Dissertations / Theses on the topic 'Composite polymer particles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Composite polymer particles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Winchester, Stuart. "Composite modification by preformed polymer particles." Thesis, University of Surrey, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267411.
Full textLu, Yan. "Polypyrrole-containing Composite Particles: Preparation, Characterization and Application." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1109235925474-80822.
Full textWang, Nan. "Preparation and morphological study of composite nano-particles made of homopolymers." Thesis, Kingston, Ont. : [s.n.], 2008. http://hdl.handle.net/1974/1374.
Full textLu, Yan. "Polypyrrole containing composite particles: preparation, characterization and application." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974241083.
Full textImberg, Anna. "On Phase Behaviours in Lipid/Polymer/Solvent/Water Systems and their Application for Formation of Lipid/Polymer Composite Particles." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributöt], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3795.
Full textOtto, Christian [Verfasser], and Volker [Akademischer Betreuer] Abetz. "Electrically Conductive Composite Materials from Carbon Nanotube Decorated Polymer Powder Particles / Christian Otto ; Betreuer: Volker Abetz." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1150183748/34.
Full textStevanovic, Dejan, and dejan@mso anu edu au. "Delamination Properties of a Vinyl-Ester/Glass Fibre Composite Toughened by Particulate-Modified Interlayers." The Australian National University. Faculty of Engineering and Information Technology, 2002. http://thesis.anu.edu.au./public/adt-ANU20030421.212730.
Full textLuo, Hongze. "Polymer/nano-organic composite proton exchange membranes for direct methanol fuel cell application." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Full textVisaveliya, Nikunjkumar [Verfasser], Michael [Akademischer Betreuer] Köhler, Uwe [Akademischer Betreuer] Ritter, and Christophe [Akademischer Betreuer] Serra. "Microfluidic Synthesis and Assembly of Multi-Scale Polymer Composite Particles Towards Sensoric and Labeling Applications / Nikunjkumar Visaveliya. Betreuer: Michael Köhler. Gutachter: Uwe Ritter ; Christophe Serra." Ilmenau : Universitätsbibliothek Ilmenau, 2016. http://d-nb.info/1081935375/34.
Full textVisaveliya, Nikunjkumar Verfasser], Michael [Akademischer Betreuer] [Köhler, Uwe [Akademischer Betreuer] Ritter, and Christophe [Akademischer Betreuer] Serra. "Microfluidic Synthesis and Assembly of Multi-Scale Polymer Composite Particles Towards Sensoric and Labeling Applications / Nikunjkumar Visaveliya. Betreuer: Michael Köhler. Gutachter: Uwe Ritter ; Christophe Serra." Ilmenau : Universitätsbibliothek Ilmenau, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2015000547.
Full textKanelidis, Ioannis [Verfasser]. "Polymer-Nanocrystal Composites: Copolymers, Polymeric Particles and Hybrid Systems / Ioannis Kanelidis." Wuppertal : Universitätsbibliothek Wuppertal, 2012. http://d-nb.info/1022590464/34.
Full textAiraud, Cédric. "Couplage ROMP et ATRP en milieu dispersé aqueux : préparation et étude morphologique de particules polymères composites." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13698/document.
Full textSo as to broaden the scope of their applications in paints, coatings and impact-resistant plastics, many investigations have been dedicated to the preparation of nanostructured colloids over the past decades. Original morphologies including core-shell, hemispherical and complex occluded structures (raspberry-like, golf ball-like, octopus-like) can now be readily prepared. This work proposes a new straightforward one-pot, one-step, one-catalyst strategy to prepare polymer composite particles based on the simultaneous combination of two mechanistically distinct polymerizations in aqueous dispersed media. Norbornene (NB) and methyl methacrylate (MMA) were converted via Ring-Opening Metathesis Polymerization (ROMP) and Atom-Transfer Radical Polymerization (ATRP), respectively. Two original routes, designed to ensure simultaneous ROMP and ATRP, respectively under mini- and microemulsion conditions, are proposed. Both are successively reviewed on chemical and colloidal levels. Specific attention is paid to the morphologies of the prepared particles
Warner, Nathaniel A. "Investigation of the Effect of Particle Size and Particle Loading on Thermal Conductivity and Dielectric Strength of Thermoset Polymers." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849629/.
Full textEroglu, Esra. "Synthesis And Characterization Of New Conducting Polymer- Nano Particle Composites." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615631/index.pdf.
