PNC dielectric constant increased to ∼19. The detailed nano-structure of the core-shell particles was studied using various types of transmission electron microscopy (TEM), and the elevations in dielectric constant ascribed to multiple-interface polarisation effects dependent on the formation of the core-shell structure. PNCs based on alternate deposition of Ti sandwiched in nylon-6, and then both Ti and Ag in nylon-6 were also fabricated, with k reaching ∼73 for Ag+Ti/nylon-6 PNCs. As well as Ti-based core (metal)-shell (oxide) particles, the Ag volume fraction was sufficiently high in the 10 nm nylon-6 layers to again form a nano-capacitor network that contributed to the overall device capacitance and effective dielectric constant. Again, various types of high magnification TEM were critical in resolving the Ti-based core-shell structure and its role in high-k behaviour. The vacuum-based alternate deposition technique has been developed to offer ease of operation, reliability, flexibility and applicability to chemically different filler and matrix systems in the fabrication of high-k PNC based capacitors, in which high-k performance relies critically on the formation of core (metal)-shell (oxide) particles in both Al and Ti based systems.
APA, Harvard, Vancouver, ISO, and other styles
42

McGrane, Rebecca Ann. "Vacuum Assisted Resin Transfer Molding of Foam Sandwich Composite Materials: Process Development and Model Verification." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/42108.

Full text
Abstract:
Vacuum assisted resin transfer molding (VARTM) is a low cost resin infusion process being developed for the manufacture of composite structures. VARTM is being evaluated for the manufacture of primary aircraft structures, including foam sandwich composite materials. One of the benefits of VARTM is the ability to resin infiltrate large or complex shaped components. However, trial and error process development of these types of composite structures can prove costly and ineffective. Therefore, process modeling of the associated flow details and infiltration times can aide in manufacturing design and optimization. The purpose of this research was to develop a process using VARTM to resin infiltrate stitched and unstitched dry carbon fiber preforms with polymethacrylimide foam cores to produce composite sandwich structures. The infiltration process was then used to experimentally verify a three-dimensional finite element model for VARTM injection of stitched sandwich structures. Using the processes developed for the resin infiltration of stitched foam core preforms, visualization experiments were performed to verify the finite element model. The flow front progression as a function of time and the total infiltration time were recorded and compared with model predictions. Four preform configurations were examined in which foam thickness and stitch row spacing were varied. For the preform with 12.7 mm thick foam core and 12.7 mm stitch row spacing, model prediction and experimental data agreed within 5%. The 12.7 mm thick foam core preform with 6.35 mm row spacing experimental and model predicted data agreed within 8%. However, for the 12.7 mm thick foam core preform with 25.4 mm row spacing, the model overpredicted infiltration times by more 20%. The final case was the 25.4 mm thick foam core preform with 12.7 mm row spacing. In this case, the model overpredicted infiltration times by more than 50%. This indicates that the model did not accurately describe flow through the needle perforations in the foam core and could be addressed by changing the mesh elements connecting the two face sheets.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
43

Parker, John Wesley. "Development and implementation of a low cost image correlation system to obtain full-field in-plane displacement and strain data." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/parker/ParkerJ0509.pdf.

Full text
Abstract:
When using multi-axial testing, obtaining in-plane strain and displacement data can be difficult and costly. Montana State University's In Plane Loader (IPL) can apply any number of loads in the X and Y axes and as rotation but can only provide the displacement data at the grips. This project uses a Canon consumer-model digital single lens reflex camera and a series of matlab codes to provide in-plane displacement and strain data at as many points on the surface of the loaded specimen as required using Digital Image Correlation. The system has been successfully used to measure surface and boundary displacements on composite and aluminum samples, as well as on glued aluminum joints. The software system has been shown to estimate strains with a strain error of less then 0.0002 m/m or ±0.5% placing it within ASTM-B2 classification. It also has been shown to measure displacements to within 0.02 pixels accuracy, which for tests on the IPL translates to 0.007mm. The hardware/software system has also been used with the IPL to estimate Young's modulus of aluminum with less then 5% error and yield strength with just over 10% error.
APA, Harvard, Vancouver, ISO, and other styles
44

容勁 and King Stanley Yung. "Application of multi-agent technology to supply chain management." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31223886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Parshall, Elaine Ruth. "A numerical model of optical beam propagation in photorefractive crystals and comparisons with experiment /." Thesis, Connect to Dissertations & Theses @ Tufts University, 1995.

