Academic literature on the topic 'Composite Sandwich Structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Composite Sandwich Structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Composite Sandwich Structures"

1

Kausar, Ayesha, Ishaq Ahmad, Sobia A. Rakha, M. H. Eisa, and Abdoulaye Diallo. "State-Of-The-Art of Sandwich Composite Structures: Manufacturing—to—High Performance Applications." Journal of Composites Science 7, no. 3 (March 7, 2023): 102. http://dx.doi.org/10.3390/jcs7030102.

Full text
Abstract:
This cutting-edge review highlights the fundamentals, design, and manufacturing strategies used for sandwich composites. Sandwich composite structures have the advantages of light weight, high strength, impact resistance, stability, and other superior features for advanced applications. In this regard, different core materials have been used in the sandwich composite structures, such as cellular polymer foam, metallic foam, honeycomb, balsa, tubular, and other core geometries. Among these, honeycomb sandwich composite materials have been effectively applied in space engineering, marine engineering, and construction applications. The foremost manufacturing techniques used for sandwiched composite structures include hand lay-up, press method, prepreg method, vacuum bagging/autoclave, vacuum assisted resin infusion, resin transfer molding, compression molding, pultrusion, three-dimensional (3D) printing, four-dimensional (4D) printing, etc. In advanced composite manufacturing, autoclave processes have been the method of choice for the aerospace industry due to less delamination between plies and easy control of thickness dimensions. Moreover, machining processes used for sandwich composites are discussed in this article. In addition to aerospace, the high-performance significance of sandwiched composite structures is covered mainly in relation to automobile engineering and energy absorption applications. The structure-, fabrication-, and application-related challenges and probable future research directions are also discussed in this article.
APA, Harvard, Vancouver, ISO, and other styles
2

Grünewald, Jonas, Patricia Parlevliet, and Volker Altstädt. "Manufacturing of thermoplastic composite sandwich structures." Journal of Thermoplastic Composite Materials 30, no. 4 (August 5, 2016): 437–64. http://dx.doi.org/10.1177/0892705715604681.

Full text
Abstract:
Composite sandwich structures show promising lightweight properties for the aviation industry. Nowadays time-consuming manufacturing methods still prevent an extensive application of composite sandwiches, which can be overcome by the use of thermoplastic polymers in skins and core. During manufacturing of thermoplastic composite (TPC) sandwich structures, the joining of skins and core is a critical step. Therefore, several skin–core joining methods have been under investigation and development in the published literature, which can be categorized into adhesive bonding or fusion bonding. Fusion bonding by means of vacuum moulding, compression moulding or in situ foaming shows great potential for joining sandwich skins and core. Although various phenomena such as core collapsing or skin deconsolidation challenge the processes. This article aims to present an overview of research that has been done in the area of manufacturing TPC sandwich structures and will serve as a baseline and aid for further research and development efforts.
APA, Harvard, Vancouver, ISO, and other styles
3

Ashraf, W., M. R. Ishak, M. Y. M. Zuhri, N. Yidris, and A. M. Ya’acob. "Experimental Investigation on the Mechanical Properties of a Sandwich Structure Made of Flax/Glass Hybrid Composite Facesheet and Honeycomb Core." International Journal of Polymer Science 2021 (March 10, 2021): 1–10. http://dx.doi.org/10.1155/2021/8855952.

Full text
Abstract:
This research is aimed at developing the sandwich structure with a hybrid composite facesheet and investigate its mechanical properties (tensile, edgewise compression, and flexural). The combination of renewable and synthetic materials appears to reduce the weight, cost, and environmental impact compared to pure synthetic materials. The hybrid composite facesheets were fabricated with different ratios and stacking sequence of flax and glass fibers. The nonhybrid flax and glass composite facesheet sandwich structures were fabricated for comparison. The overall mechanical performance of the sandwich structures was improved by increasing the glass fiber ratio in the hybrid composites. The experimental tensile properties of the hybrid facesheet and the edgewise compression strength and ultimate flexural facing stress of the hybrid composites sandwich structures were achieved higher when the results were normalized to the same fiber volume fraction of glass composite. The hybrid composite sandwich structure showed improved compression and flexural facing stress up to 68% and 75%, respectively, compared to nonhybrid flax composites. The hybrid composite using glass in the outer layer achieved the similar flexural stiffness of the nonhybrid glass composite with only a 6% higher thickness than the glass composite sandwich structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Emi Nor Ain Mohammad, Nurul, Aidah Jumahat, and Mohamad Fashan Ghazali. "Impact Properties of Aluminum Foam – Nanosilica Filled Basalt Fiber Reinforced Polymer Sandwich Composites." International Journal of Engineering & Technology 7, no. 3.11 (July 21, 2018): 77. http://dx.doi.org/10.14419/ijet.v7i3.11.15934.