Full text2-(9,9-dihexyl-2-(thiophen-2-yl)-9H-fluoren-7-yl)thiophene (TFT) and 5-(9,9-dihexyl-2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluoren-7-yl)-2,3dihydrothieno[3,4b ][1,4] dioxine (EFE) were synthesized on the basis of donor-acceptor-donor approach and their electrochemical polymerization were achieved via potential cycling. Optical and electrochemical properties of their corresponding polymers, poly(2-(9,9-dihexyl-2-(thiophen-2-yl)-9H-fluoren-7-yl)thiophene) PTFT, and poly(5-(9,9-dihexyl-2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluoren-7-yl)-2,3dihydrothieno[3,4b ][1,4] dioxine) PEFE, were investigated and it was found that polymer films exhibited quasi-reversible redox behavior (Epox= 1.10 V for PTFT, Epox = 0.70 V and 1.00 V for PEFE) accompanied with a reversible electrochromic behavior, yellow to dark green for PTFT, yellow to parliament blue for PEFE. Their band gap values (Eg) were found to be 2.36 eV and 2.26 eV for PTFT and PEFE, respectively. Furthermore, gold nanoparticles (AuNP) were prepared and their interaction with polymer films, PTFT and PEFE, were investigated using spectroscopic techniques. The fluorescence properties of the polymers and their composites, prepared by the interaction of AuNP with polymers, were also investigated.
Liu, Jing. "Carbon nanotube/polymer composites and novel micro- and nano-structured electrospun polymer materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22673.
Full textCommittee Chair: Kumar, Satish; Committee Member: Carr, Wallace; Committee Member: Graham, Samuel; Committee Member: Griffin, Anselm; Committee Member: Yao, Donggang.
Rivière, Lisa. "Analyse des mécanismes de conduction thermique dans les composites structuraux PEEK/particules submicroniques d'argent." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30200/document.
Full textThis work deals with the optimization of thermal transport mechanisms in polymer-based composites. It has been demonstrated that the introduction of conductive particles in a polymer matrix contributes to thermal conductivity enhancement. At macroscopic scale, resistive mechanisms are ruled by a complex set of parameters: constituents' nature, dispersed phase morphology and matrix/particles interactions. The influence of these parameters on PEEK/silver submicron particles composites has been studied. Experimental data have been compared to models to analyse the structural origin of thermal conductivity evolution. A global approach to study heat transport mechanisms imply the multiscale understanding of capacitive and diffusive contributions. Heat capacity, thermal diffusivity and thermal conductivity have been studied as a function of particles content and temperature
Yang, Jingting. "Carbon Nanotubes Reinforced Composites for Wind Turbine Blades." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1315410407.
Full textKeum, Dong-ki. "Organic-inorganic composites of CaCO3 particles by organic polymer templates." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147661.
Full textLye, J. E. "A study of the internal particle morphology of composite polymer latices." Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381426.
Full textTenery, Daeri. "IMAGING AND SPECTROSCOPY OF CONDUCTING POLYMER-FULLERENE COMPOSITE MATERIALS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3241.
Full textPh.D.
Department of Chemistry
Sciences
Chemistry PhD
Leng, Tianyang. "Cellulose Nanocrystals: Particle Size Distribution and Dispersion in Polymer Composites." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/34073.
Full textBarkoula, Nektaria-Marianthi [Verfasser], and Jósef [Akademischer Betreuer] Karger-Kocsis. "Solid Particle Erosion Behaviour of Polymers and Polymeric Composites / Nektaria-Marianthi Barkoula ; Betreuer: Jósef Karger-Kocsis." Kaiserslautern : Technische Universität Kaiserslautern, 2019. http://d-nb.info/1184879818/34.
Full textAronow, Roger Lockwood. "Toughening mechanisms in composites of miscible polymer blends with rigid filler particles." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35520.
Full textVita.
Includes bibliographical references (leaves 97-98).
Fillers are often added to polymers improve stiffness at the cost of reduced toughness, but this tradeoff is not universal. Well-dispersed microscopic particles have been shown to improve toughness and stiffness simultaneously in some cases. The effect depends on interparticle distance as well as interfacial adhesion. This type of toughening has been more successful in semicrystalline than in amorphous systems. An amorphous polymer blend was chosen to elucidate the effect of matrix properties on the toughening mechanism. The ternary blend of PMMA, PVC, and DOP (a common plasticizer) was characterized using TEM, and was found to be miscible over much of the PVC-rich domain. The blend Tg's fit well to an empirical model, which was used to predict a constant-Tg ([approx.] 40°C) blend series. Mechanical testing showed a wide, systematic variation in properties among these blends, although all were brittle in tension. The blend 90% PVC / 10% DOP was mixed with barium sulfate filler and evaluated for toughness in slow tension. In general, the composites showed decreasing toughness with increasing filler content. However, several specimens at 5 vol% filler exhibited a large increase in ductility and toughness ([approx.] 19-fold).
(cont.) SEM examination of tough specimens revealed several important findings: (1) Filler is present both as micron-scale agglomerates and as well dispersed particles. (2) Well-dispersed particles remain bonded to the matrix even for large deformations. (3) Filler agglomerates are prone to debonding and internal fracture, creating void space and enabling deformation. Base blend properties significantly affect the response to filler. The blend 8% PMMA / 80% PVC / 12% DOP showed small increases in ductility for 5 and 10 vol% filler, with the best result being a 10 vol% specimen showing a 6-fold toughness increase over the neat-blend average. This specimen showed similar microscopic behavior to the 90/10 blend, i.e. agglomerate debonding and fracture, but to a lesser degree. The blend 16% PMMA / 70% PVC / 14% DOP, showed no significant toughening. Also investigated were high-Tg ([approx.] 70°C) blends, which were brittle and became weaker with filler, and low-Tg ([approx.] 30°C) blends, which were intrinsically ductile and were not toughened by filler.
by Roger Lockwood Aronow.
Ph.D.
Zhu, Yingdan. "Characterisation of Particle Dispersion in Different Polymeric Composite Systems." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520225.
Full textWoods, Courtney G. "Role of nano-particles on crystalline orientation in polypropylene/clay nanocomposite films." Thesis, Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04072004-180242/unrestricted/woods%5Fcourtney%5Fg%5F200312%5Fms.pdf.
Full textDavis, James William. "Development of a Laponite Pluronic Composite for Foaming Applications." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc271798/.
Full textElmkharram, Hesham Moh A. "Mechanically Processed Alumina Reinforced Ultra-high Molecular Weight Polyethylene (UHMWPE) Matrix Composites." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/31522.
Full textMaster of Science
Peng, Peng. "PREPARATION AND CHARACTERIZATION OF POLYMER/FERROELECTRIC CERAMIC PARTICLE COMPOSITES FOR ELECTROACTIVE ACTUATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1443539252.
Full textRoosz, Nicolas. "Elaboration de particules composites silice-polyaniline en vue d'applications environnementales." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD083/document.
Full textOrganic/inorganic hybrid materials have received much attention in recent years such as in the field of nano-materials. Indeed, these materials possess unique physical and chemical properties due to the synergistic effect of both components. In particular, silica nanoparticles (SiO2) present interesting properties, such as good chemical and thermal stabilities. They can be prepared in different size and can be easily chemically modified. Intrinsically conducting polymers such as polythiophene and polyaniline (PANI) can exist in different oxidation states and respond to external stimuli by changing one of their characteristics (color, conductivity, …). PANI is a non-toxic, thermally stable and low cost polymer with relatively high conductivity that has been used as antistatic coating, electrode materials, corrosion inhibitor and active layer of sensors. Since the discovery of conducting polymer in 1977, several works have been carried out on the preparation, characterization and applications of polymeric films build on various surfaces like silica. Among the different kinds of composites that exist, inorganic-polymer core-shell nanoparticles are more promising candidates. In this study, we decided to work on the synthesis of core@shell hybrid compounds based on PANI shells and silica nanoparticles cores.In the literature, using similar experimental protocols, two morphologies have been obtained after chemical polymerization of aniline in the presence of silica particles: core@shell and raspberry (inverted structure with PANI as core). We thus decided to reinvestigate the synthesis of PANI in the presence of silica particles. For this, we first synthesized silica particles with different sizes by Stöber process. We then performed the chemical polymerization of aniline in the presence of these naked silica particles under different conditions: temperature, concentration of reactive. However, in all cases, we never managed to obtain core@shell structures. Finally, we succeed in developing a method to prepare these core@shell particles which relies on the functionalization of the SiO2 by alkoxysilanes followed by the polymerization of aniline at room temperature. A series of core-shell particles with tunable PANI thickness has been prepared by this method. The last part of this work deals with the first tests that have been carried out in order to use these composites SiO2@PANi for environmental applications. Two applications have been considered, the adsorption of metals for the particle appearance and the detection of gas for the conductive capacities of the PANI
Tsai, Liren. "SHOCK WAVE STRUCTURE AND SPALL STRENGTH OF LAYERED HETEROGENEOUS GLASS/POLYMER COMPOSITE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1138377998.
Full textGentieu, Timothée. "Development of filled polymers for the replacement of ceramics used as ballistic protection layer." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0419.
Full textCeramics have extensively been used for ballistic protection in the last decades. The combination of their mechanical properties makes them very interesting for armouring. Indeed, they exhibit a high hardness, large compression strength, high stiffness and low density. Ceramic armouring plates are commonly manufactured through a sintering process, where ceramic powders are pressed at high temperatures. This manufacturing process tends to limit the size and shape of components and imparts high costs. On the other hand, moulding using a polymer matrix composite provides an alternative process for developing lower cost parts whilst accommodating increased complexity of geometry and size.However, the mechanical behaviour of such a material is not completely known and depends on multiple design parameters: the mechanical properties of the phases, their volume fraction, the size and spatial distributions of the particles, and the adhesion between the components. The objective of the thesis is to evaluate the influence of the main morphological parameters on the overall mechanical properties, emphasising the influence of the particle/matrix adhesion. To do so, both numerical and experimental multiscale analyses of the material under quasi-static and dynamic loadings were carried out.More precisely, static and dynamic properties of the particle-reinforced composite have been determined for different combinations of the design variables. In particular, attention has been dedicated to the particle/matrix decohesion mechanism. Cohesive zone models (CZM) and Finite Fracture Mechanics (FFM) approaches were used to model this phenomenon and a strong effect of the particle size on debonding was observed
Huang, Shu-Chen. "Controlled mineralization of organic-inorganic calcium carbonate composite particles by use of water-soluble polymers." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136308.
Full textAlfinaikh, Reem. "Preparation and Characterization of Poly(Ethylene Oxide)(MW 35K and 100K)/ Silica Nanoparticle Composites." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2017. http://digitalcommons.auctr.edu/cauetds/109.
Full textSeifert, Julian [Verfasser]. "Particle-Matrix Interactions in Hybrid Magnetic Polymer Composites with Varying Network Architecture / Julian Seifert." München : Verlag Dr. Hut, 2021. http://d-nb.info/1240540116/34.
Full textMURUGESAN, SURESH. "IN SITU PREPARATION AND STRUCTURE - PROPERTY STUDIES OF FILLER PARTICLES IN POLY(DIMETHYLSILOXANE) ELASTOMERS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1059393661.
Full textPaydavosi, Sarah. "Study of organic molecules and nano-particle/polymer composites for flash memory and switch applications." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75644.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 205-218).
Organic materials exhibit fascinating optical and electronic properties which motivate their hybridization with traditional silicon-based electronics in order to achieve novel functionalities and address scaling challenges of these devices. The application of organic molecules and nano-particle/polymer composites for flash memory and switch applications is studied in this dissertation. Facilitating data storage on individual small molecules as the approach the limits in miniaturization for ultra-high density and low power consumption media may enable orders of magnitude increase in data storage capabilities. A floating gate consisting of a thin film of molecules would provide the advantage of a uniform set of identical nano-structured charge storage elements with high molecular area densities which can result in a several-fold higher density of charge-storage sites as compared to quantum dot (QD) memory and even SONOS devices. Additionally, the discrete charge storage in such nano-segmented floating gate designs limits the impact of any tunnel oxide defects to the charge stored in the proximity of the defect site. The charge retention properties of molecular films was investigated in this dissertation by injecting charges via a biased conductive atomic force microscopy (AFM) tip into molecules comprising the thin films. The Kelvin force microscopy (KFM) results revealed minimal changes in the spatial extent of the charge trapping over time after initial injection. Fabricated memory capacitors show a device durability over 105 program/erase cycles and hysteresis window of up to 12.8 V, corresponding to stored charge densities as high as 5.4x 1013 cm-2, suggesting the potential use of organic molecules in high storage capacity memory cells. Also, these results demonstrate that charge storage properties of the molecular trapping layer can be engineered by rearranging molecules and their a-orbital overlaps via addition of dopant molecules. Finally, the design, fabrication, testing and evaluation of a MEMS switch that employs viscoelastic organic polymers doped with nano-particles as the active material is presented in this dissertation. The conductivity of the nano-composite changes 10,000-fold as it is mechanically compressed. In this demonstration the compressive squeeze is applied with electric actuation. Since squeezing initiates the switching behavior, the device is referred to as a "squitch". The squitch is essentially a new type of FET that is compatible with large area processing with printing or photolithography, on rigid or flexible substrates and can exhibit large on-to-off conduction ratio.
by Sarah Paydavosi.