Find full text
Abstract:
Thesis (Ph.D.)--Tufts University, 1995.
Adviser: M. Cronin-Golomb. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
APA, Harvard, Vancouver, ISO, and other styles
46

Magill, Marvin D. "The influence of thermomechanical processing on the elevated temperature mechanical behavior of 6061 aluminum - alumina metal matrix composite materials." Thesis, Monterey, California: Naval Postgraduate School, 1990. http://hdl.handle.net/10945/27630.

Full text
Abstract:
Approved for public release; distribution unlimited.
A cast, aluminum-based discontinuous metal matrix composite was thermomechanically processed. The material studied was 6061 aluminum containing 10 vol. pct. or 15 vol. pct. alumina (Al2O3) particles, fabricated by casting and subsequently extruded by Duralcan, Inc. of San Diego, CA. Processing included rolling the extruded bars to large strain values at 350 C and 500 C with controlled reheating between passes. Mechanical testing was conducted at temperatures and strain rates ranging from 200 C to 500 C and 6.7 x 10-5 s-1 to 3.3 x 10-1 s-1, respectively. This material displayed a tendency for increased elongation with an increase in the strain rate above 6.7 x 10-4 s-1. Elongation data for the 350 C rolled materials, containing both 10 vol. pct. and 15 vol. pct. alumina, displayed greater values at lower temperatures than the 500 C rolled materials. Values for strength agreed well with previous results.
APA, Harvard, Vancouver, ISO, and other styles
47

Pedrazzini, Stella. "Characterisation and mechanical properties of bulk nanostrictured Al-based composites for high temperature applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4b8b77b7-a522-403a-b1a3-73d3399486a4.