Full text
Abstract:
This paper investigates the effect of nanosilica on impact and energy absorption properties of sandwich foam-fibre composites. The materials used in this study are closed-cell aluminum (Al) foam (as the core material) that is sandwiched in between nanomodified basalt fiber reinforced polymer (as the face-sheets). The face sheets were made of Basalt Fibre, nanosilica and epoxy polymer matrix. The sandwich composite structures are known to have the capability of resisting impact loads and good in absorbing energy. The objective of this paper is to determine the influence of closed-cell aluminum foam core and nanosilica filler on impact properties and fracture behavior of basalt fibre reinforced polymer (BFRP) sandwich composites when compared to the conventional glass fibre reinforced polymer (GFRP) sandwich composites. The drop impact tests were carried out to determine the energy absorbed, peak load and the force-deflection behaviour of the sandwich composite structure material. The results showed that the nanomodified BFRP-Al foam core sandwich panel exhibited promising energy absorption properties, corresponding to the highest specific energy absorption value observed. Also, the result indicates that the Aluminium Foam BFRP sandwich composite exhibited higher energy absorption when compared to the Aluminium foam GFRP sandwich composite.
APA, Harvard, Vancouver, ISO, and other styles
5

Sahu, Santosh Kumar, P. S. Rama Sreekanth, and S. V. Kota Reddy. "A Brief Review on Advanced Sandwich Structures with Customized Design Core and Composite Face Sheet." Polymers 14, no. 20 (October 11, 2022): 4267. http://dx.doi.org/10.3390/polym14204267.

Full text
Abstract:
Sandwich structures are a class of multifunctional high-performance structural composites that have the advantages of being lightweight, of a high strength-to-weight ratio, and of high specific energy absorption capabilities. The creative design of the core along with the apposite material selection for the fabrication of the face sheet and core are the two prerequisites with encouraging areas for further expedition towards the fabrication of advanced composite sandwich structures. The current review work focused on different types of core designs, such as truss, foam, corrugated, honeycomb, derivative, hybrid, hollow, hierarchical, gradient, folded, and smart core along with different composite materials accessible for face sheet fabrication, including fiber-reinforced composite, metal matrix composite, and polymer matrix composite are considered. The joining method plays a major role for the performance evolution of sandwich structures, which were also investigated. Further discussions are aligned to address major challenges in the fabrication of sandwich structures and further enlighten the future direction of the advanced composite sandwich structure. Finally, the work is summarized with a brief conclusion. This review article provides wider guidelines for researchers in designing and manufacturing next-generation lightweight multilayer core sandwich structures.
APA, Harvard, Vancouver, ISO, and other styles
6

Beznea, Elena Felicia, Ionel Chirica, Nicusor Baroiu, and Virgil Teodor. "Parametric Study of Experimental and Numerical Simulation of Sandwich Composite Structures Flexural Behaviour." Materiale Plastice 54, no. 4 (December 30, 2017): 682–88. http://dx.doi.org/10.37358/mp.17.4.4925.

Full text
Abstract:
Sandwich panels with composite/steel skin sheets and foam core are very often used as lightweight structures in automotive, maritime and aerospace applications due to their performances like high bending stiffness and strength and also lightweight. As an alternative to classical structural reinforced panels, the sandwich structures are justifying their use in various industrial fields, making these structures less complex, by eliminating the need for secondary stiffening. In the paper are presented three models of sandwich, steel-foam-steel, composite-foam-composite or steel-foam-composite structures, of different thicknesses, with functional use in various fields depending on necessities. The mechanical characteristics of the materials used in their manufacture have been determined. The panels have been subjected to various load cases in order to determine an optimal combination of weight and strength. At the same time, the numerical models used in the finite element analysis of the sandwich structures with specific elements for layered composites or sandwich (SHELL 4L and SOLID L) are presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Grünewald, Jonas, Tilman Orth, Patricia Parlevliet, and Volker Altstädt. "Modified foam cores for full thermoplastic composite sandwich structures." Journal of Sandwich Structures & Materials 21, no. 3 (June 22, 2017): 1150–66. http://dx.doi.org/10.1177/1099636217708741.

Full text
Abstract:
Full thermoplastic composite sandwich structures with a foam core offer the possibility to be manufactured by fusion bonding in significant shorter cycle times than thermoset-based sandwiches. However, the application of foam cores results in lower mechanical properties such as compression and shear strength compared to honeycomb cores, therefore foam-based sandwiches cannot compete with sandwich structures based on Aramid/phenolic honeycomb cores, the current state of the art. In order to improve the mechanical performance of foam core-based sandwiches while maintaining their advantages, concepts to reinforce the foams were developed in this study. By introducing rods either orthogonally or diagonally to the skin plane, which are fusion bonded to the skins during processing, the compression and shear properties can be improved by up to 1000% and 72%, respectively. Even when correcting for the weight increase, an improved specific compression strength could be achieved. And therefore, the pinning looks especially promising when only applied locally in highly loaded areas for example.
APA, Harvard, Vancouver, ISO, and other styles
8

Mataram, Agung, and Narwi Panggar Besi. "Effect of Thickness Layer of Kenaf Fibre Reinfoeced Fibre Glass, Against Impact of Hybrid Composite Sandwich with Core Sengon." Journal of Mechanical Science and Engineering 6, no. 1 (July 7, 2020): 013–17. http://dx.doi.org/10.36706/jmse.v6i1.30.

Full text
Abstract:
The purpose of this research is to know the impact strength of composite structures of sengon laut sawdust. Experimental results show that the impact toughness of sandwich composite will increase as the thickness of composite sandwich skin increases. The impact failure is due mostly to the shear failure of the core. Brittle specimen failure occurs on the sandwich composites structured with skin and core manufactured with the same thickness of 5 mm. This brittle sandwich composite has a flat cross section on both sides of the fault. The shear failure of the cores occurs in samples with 2 mm thick, 3 mm, 4 mm thick, and 10 mm thick core. In some samples, the shear failure of the cores is accompanied by cracks on the core so that the sandwich composite is broken in several parts. The highest value of absorption energy and the highest impact strength is found on thick composite sandwich variation of 10 mm thick with 4 mm thickness of 2,7860 J and 0,01032 J/mm2.
APA, Harvard, Vancouver, ISO, and other styles
9

Chun, Heoung Jae, and Hyun Su Shin. "Effect of Anisotropic Characteristics of Composite Skins on the Electromagnetic Wave Propagation in the Foam Core Sandwich Structures." International Journal of Modern Physics B 17, no. 08n09 (April 10, 2003): 1782–87. http://dx.doi.org/10.1142/s0217979203019666.

Full text
Abstract:
The propagation of electromagnetic waves in the foam core sandwich structures is highly affected by anisotropic permittivity and loss tangent of composite skins. Even though many investigations were focused on the propagation of electromagnetic waves in the composite materials in last several decades, little investigations were carried out to understand adequately the propagation of the electromagnetic waves in the foam core sandwich structures. In this study, the transmittance of the arbitrary linearly polarized incident TEM waves through the solid composite laminate with various stacking sequences and foam core sandwich structures with composite skins was calculated as functions of fiber orientation of composites and incident angle of the wave by the analytical model.
APA, Harvard, Vancouver, ISO, and other styles
10

Fergusson, Alexander D., Amit Puri, Andrew Morris, and John P. Dear. "Flexural Testing of Composite Sandwich Structures with Digital Speckle Photogrammetry." Applied Mechanics and Materials 5-6 (October 2006): 135–44. http://dx.doi.org/10.4028/www.scientific.net/amm.5-6.135.

Full text
Abstract:
Composite sandwich structures are finding increasingly widespread use in fields ranging from aerospace and wind turbines to sports applications such as skis and surfboards. The high specific stiffness that composite sandwich structures can provide lends them well to these applications. However, the operational environment of these structures is frequently aggressive and often results in damage during service. The extent and effect of damage incurred is an important factor in the design and maintenance of composite sandwich structures. Failure of an individual component can be catastrophic for the rest of the structure. The purpose of this investigation was, firstly, to ascertain whether DSP was a viable technique for determining strain fields within composite sandwich structures. Secondly, to determine whether four point flexure would give rise to pure flexure between the central rollers, and if not, to understand what load conditions were present. This investigation was also carried out with a view to extend the investigation into the effect of defects on composite sandwich structures manufactured by RIFT. The grounds for selection of composite sandwich structures normally lie in their flexural performance. Reliable and accurate quantitative testing methods for evaluating the flexural performance of sandwich panels are needed if composite sandwich structures are to be used safely and effectively. In addition, methods to determine the effect of damage and defects on flexural behaviour of sandwich structures is particularly important for designing the repair and maintenance regimes of composite sandwich components.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Composite Sandwich Structures"

1

Denli, Huseyin. "Structural-acoustic optimization of composite sandwich structures." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 168 p, 2007. http://proquest.umi.com/pqdlink?did=1251904511&Fmt=7&clientId=79356&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davies, Andrew. "Crashworthiness of composite sandwich structures." Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/8402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Violette, Michael A. "Fluid structure interaction effect on sandwich composite structures." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5533.

Full text
Abstract:
Approved for public release; distribution is unlimited.
The objective of this research is to examine the fluid structure interaction (FSI) effect on composite sandwich structures under a low velocity impact. The primary sandwich composite used in this study was a 6.35-mm balsa core and a multi-ply symmetrical plain weave 6 oz E-glass skin. The specific geometry of the composite was a 305 by 305 mm square with clamped boundary conditions. Using a uniquely designed vertical drop-weight testing machine, there were three fluid conditions in which these experiments focused. The first of these conditions was completely dry (or air) surrounded testing. The second condition was completely water submerged. The final condition was a wet top/air-backed surrounded test. The tests were conducted progressively from a low to high drop height to best conclude the onset and spread of damage to the sandwich composite when impacted with the test machine. The measured output of these tests was force levels and multi-axis strain performance. The collection and analysis of this data will help to increase the understanding of the study of sandwich composites, particularly in a marine environment.
APA, Harvard, Vancouver, ISO, and other styles
4

Kazemahvazi, Sohrab. "Impact Loading of Composite and Sandwich Structures." Doctoral thesis, KTH, Lättkonstruktioner, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25141.

Full text
Abstract:
Low weight is one of the most important factors in the design process of high speed naval ships, road vehicles and aircrafts. Lower structural weight enables the possibility of down-sizing the propulsion system and thus decrease manufacturing and operating costs as well as reducing the environmental impact. Two efficient ways of reducing the structural weight of a structure is by using high performance composite materials and by using geometrically efficient structures such as the sandwich concept. In addition to good quasi-static performance different structures have dynamic impact requirements. For a road vehicle this might be crash worthiness, an aircraft has to be able to sustain bird strikes or debris impact and a naval ship needs to be protected against blast or ballistic loading. In this thesis important aspects of dynamic loading of composite and sandwich structures are addressed and presented in the appended papers as follows. In paper A the notch sensitivity of non-crimp fabric glass bre composites is investigated. The notch sensitivity is investigated for several different laminate con gurations at varying tensile loading rate. It is shown that the non-crimp fabrics have very low notch sensitivity, especially for laminate con gurations with a large amount of bres in the load direction. Further, the notch sensitivity is shown to be fairly constant with increasing loading rates (up to 100/s). In paper B a heuristic approach is made in order to create an analytical model to predict the residual strength of composite laminates with multiple randomly distributed holes. The basis for this model is a comprehensive experimental programme. It is found that unidirectional laminates with holes predominantly fail through three failure modes: global net-section failure, local net-section failure and local shear failure. Each failure mode can be described by a physical geometric constant which is used to create the analytical model. The analytical model can predict the residual strength of unidirectional laminates with multiple, randomly distributed holes with good accuracy. In paper C and paper D, novel prismatic high performance all-composite sandwich cores are proposed. In paper C an analytical model is developed that predicts the strength and sti ness properties of the suggested cores. In paper D the prismatic cores are manufactured and tested in shear loading and out-of-plane compression loading. Further, the analytical model is used to create failure mechanism maps to map out the overall behaviour of the different core con gurations. The novel cores show very high speci c strength and sti ness and are potential candidates as cores in high performance naval ship hulls. In paper E the dynamic properties of prismatic composite cores are investigated. The dynamic out-of-plane strength of an unit cell is tested experimentally in a gas gun - Kolsky bar set-up. Especially, different failure mechanisms and their e ect on the structural strength are investigated. It is found that cores with low relative density (slender core members) show very large inertial stabilisation e ects and have a dynamic strength that can be more than seven times higher than the quasi-static strength. Cores with higher relative density show less increase in dynamic strength. The main reason for the dynamic strengthening is due to the strain rate sensitivity of the parent material rather than inertial stabilisation of the core members.
QC 20101014
APA, Harvard, Vancouver, ISO, and other styles
5

Akil, Hazizan Md. "The impact response of composite sandwich structures." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trask, Richard Simon. "Damage tolerance of repaired composite sandwich structures." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Zhaohui Crocker Malcolm J. "Static, dynamic and acoustical properties of sandwich composite materials." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/YU_ZHAOHUI_54.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Slade, R. "Composite faced sandwich construction for primary spacecraft structures." Thesis, Cranfield University, 1989. http://hdl.handle.net/1826/3827.

Full text
Abstract:
This study investigated the application of fibre reinforced composite materials to spacecraft sandwich structures. In particular, aspects of the manufacture, analysis and design optimisation of components fabricated using the co-cure process were studied. The manufacturing process was developed to ultimately enable a full size thrust tube structure to be built using a single step cure, the design of which was verified by a modal survey test. Techniques for the analysis of stiffness, strength., vibration frequencies and local instability were established and found to correlate well with tests on co-cured sandwich specimens. The current wrinkling theory for composite faced sandwich was extended to the more general case to allow facesheet constitutive matrix coupling and multiaxial loding to be accomodated. The analytical methods were incorporated within simple optimisation schemes, amenable to employment at the preliminary design stage, to allow alternative feasible designs for panel and thrust tube structures to be generated. These illustrated the benefits of the use of composite materials and the co-cure manufacturing technique for spacecraft sandwich components.
APA, Harvard, Vancouver, ISO, and other styles
9

Kulandaival, Palanivel Palaniathevar. "Manufacturing and performance of thermoplastic composite sandwich structures." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Velecela, Chuquilla Orlando Jonathan. "Energy absorption capability of GRP composite sandwich structures." Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Composite Sandwich Structures"

1

Chamis, C. C. Fiber composite sandwich thermostuctural behavior, computationalsimulation. [Washington, DC]: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abrate, Serge. Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer Netherlands, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abrate, Serge, Bruno Castanié, and Yapa D. S. Rajapakse, eds. Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5329-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Sung W., ed. Advances in Thick Section Composite and Sandwich Structures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31065-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Daniel, I. M., E. E. Gdoutos, and Y. D. S. Rajapakse, eds. Major Accomplishments in Composite Materials and Sandwich Structures. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3141-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gopalakrishnan, Srinivasan, and Yapa Rajapakse, eds. Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7170-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Somers, M. Buckling and postbuckling behavior of sandwich structures in the presence of a delamination. Haifa: Technion Israel Institute of Technology, Dept. of Aeronautical Engineering, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cheung, E. W. Buckling of composite sandwich cylinders under axial compression. Amsterdam: Elsevier Science Publishers, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheung, Eric Waihon. Buckling of composite sandwich cylinders under axial compression. [Downsview, Ont.]: Dept. of Aerospace Science and Engineering, University of Toronto, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Walker, Sandra P. Evaluation of composite honeycomb sandwich panels under compressive loads at elevated temperatures. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Composite Sandwich Structures"

1

Gay, Daniel. "Sandwich Structures." In Composite Materials, 73–86. 4th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferreira, António J. M., Joaquim A. O. Barros, and António Torres Marques. "Finite Element Analysis of Sandwich Structures." In Composite Structures, 105–18. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3662-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hwu, Chyanbin. "Composite Sandwich Construction." In Mechanics of Laminated Composite Structures, 180–250. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003470465-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vargas-Rojas, Erik. "Composite Sandwich Structures in Aerospace Applications." In Sandwich Composites, 293–320. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003143031-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hassouna, S., M. Janane Allah, and A. Timesli. "Crashworthiness Applications of the Composite Sandwich Structures." In Sandwich Composites, 321–48. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003143031-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Thuy Thi Thu, Tuan Anh Le, and Quang Huy Tran. "Composite Sandwich Structures in the Marine Applications." In Sandwich Composites, 277–91. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003143031-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heinisuo, M. T., S. J. Malmi, and A. I. J. Möttönen. "Exact Finite Element Method for Sandwich Beams." In Composite Structures 4, 536–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3455-9_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Joseph, Athul, Vinyas Mahesh, Vishwas Mahesh, Dineshkumar Harursampath, and Vasu Mallesha. "Role of 3D Printing in the Fabrication of Composite Sandwich Structures." In Sandwich Composites, 349–75. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003143031-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chao, C. C., W. S. Kuo, and I. S. Lin. "Buckling of Unstiffened/Stiffened Orthotropic Foam Sandwich Cylindrical Shells." In Composite Structures 3, 452–67. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4952-2_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

You, Ruizhang, Renjun Yan, Haowen Zhu, and Ziwei Zhang. "Simulation Study of Shear Stress Distribution in Bolted Connection Structures of Sandwich Composite Plate." In Lecture Notes in Mechanical Engineering, 995–1009. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_79.