Ph.D.
Zhang, Rui. "Polymeric Complexes and Composites for Aerospace and Biomedical Applications." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96565.
Full textPHD
Cenacchi, Pereira Ana Maria. "Synthèse de particules composites anisotropes polymère / inorganique par polymérisation RAFT en émulsion." Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01067453.
Full textSu, Ruo Qing. "New composite material based on silsesquioxane polymers and nanoporous particles for low-k [low-kappa] dielectric application." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972240519.
Full textChen, Jing. "Toughening epoxy polymers and carbon fibre composites with core-shell particles, block copolymers and silica nanoparticles." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/14261.
Full textYeh, Hsi-wei. "Investigation of Polymeric Composites for Controlled Drug Release." VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4971.
Full textBonner, Maxwell Scotland. "Characterization of composite broad band absorbing conjugated polymer nanoparticles using steady-state, time-resolve and single particle spectroscopy." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4741.
Full textID: 030646223; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 134-152).
Ph.D.
Doctorate
Chemistry
Sciences
Chemistry
Ehrenhofer, Adrian, and Thomas Wallmersperger. "Adjustable fluid and particle permeation through hydrogel composite membranes." Sage, 2017. https://tud.qucosa.de/id/qucosa%3A74231.
Full textChandrasekaran, Swetha [Verfasser], and Karl [Akademischer Betreuer] Schulte. "Development of nano-particle modified polymer matrices for improved fibre reinforced composites / Swetha Chandrasekaran. Betreuer: Karl Schulte." Hamburg-Harburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2014. http://d-nb.info/1059804107/34.
Full textChapel, Anthony. "Etude du comportement photochimique de revêtements composites polymère/particules luminescentes pour applications à l'éclairage éco-énergétique à base de LEDS. Impact du vieillissement sur les performances optiques." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22672/document.
Full textPhosphor-converted LEDs are emerging as an eco-friendly solution for the next generation lighting. Despite lifetimes claimed over 50 000h, a loss of the optical properties was noticed. This work focuses on the influence of photodegradation of the materials on the optical properties of the polymer/phosphor composite that is used to encapsulate the semiconductor chip. Luminescent composites were made from a polymer matrix (EVA or PMMA) and an inorganic phosphor: Y3BO6 :15% Eu3+. The evolution of physical, chemical and optical properties of these composites was investigated under irradiation in accelerated conditions (λ>300 nm) and in the use conditions of UV LED (λ=365 nm). The phosphor showed no pro-degrading effect on the photooxidation of the polymer. A loss of the optical properties of the composite was observed and ascribed to the photodegradation of the polymer in the case of the EVA matrix. The evolution of photometric parameters of the emitted light by the luminescent composite during photoaging can be attributed to the accumulation of photoproducts in films. However, for PMMA/phosphor composites, the chemical structure and optical properties of such composites are kept for accelerated photoaging time up to 4000h
Marquina, Edgar Alberto. "Use of Dynamic Mechanical Testing, WAXD and SEM Image Analysis to Study the Properties of Polypropylene/Calcium Carbonate Nanocomposites." University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1269363578.
Full textSchneider, Michael. "Renforcement de polymeres avec des particules composites de latex a base de caoutchouc naturel." Université Louis Pasteur (Strasbourg) (1971-2008), 1995. http://www.theses.fr/1995STR13216.
Full textLaisney, Jérôme. "Influence de l’environnement sur la commutation et la bistabilité thermique de micro- et de nanoparticules à transition de spin." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112002.
Full textSpin-transition compounds are a class of materials for which the spin-state switching of the metal center can be controlled by various stimuli (T, P, light irradiation,...) and produces dramatic changes of physical properties (magnetic, optical, structural or vibrational). With respect to the set of switchable materials, a number of spin-transition compounds exhibit at solid-state cooperative processes and thermal hysteresis loops (bistability), particularly suitable for information storage. One of the current technological challenges is to integrate in devices such potentially interesting materials without altering their properties. The goal of the research, recently developed by several teams, is to determine the smaller size of object in which an information can be stored, and thus to understand the effect of downsizing on cooperativity and bistability. Therefore, the objectives of the Ph-D thesis were (i) to synthesize spin-crossover nano- and microparticles from molecular materials that in the form of bulk undergo a first-order phase transition; (ii), to investigate the importance of particles size and matrix effects on the spin-transition process.After a first chapter in which the spin crossover materials are introduced, the second chapter describes the synthesis of particles of FeII(phen)2(NCX)2 (X = S, Se) and [FeIII(3-OMeSalRen)2]PF6 (R = Me, E) compounds. As the fast precipitation technique essentially suits for ionic compounds, its application to neutral ones like FeII(phen)2(NCX)2, has been made possible by an indirect syntheses based on the ligand extraction from soluble precursors and the control of nucleation and growth processes of neutral products via experimental parameters. New particles of [FeIII(3-OMeSalEen)2]PF6 and thin films containing them after their dispersion in a polymeric matrix (PVP) have been prepared. The study of these films with UV-vis and magnetic measurements has raised the issue of the impact of the polymeric matrix and processing on the spin transition properties of these particles.The second part of the manuscript focuses on the interaction between the spin-crossover particles and the dispersing medium. This interaction between microparticles of Fe(phen)2(NCS)2 and glassy matrices (Tg > T1/2, T1/2, being the transition temperature) may result in the observation of large hysteresis loops shifted towards lower temperatures. This bistability has been examined with the FORC (First-Order Reversal Curves) method, magnetic measurements and a theoretical model. This analysis has shown the existence of reversible components associated to the particles/matrix interactions and the change of volume of spin-crossover particles.In a third part, the study of matrix and size effect has been pursued with micro- and nanocrystals of [FeIII(3-OMeSalEen2]PF6 encapsulated in polymeric or molecular liquids which form glasses at sufficiently low temperature. The encapsulation in rigid glasses of high spin (T1/2 < Tg) or low spin (T1/2 > Tg) particles give rise to transitions shifted towards lower or higher temperature respectively, possibly with cooperativity and hysteresis. The reinforcement of cooperativity and the bistability observed in the second case have been accounted for by the effect of the mechanical stress exerted by the glassy matrix on the particle volume. In addition, it has been shown that a thermal treatment of matrices (quenching or annealing steps below or above the glass transition) results in the modulation of the matrix effects. Finally, in the last chapter, a few composites including compounds undergoing a spin transition close to room temperature have been shortly investigated in presence of dispersing matrices. The choice of the matrices characteristics (chemical nature, glass transition temperature) has allowed some of these effects to be observed
De, Rancourt Yoann. "Dispersion de charges d'oxydes de terres rares, Er2O3 et Pr6O11, dans une matrice polymère." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20202.
Full textThis thesis focuses on the incorporation of mineral fillers of erbium oxide, Er2O3, and praseodymium oxide, Pr6O11, in an elastomeric polymer matrix, in the context of an industrial project to replace the lead in radiation protection equipment. The actual purpose of this thesis was to improve the dispersion of the fillers in the matrix through chemical treatment processes of these particles. Various types of surface functionalization were used to compatibilize them with an organic matrix, in particular by grafting compounds such as phosphonic acids. Hence, several phosphonic acids have been successfully used for the functionalization of both types of fillers. The characterization of these functionalizations is an important part of this project. Innovative analysis techniques, both direct and indirect have been used for this purpose, namely Py-GC/MS to detect the chemical compounds anchored to the surface of the fillers, X-ray fluorescence and FTIR spectroscopy with a quantification target, but also a study of sedimentation kinetics of the fillers in an organic medium. Finally, composites were obtained by mixing the fillers, untreated and treated, with a polyurethane matrix. Tensile tests have clearly shown an improvement of mechanical properties for some of the composites, due to the functionalization of the fillers by phosphonic acids
Hölken, Iris [Verfasser]. "Mechanically stable and environmentally friendly polymer/particle composites for the application as low-fouling coating in the marine sector / Iris Hölken." Kiel : Universitätsbibliothek Kiel, 2016. http://d-nb.info/1115183621/34.
Full text