Full text
Abstract:
Rapidly solidified nanoquasicrystalline Al93Fe3Cr2Ti2 at% alloy has previously shown outstanding mechanical performance and microstructural stability up to elevated temperatures. Despite this, no in-depth study had previously been performed assessing the active strengthening mechanisms, the long term microstructural stability and the effect of plastic deformation at elevated temperature to simulate the production methods utilised for engineering applications. The current project analysed eight bars consisting of a nanoquasicrystalline Al93Fe3Cr2Ti2 at% alloy matrix with varying amounts of pure Al fibres, produced through gas atomisation and warm extrusion. Microstructural characterisation and thermal analysis of the as-atomized powder was carried out to assess whether microstructural changed were likely to occur at the extrusion temperature. A microstructure made primarily of nanometre-sized icosahedral particles in an FCC-Al matrix was observed through a combination of SEM, TEM (and CBDP), EDX, XRD. Thermal analysis of the powders performed by DSC showed that no change was expected to occur at the extrusion temperature. Five bars were extruded during the course of this project: one bar of pure Al-Fe-Cr-Ti alloy, two composite bars with 10 vol% added pure Al and two bars with 20 vol% added Al. Three more bars were received from a previous project and analysed. Warm extrusion caused the powder particles to become well bonded and elongated in the extrusion direction introducing a preferred orientation in the FCC-Al grains. A bimodal distribution of grain size was observed after extrusion. Several low angle (5-15 °) grain boundaries were also identified by EBSD along the extrusion direction. No obvious change in size or shape was observed by TEM in the icosahedral phase (a bimodal distribution of hard, incoherent precipitates was observed after extrusion), or any change in the amount of solutes in solid solution in the Al matrix. Mechanical properties at room temperature were tested by Vickers microhardness, quasi-static tensile tests, dynamic tensile tests and dynamic compression tests. A theoretical model correlating the microstructures observed with the various active strengthening mechanisms was applied in order to predict an estimate of the yield strength of the material produced. It was found that the strength of the Al93Fe3Cr2Ti2 alloy came primarily from a combination of the effect of the hard, incoherent nanoparticles, the small grain size and work hardening. The fibre addition to this alloy caused a linear decrease in mechanical strength with increasing vol% pure Al. This work represents the first quantitative estimate of which strengthening mechanisms are active and how much they influence the mechanical strength of Al93Fe3Cr2Ti2 alloy and composites. An understanding of the yield strength is essential as engineering components would only be safe to use within the elastic region. To investigate the thermal stability of the alloy and composites, thermal analyses involving DSC and long heat treatments (up to a maximum of 1000 hours) were performed at various temperatures along with microstructural characterisation by XRD, SEM and TEM and microhardness tests. No microstructural change was detected, however a 2-5% decrease in microhardness was observed. Compression tests were performed across a range of temperatures and strain rates to simulate the behaviour of these composites under typical conditions necessary to process them into useful engineering components. Phase changes occurring during plastic deformation at high temperature were investigated by XRD. The measured yield strength at 350 °C was over 3x that of high strength 7075 T6 Al alloy showing outstanding thermal stability and mechanical performance. However, the microstructure was shown by XRD to undergo a phase transformation which resulted in the decomposition of the icosahedral phase at 500 °C into more stable intermetallic phases. Serrated flow was also observed in some of the tests. The high temperature compressive data was then used for the first time in a semi-quantitative analysis to determine which species in solid solution (Fe, Cr or Ti) was likely to cause the serrations. A dynamic strain ageing model, which calculates the diffusion coefficients at the minimum in ductility and strain rate sensitivity, suggested that the Ti in solid solution in the matrix could be the most likely candidate.
APA, Harvard, Vancouver, ISO, and other styles
48

Navarro, Cota Juan Pedro Martin 1963. "DESIGN AND BEHAVIOR OF COMPOSITE SPACE TRUSSES." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276505.

Full text
Abstract:
A fully automated computer program is developed for the optimum design of steel space trusses acting compositely with a concrete slab placed on top. The program sizes the truss members to meet the requirements of the load and resistance factor design specification of the American Institute of Steel Construction using the load combinations of ANSI. Earthquake loading is not considered. The optimum size is based on minimum cost, regarding the amount of welding required at the joints and of the member itself. The total cost is based on all steel work in the truss. Once the truss configuration has been defined, and it has been ensured that linear elastic behavior exists, the structure is analyzed for the construction process, to make sure that no overstressing will take place in any structural element at any time during construction and service. The analysis and design principles are presented and an actual design case is solved. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
49

Carter, Robert Hansbrough. "Transmitted light intensity as a nondestructive evaluation technique for glass/epoxy composite laminates." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-11242009-020334/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ho, Yee Hsien. "In Vitro Behavior of AZ31B Mg-Hydroxyapatite Metallic Matrix Composite Surface Fabricated via Friction Stir Processing." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862762/.

Full text
Abstract:
Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-bearing application as a bulk. Thus, HA is introduced into metallic surface in various forms for improving biocompatibility. Recently friction stir processing (FSP) has emerged as a surface modification tool for surface/substrate grain refinement and homogenization of microstructure in biomaterial. In the pressent efforts, Mg-nHA composite surface on with 5-20 wt% HA on Mg substrate were fabricated by FSP for biodegradation and bioactivity study. The results of electrochemical measurement indicated that lower amount (~5% wt%) of Ca in Mg matrix can enhance surface localized corrosion resistance. The effects of microstructure,the presence of HA particle and Mg-Ca intermetallic phase precipitates on in vitro behavior of Mg alloy were investigated by TEM, SEM, EDX,XRD ,and XPS. The detailed observations will be discussed during presentation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography