Dissertations / Theses on the topic 'Composite materials Engineering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Composite materials Engineering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Venkatasubramanian, Rajiv. "Composite Nanoparticle Materials for Electromagnetics." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352993374.
Full textBeglinger, Jarrod (Jarrod Thomas) 1976. "Forming of advanced composite materials." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/31077.
Full textIncludes bibliographical references (p. 45).
Two significant aspects of advanced composite material forming are examined. First, the fiber deformation of aligned fiber composites formed to double curvature parts is analyzed. Aligned fiber composite lay-ups were formed over hemispherical tools and the fiber deformation was mapped. The data were intended to support the model which predicts trellising of composite fibers in double curvature. The data are, in general, too ambiguous to clearly support this model. Second, springback of woven fiber material-single curvature parts is investigated. A 90° bend was formed for varying laminate lay-ups at varying temperatures via a double diaphragm process. Principal objectives were to qualify the effects of varying lay-ups and temperatures on the net amount of springback observed. The data show that 0/90 woven lay-ups experience more springback than either +45 degree or quasi-isotropic woven lay-ups, and that heating the laminates marginally decreases the springback experienced.
by Jarrod Beglinger.
S.B.
Baker, Christopher R. "Assessing Damage in Composite Materials." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1390315001.
Full textRICHARD, DEEPAK. "LIFECYCLE PERFORMANCE MODEL FOR COMPOSITE MATERIALS IN CIVIL ENGINEERING." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069787827.
Full textShirolkar, Ajay. "A Nano-composite for Cardiovascular Tissue Engineering." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10840053.
Full textCardiovascular disease (CVD) is one of the largest epidemic in the world causing 800,000 annual deaths in the U.S alone and 15 million deaths worldwide. After a myocardial infarction, commonly known as a heart attack, the cells around the infarct area get deprived of oxygen and die resulting in scar tissue formation and subsequent arrhythmic beating of the heart. Due to the inability of cardiomyocytes to differentiate, the chances of recurrence of an infarction are tremendous. Research has shown that recurrence lead to death within 2 years in 10% of the cases and within 10 years in 50% of the cases. Therefore, an external structure is needed to support cardiomyocyte growth and bring the heart back to proper functioning. Current research shows that composite materials coupled with nanotechnology, a material where one of its dimension is less than or equal to 100nm, has very high potential in becoming a successful alternative treatment for end stage heart failure. The main goal of this research is to develop a composite material that will act as a scaffold to help externally cultured cardiomyocytes grow in the infarct area of the heart. The composite will consist of a poly-lactic co glycolic acid (PLGA) matrix, reinforced with carbon nanotubes. Prior research has been conducted with this same composite, however the significance of the composite developed in this research is that the nanotubes will be aligned with the help of an electro-magnetic field. This alignment is proposed to promote mechanical strength and significantly enhance proliferation and adhesion of the cardiomyocytes.
Charles-Harris, Ferrer Montserrat. "Development and Characterisation of Completely Degradable Composite Tissue Engineering Scaffolds." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6054.
Full textScaffolds are porous biodegradable structures that are meant to be colonised by cells and degrade in time with tissue generation. Scaffold design and development is mainly an engineering challenge, and is the goal of this PhD thesis.
The main aim of this thesis is to develop and characterise scaffolds for Tissue Engineering applications. Specifically, its objectives are:
1. To study, optimise and characterise two scaffold processing methods: Solvent Casting and Phase Separation. This is done by experiment design analysis.
2. To characterise the degradation, surface properties, and cellular behaviour of the scaffolds produced.
The scaffolds are made of a composite of polylactic acid polymer and a calcium phosphate soluble glass. The comparison of the two processing methods reveals that in general, the solvent cast scaffolds have higher porosities and lower mechanical properties than the phase-separated ones. Two compositions containing 20 weight % and 50 weight % of glass particles were chosen for further characterisations including degradation, surface properties and cellular behaviour.
The degradation of the scaffolds was studied for a period of 10 weeks. The evolution of various parameters such as: morphology, weight loss, mechanical properties, thermal transitions and porosity, was monitored. Scaffolds produced via solvent casting were found to be more severely affected by degradation than phase-separated ones.
The surface properties of the scaffolds were measured by modelling the scaffold pore walls as thin composite films. The morphology, topography, surface energy and protein adsorption of the films was characterised thoroughly. Again, the processing method was critical in determining scaffold properties. Films made via phase-separation processing had markedly different properties due to extensive coating of the glass particles by the polymer. This made the surfaces rougher and more hydrophobic. When the glass particles are not completely coated with polymer, they increase the material's hydrophilic and protein adsorption properties, thus confirming the potential biological benefits of the inclusion of the calcium phosphate glass.
The biological behaviour of the scaffolds was characterised by means of in vitro cell cultures with primary osteoblast stem cells and cells from a stable cell line, under static and dynamic conditions. Their morphology, proliferation and differentiation were monitored. Both types of scaffolds sustained osteblastic cell growth. The solvent cast scaffolds were easily colonised by cells which migrated throughout their structure. The cells on the phase-separated scaffolds, however, tended to form thick layers on the scaffold surface.
Finally, an alternative characterisation technique was explored applying Synchrotron X-Ray Microtomography and in-situ micromechanical testing. These experiments allowed for the qualitative and quantitative analysis of the microstructure of the scaffolds both at rest and under strain. A finite element model of the solvent cast scaffolds was developed and a preliminary analysis was performed. This technique could be used to complement and overcome some of the limitations of traditional mechanical characterisation of these highly porous materials.
Lee, Jinwook 1966. "Semiconductor nanocrystal composite materials and devices." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8039.
Full textIncludes bibliographical references.
This thesis describes the synthesis and characterization of semiconductor nanocrystal (quantum dot, QD) embedded composite materials and possible device applications of the resulting luminescent materials. Chemically synthesized ZnS overcoated CdSe, (CdSe)ZnS, QDs are incorporated into a polymer host material. The main challenge in the preparation of QD-polymer composites is the prevention of both phase separation and aggregation of the QDs within the polymer host material, while sustaining the original quantum efficiency of the QDs in their growth solution. Possible ways to incorporate QDs into an optically clear polymer matrix are considered. A guideline for a successful QD-polymer composite is discussed for various polymer systems: ligand polymers, ligand monomer and covalent bonding to a polymer matrix, and in-situ polymerization. The best composite system is based on incorporation of QDs into a poly(laurylmethacrylate) matrix during in-situ polymerization in the presence of TOP ligands. The successful incorporation of QDs into a polymer host material demonstrates the ability to form QD-polymer composite light emitting materials. The emission spans nearly the entire region of saturated and mixed colors with narrow emission profiles. The light emission spectra of QD-polymer composites excited by a blue diode light are also simulated by Monte Carlo methods and compared to the measured spectra from actual devices. The synthesis and characterization of QD-microspheres, which can be used as active fluorescent building blocks, are also described.
(cont.) In order to enhance the stability and compatibility of QDs in a polymer microsphere, the QDs are treated with polymerizable phosphine ligands, small oligomeric phosphine methacrylate (SOPM), and the following homogeneous solution polymerization is investigated to form monodisperse QD-microspheres. The QD-microspheres can store optical information assigned by embedded QDs in multiple codes. The surface functionalization of these capsules could provide a means for attaching capsules to surfaces and allow capsules to assemble into 3D structures.
by Jinwook Lee.
Ph.D.
Mihai, Iulia. "Micromechanical constitutive models for cementitious composite materials." Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/24624/.
Full textSambasivam, Shamala. "Thermoelastic stress analysis of laminated composite materials." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/72144/.
Full textShokrieh, Mahmood M. (Mahmood Mehrdad). "Progressive fatigue damage modeling of composite materials." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40253.
Full textThe model is an integration of three major components: stress analysis, failure analysis, and material property degradation rules. A three-dimensional, nonlinear, finite element technique is developed for the stress analysis. By using a large number of elements near the edge of the hole and at layer interfaces, the edge effect has been accounted for. Each element is considered to be an orthotropic material under multiaxial state of stress. Based on the three-dimensional state of stress of each element, different failure modes of unidirectional ply under multiaxial states of stress are detected by a set of fatigue failure criteria. An analytical technique, called the generalized residual material property degradation technique, is established to degrade the material properties of failed elements. This analytical technique removes the restriction of the application of failure criteria to limited applied stress ratios. Based on the model, a computer code is developed that simulates cycle-by-cycle behaviour of composite laminates under fatigue loading.
As the input for the model, the material properties (residual stiffness, residual strength and fatigue life) of unidirectional AS4/3501-6 graphite/epoxy material are fully characterized under tension and compression, for fiber and matrix directions, and under in-plane and out-of-plane shear in static and fatigue loading conditions. An extensive experimental program, by using standard experimental techniques, is performed for this purpose. Some of the existing standard testing methods are necessarily modified and improved. To validate the generalized residual material property degradation technique, fatigue behaviour of a 30-degrees off-axis specimen under uniaxial fatigue loading is simulated. The results of an experimental program conducted on 30-degrees off-axis specimens under uniaxial fatigue show a very good correlation with the analytical results. To evaluate the progressive fatigue damage model, fatigue behaviour of pin/bolt-loaded composite laminates is simulated as a very complicated example. The model is validated by conducting an experimental program on pin/bolt-loaded composite laminates and by experimental results from other authors. The comparison between the analytical results and the experiments shows the successful simulation capability of the model.
Faulk, Joanna (Joanna E. ). "Composite materials in dynamic shipboard structural mounts." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68837.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 18).
The purpose of this thesis is to investigate the viability of replacing traditional metal structural and machinery mounts with padding made of composite material. The two types of padding or isolation materials are represented by steel and CFRP (carbon fiber reinforced polymer). Machinery and instruments in ships are often mounted for two main reasons: they create unwanted vibrations and they need to be isolated from shock and external vibration. In order to analyze this problem, the machinery or instrument plus its padding are modeled as a mass-spring-damper system. The results show that CFRP generally works better for vibration isolation, while steel works better for shock isolation.
by Joanna Faulk.
S.B.
Del, Pozo León Freddy G. "Coating engineering of composite materials for organic field-effect transistors." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284993.
Full textThis thesis describes the development of a technology to deposit thin films of insulating polymers and composite materials for applications in organic field-effect transistors (OFETs). Composite materials are comprised of a semiconductor and an insulator. The insulator is the binder and the semiconductor the active material. The active materials are either polymers or small molecules. Binders are styrenes, methacrylates or combinations of both. In order to first demonstrate the capabilities of the technology developed, namely Bar Assisted Meniscus Sheering (BAMs), thin films of polystyrene on Si/SiOx were deposited, typical thicknesses in the range of 50 to 80 nm were found, also RMS values in the range of 0.5 – 0.6 nm were found as well, and confirms very smooth films with tentative application as dielectrics. Poly-(3-hexylthiophene) (P3HT) is widely used is organic field-effect transistors. Composite materials comprised of P3HT and polystyrene were tested. OFETs fabricated based on composites which only use a 10 % of the active material exhibited a mobility of 0.1 cm2V-1s-1 such value match the maximum mobility value reported in literature to-date for pure P3HT. It is important to highlight that all OFETs fabricated by BAMS using based on the composites have threshold voltages around zero volts despite the fact that all fabrication and characterization were carried out in air. Polymeric semiconductors plays a very important role inside organic semiconductors, due to their advantage the processability. On the other hand, small-molecules lacks processability but in general possess high mobility than polymeric semiconductors. So, composite materials were devised to add processability to small-molecules, but trying to maintain high mobility. TTF derivatives, dibenzo - tetharthiafulvalene (DB-TTF), dithiophene - tetrathiafulvalene (DT-TTF) and bis(ethylenethio) – tetrathiafulvalene (BET-TTF) were the three small-molecules investigated. First, thermally evaporated films of pure DB-TTF and BET-TTF were investigated and their stability in air assessed, found that both are extremely unstable under the presence of oxygen and water even at ppm levels. The inclusion of BAMs have been proven effective in order to produce OFETs based on composites -- insulator binder and TTF-derivatives. First, poly−(−μετηψλ styrene) PAMS, and DB-TTF composites were investigated. OFETs fabricated shows stability in air and text-book like output and transfer characteristics, all with acceptable mobilities in the range of 10-3 cm2V-1s-1. Also OFETs based on isotactic polystyrene and DB-TTF were investigated reporting mobilities in the range of 10-2 cm2V-1s-1. Further, an screening of compositions for composites were carried out, varying blend ratios and the molecular weight of the polystyrene. The screening was carried out using bottom and top contact devices. The screening revealed that the best performing blend is DB-TTF and polystyrene for GPC 3000 (PS3000) in a ratio 1:2. After an in-depth study have been conducted found average mobility for such blend in the range of 10-1 cm2V-1s-1 and threshold voltages close to zero volts were also found, however is worth to highlight that mobility values as high as 0.7 cm2V-1s-1 were also found. Temperature measurements have been carried out and revealed that the charge transport found for these devices (DB-TTF:PS3000 1:2) point towards a temperature independent mobility, that to the best of our knowledge to-date is the first organic solution processed semiconductor that exhibits such behavior. Also when devices construct inverters gains as high as 300 were found, which also to-date and to the best of our knowledge is the highest gain value for organic based inverters.
Eskandari, H. (Hamid). "Rate-dependent continuum damage modeling of composite materials." Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=35696.
Full textTo determine the material parameters used in the model and to validate the model, a set of material and structural tests, testing a laminate containing a hole, were performed under static and dynamic loading conditions. A tensile version of the Hopkinson bar, suitable for testing of laminated composite materials, is developed to perform dynamic tests. A pulse duration of 200--250 microseconds and peak strain rates of up to 350 s--1 are obtained. Tests performed on a quasi-isotropic lay-up of graphite-epoxy show good repeatability. Comparison of Hopkinson bar tests results with results of tests performed at a quasi-static rate on a hydraulic test machine shows the rate-dependency of this lay-up of graphite-epoxy. Tensile strength and fracture strain are found to be higher for dynamic testing.
The model was evaluated for structural analysis, by implementing the model into a finite element code and analysing a laminate containing a hole. Two techniques are investigated in evaluating the model for structural analysis: stress limiter and mesh limiter. The model is found to be objective with respect to the mesh size. The predicted failure loads using both techniques conform well to the experiments and to the results obtained using one of the existing models.
Lesko, John James. "Indentation testing of composite materials : a novel approach to measuring interfacial characteristics and engineering properties /." This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-03172010-020329/.
Full textFenwick, Neal. "Recycling of composite materials using fluidised bed processes." Thesis, University of Nottingham, 1996. http://eprints.nottingham.ac.uk/12837/.
Full textZafeiropoulos, Nikolaos Evangelos. "Engineering and characterisation of the interface in flax propylene composite materials." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271655.
Full textForoutan, Rana. "High strain rate behaviour of woven composite materials." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92165.
Full textRbehat, Diana Suleiman Eid. "Development of pyrolysis models of composite materials for fire safety engineering." Thesis, University of Central Lancashire, 2015. http://clok.uclan.ac.uk/11805/.
Full textSerra, Tiziano. "Development of 3D-printed biodegradable composite scaffolds for tissue engineering applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/145684.
Full textLiu, Ning. "Composite materials impact damage detection using neural networks." Thesis, Aston University, 2002. http://publications.aston.ac.uk/11838/.
Full textMegharief, Jihad Dokali. "Behavior of composite castellated beams." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37273.pdf.
Full textPathak, Sayali V. "Enhanced Heat Transfer in Composite Materials." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1368105955.
Full textKo, Ying-hsiang. "The growth of metal particles in porous glass and the dielectric and optical properties of the composites /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487267024996737.
Full textEmeric, Pierre Richard. "Characterization of composite materials from temporal thermal response." W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539623868.
Full textMaligno, Angelo Rosario. "Finite element investigations on the microstructure of composite materials." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/10476/.
Full textHart, Shandon D. (Shandon Dee) 1978. "Multilayer composite photonic bandgap fibers." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32264.
Full textIncludes bibliographical references (leaves 120-126).
Materials and fabrication techniques are developed that lead to the successful fabrication of multilayer composite photonic bandgap fibers. The pertinent background in electromagnetic theory of multilayer dielectric mirrors and optical fibers is surveyed. Materials properties constraints are outlined, with emphasis on those constraints related to processing strategy and ultimate target length scale. Interfacial energy is measured in a chalcogenide glass / organic polymer composite system selected for fiber fabrication. A classical capillary instability model is employed to predict the feasibility of fiber fabrication based on material properties; from this model, quantitative materials selection criteria related to ultimate length scale are derived. Good agreement is found between the calculated materials selection criteria and controlled fiber experiments. The fiber fabrication techniques are described and analyzed; chalcogenide film deposition is characterized using Raman and electron microprobe spectroscopy, and heat transfer during fiber drawing is modeled using a commercial finite-element software package. The developed materials and fabrication processes are used to perform two case studies in novel photonic bandgap fiber fabrication; the first case study deals with externally reflecting omnidirectional 'mirror-fibers', while the second deals with hollow- core light transmitting fibers. The reflecting mirror-fibers consist of a tough polymer core surrounded by multiple coaxial submicron-thick layers of a high-refractive-index glass and a low-index polymer; these layers reflect external light from all incident angles and polarizations in the mid-IR range.
(cont.) Large directional photonic gaps and high reflection efficiencies that are comparable to the best metallic reflectors were measured. In the second case study, the light-transmitting fibers consist of a hollow air core surrounded by multiple alternating layers of the same materials, resulting in large infrared photonic bandgaps. Optical energy is strongly confined in the hollow fiber core, enabling light guidance in the fundamental and up to fourth-order gaps. These gaps are placed at selectable wavelengths within a large selection range, from 0.75 to 10.6 m. Tens of meters of hollow photonic bandgap fibers designed for 10.6 pgm radiation transmission are fabricated. We demonstrate transmission of carbon dioxide (CO2) laser light with high power-density through more than 4 meters of hollow fiber and measure the losses to be less than 1.0 dB/m at 10.6 microns. Thus, fiber waveguide losses are suppressed by orders of magnitude compared to the intrinsic fiber material losses.
by Shandon D. Hart.
Ph.D.
Souvignier, Chad William. "Solid freeform fabrication of highly loaded composite materials." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284190.
Full textThummalapalli, Vimal Kumar. "Biomimetic Composite T-Joints." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1323547304.
Full textTompson, Carl G. "Radiographic determination of the lay-up influence on fatigue damage development under bearing/bypass conditions." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29689.
Full textCommittee Chair: Dr. Steve Johnson; Committee Member: Dr. Andrew Makeev; Committee Member: Kyriaki Kalaitzidou. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Mills, John Brean. "Composite materials for microwave frequency agile planar devices." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:213e4e33-2816-470f-bb8d-9b36d50e1254.
Full textLamm, Adrienne Valerie. "Dislocation Modeling of Mechanical Properties of Nanolayered Composite Materials." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1363615565.
Full textBédard, Matthieu. "Optically addressable, integrative composite polymer microcapsules." Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/395.
Full textOlivetti, Elsa A. "Composite cathodes for lithium rechargeable batteries." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39554.
Full textIncludes bibliographical references.
The utility of incorporating continuous, nanoscale vanadium oxide phases within preferred domains of self-organizing copolymers was investigated towards the fabrication of composite, nanoarchitectured electrode materials for solid-state rechargeable batteries. In situ growth of cathodic phases within ion-conducting copolymer domains was explored as a means to control morphology and to increase the surface-area-to-volume ratio, thereby increasing the specific electrode area for faradaic reactions and decreasing ion diffusion distances within the electrode-active material. Copolymers of microphase-separating rubbery block and graft copolymers, previously developed as solid electrolytes, provide a matrix for directing the synthesis of an inorganic battery-active phase. The copolymers include poly[(oxyethylene)9 methacrylate]-block-poly(butyl methacrylate) (POEM-b-PBMA) with a domain periodicity of -35 nm made by atom transfer radical polymerization, and poly[(oxyethylene)9 methacrylate]-graft-poly(dimethyl siloxane) (POEM-g-PDMS) with a domain periodicity of-17 nm made by free radical polymerization. The resulting microphase-separated polymer is a structure of alternating hydrophilic (Li-ion conducting) and hydrophobic regions.
(cont.) Sol-gel chemistry involving a vanadium alkoxide precursor enabled the in situ growth of cathode-active vanadium oxide within the continuous ion-conducting POEM domains of the microphase-separated copolymers. Resulting films, termed POEM-b-PBMA/VOx and POEM-g-PDMS/VOx, were freestanding and mechanically flexible. Small angle x-ray scattering and transmission electron microscopy revealed the nanoscale morphology of the composite and confirmed the spatially-selective incorporation of up to 34 wt% VO, in POEM-b-PBMA and 31 wt% in POEM-g-PDMS. Electronically conductive components, necessary for wiring of the lithium-active vanadium oxide domains to the external circuit, were added through a variety of methods. Dispersions of acid-treated and cryo-ground carbon black within POEM-b-PBMA/VOx enabled the cycling of this material as a cathode. Reversible capacities of-~ 40 mAh/g were measured for batteries fitted with a polymer electrolyte doped with LiCF3SO3 and a lithium foil anode. Electrolyte thickness studies indicated battery performance was limited by the ionic conductivity of the solid electrolyte.
(cont.) Using liquid electrolyte resulted in improved capacity (at higher currents) over conventional composite cathodes made from sol-gel derived vanadium oxide without the polymer matrix. The vanadium oxide nanoarchitecture was preserved upon removal of the polymer by heat treatment. The resulting templated vanadium oxide, when repotted with carbon black and binder, exhibited improved capacity at high current over non-templated vanadium oxide cathodes.
by Elsa A. Olivetti.
Ph.D.
Vasiliu, Andrei. "Masonry columns confined by composite materials: Experimental investigation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7359/.
Full textSujidkul, Thanyawalai. "Multi-Physics Modeling of Multifunctional Composite Materials for Damage Detection." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1381874092.
Full textDutta, Monojit. "Residual stress measurement in engineering materials and structures using neutron diffraction." Thesis, Open University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301945.
Full textEmery, Trystan Ross. "Identification of damage in composite materials using thermoelastic stress analysis." Thesis, University of Southampton, 2007. https://eprints.soton.ac.uk/51292/.
Full textHossain, Kazi Md Zakir. "Extension of the use of cellulose nanowhiskers in composite materials." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/13910/.
Full textPierce, Matthew Ryan. "Microvascular Heat Transfer Analysis in Carbon Fiber Composite Materials." University of Dayton / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1280944914.
Full textLai, Yun. "The study of band gap engineering for phononic crystals and gap structures in phononic quasicrystals /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202005%20LAI.
Full textTang, Tian. "Variational Asymptotic Micromechanics Modeling of Composite Materials." DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/72.
Full textLee, Bok W. "Application of variational-asymptotical method to laminated composite plates." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/20695.
Full textSanga, Essau C. M. "Microwave assisted drying of composite materials : modelling and experimental validation." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38271.
Full textIn the second part of the study a mathematical model was developed to describe heat and mass transfer of a model material under microwave fields. The dynamic temperature and moisture profiles of cylindrical composite samples subjected to microwave and convective energy were determined and validated at microwave power density levels of 0.20 W/g, 0.3 W/g and 0.4 W/g based on initial weight of the sample. Model results were compared with experimental data and found to agree within 1.0--2.6%. Predicted temperature profiles at selected locations within the model material were also showed a good agreement with experimental data. However, a significant discrepancy between the numerical and experimental temperature results occurred after t > 30 minutes. This might have been due to localized overheating, or to mathematical model overestimation.
Lastly, a quality evaluation of the dried samples was also performed. Quality attributes evaluated were surface color, shrinkage and rehydration capacity. Samples dried as a special case of biological material were of better quality when compared to other samples.
Lemieux, Stéphane. "Thermal expansion study of particulate reinforced aluminum matrix composite materials." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20505.
Full textBekiaris, Nikolaos 1970. "Selection of composite materials for the construction of large ships." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/88344.
Full textKuryak, Chris A. (Chris Adam). "Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79270.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 65).
Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and is easily scalable. With the majority of the unused energy in the United States being wasted in the form of heat and the recent mandates to reduce greenhouse gas emissions, thermoelectric devices could play an important role in our energy future by recovering this wasted heat and increasing the efficiency of energy production. However, low conversion efficiencies and the high cost of crystalline thermoelectric materials have restricted their implementation into modem society. To combat these issues, composite materials that use conductive polymers have been under investigation due to their low cost, manufacturability, and malleability. These new composite materials could lead to cheaper thermoelectric devices and even introduce the technology to new application areas. Unfortunately, polymer composites have been plagued by low operating efficiencies due to their low Seebeck coefficient. In this research, we show an enhanced Seebeck coefficient at the interface of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) spin coated onto silicon substrates. The maximum Seebeck coefficient achieved was 473 uV/K with a PEDOT:PSS thickness of 7.75 nm. Furthermore, the power factor of this interface was optimized with a 15.25 nm PEDOT:PSS thickness to a value of 1.24 uV/K2-cm, which is an order of magnitude larger than PEDOT:PSS itself. The effect of PEDOT:PSS thickness and silicon thickness on the thermoelectric properties is also discussed. Continuing research into this area will attempt to enhance the power factor even further by investigating better sample preparation techniques that avoid silicon surface oxidation, as well as creating a flexible composite material of PEDOT:PSS with silicon nanowires..
by Chris A. Kuryak.
S.M.
Hager, Elizabeth A. (Elizabeth Ann). "Composite gelatin delivery system for bone regeneration." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32844.
Full textIncludes bibliographical references (p. 38-39).
In this thesis, the chemical/mechanical properties and biocompatibility of gelatin were investigated to produce a gelatin scaffold for the release of bone morphogenetic proteins (BMPs) from composite particles. This delivery system, designed to regenerate bone, holds much promise as an alternative to bone grafts. The chemical properties of gelatin were examined through zeta potential measurements, swelling studies, optical microscopy, environmental scanning electron microscopy (ESEM), and collagenase degradation. Compressive tests and mercury porosimetry were performed to study the mechanical and structural properties of the scaffold. The biocompatibility of the scaffold was determined through cell optical imaging and DNA quantification studies. Based on findings of this research, the material choices were made and the synthesis method for the gelatin scaffold was developed. Gelatin A, 300B, derived from bovine collagen, with an isoelectric point of [approx.] 9, was selected. Crosslinking was accomplished by reacting 10 w/v% glutaraldehyde with 10 w/v% gelatin solution. The most effective crosslinking condition was found to be 5 hours at room temperature. Glycine rinses were conducted to cap any non- reacted (toxic) aldehyde groups, and the necessary length of time was found to be at least 48 hours at 37⁰C. Finally, based on pore size distribution and mechanical stability, an optimal lyophilization method was developed with initial freezing at -20⁰C for 1 day, followed by lyophilization of the scaffold for 1-2 days. In terms of mechanical properties of the gelatin and amount of protein delivered, the most effective loading of poly(lactic-co-glycolic acid)/apatite/protein composite particles was found to be 10% of the mass of the gelatin.
by Elizabeth A. Hager.
S.B.
Guazzone, Federico. "Engineering of substrate surface for the synthesis of ultra-thin composite Pd and Pd-Cu membranes for H₂ separation." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-011006-123013/.
Full textLiu, Jian. "Fabrication of composite materials with addition of graphene platelets." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5484/.
Full textDow, Douglas Donald. "Finite Element and Experimental Analyses of Hybrid Joints Subjected to Fully Reversed Flexure Fatigue Loading." Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/DowDD2008.pdf.
Full text