Full text
Abstract:
AbstractFor the shear problem of the bolt connection structure of Sandwich Composite Plate, shear test is carried out on two kinds of Bolt Connection Structure of Sandwich Composite Plate, namely, Pre-embedded countersunk bolt and Assembled countersunk bolt, and the shear strength and stress distribution of the two kinds of bolt connection structure are investigated by using ABAQUS, and the finite element simulation results coincided with the test phenomenon well. Using this model, the stress distribution under shear damage of the Bolt Connection Structure of Sandwich Composite Plate is analysed, and the influence of bolt preload is also analysed, and the results showed that: the stress of the Sandwich Composite Plate is mainly concentrated in the Skin on the bottom side, and gradually decreased to the top surface; the influence of bolt preload could be disregarded in the analysis of the shear strength and stress peak of the Sandwich Composite Plate.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Composite Sandwich Structures"

1

Tyrell, Stacey, Mark Robeson, Courtney Kube, Dennis McCarthy, and Ronald Lavin. "Dual-Use Structures: Composite Wing with Structural Antenna Aperture." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11552.

Full text
Abstract:
Many modern aircraft, including rotorcraft, require conformal antennas and fairings to reduce wind drag, ice accretion, lightning strikes, and impact damage. An innovative composite wing configuration with a structural Ultra High Frequency (UHF) antenna window "aperture" has been developed. The wing is based on variants of lightweight X-Cor® sandwich core technology for durability and damage tolerance, with tailored electromagnetic properties in the aperture region of the wing. This paper presents a brief introduction to helicopter wings, a summary of recent research at Boeing and Army leading to this design, and the development approach used for this project. Structural and electromagnetic analyses are provided, and measurement results of an early prototype are summarized. The emphasis of this paper is on the wing configuration details surrounding the antenna aperture. The approach can be replicated on almost any current or future aircraft or rotorcraft.
APA, Harvard, Vancouver, ISO, and other styles
2

Sheahen, Patrick, Larry Bersuch, Tom Holcombe, and Bill Baron. "Robust composite sandwich structures." In 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baron, William, W. Smith, and Gregory Czarnecki. "Damage tolerance of composite sandwich structure." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

CHAMIS, C., R. AIELLO, and P. MURTHY. "Composite sandwich thermostructural behavior - Computational simulation." In 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glaessgen, E., and I. Raju. "Debonding of stitched composite sandwich structures." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Konka, Hari Prasad, M. A. Wahab, and Kun Lian. "Sandwich Structures With Smart Composite Face Skin." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62170.

Full text
Abstract:
Sandwich structures are one of the very important classes of composite structures that have been studied quite extensively in the past few years. The concepts of sandwich structures have been widely used in the aerospace, automobile, marine, and civil engineering applications; because it is suitable and amenable to the development of light-weight structures with high in-plane and flexural stiffness. A typical sandwich structure is usually comprised of two stiff face skins, which are separated by a thick, lightweight, and compliant core. The primary function of the face skin sheets in a sandwich structure is to provide required bending and in-plane shear stiffness and to carry edge-wise bending and in-plane loads. The composite face skins are usually made from resin impregnated glass fiber or a laminate of unidirectional fibers (prepregs), graphite prepregs, aluminum alloys or many other refractory metal alloys. In this study, smart composite face skins comprise of the composite layers with embedded Piezoelectric Fiber Composite Sensors (PFCS). The functions of PFCS as an embedded sensor inside the composite sandwich structure are threefold: (i) to detect all loading conditions acting on to the structure, (ii) to detect the damages while in-service under dynamic loads, and finally, (iii) to monitor the pre-existing damages in the structure so that their severity can be ascertained to avoid eventual catastrophic or premature failures. The PFCS are generally an ideal choice for this type of sandwich structures applications, as they are highly flexible, easily embeddable; their high compatibility to the composite manufacturing techniques; and more importantly, they produce significantly less interfacial stresses when embedded inside the composite structures. This research is focused on examining the effects on the structural integrity of the composite sandwich structure (with glass micro-balloons syntactic foam core and resin infused glass fiber face skins) with PFCS embedded inside face skin. In-plane tensile, and tension-tension fatigue tests are performed to evaluate the strengths/behavior of the composites containing embedded PFCS. The tensile tests showed that both the average ultimate strength and the modulus of elasticity of the tested laminate with or without embedded PFCS are within 7%. The Stress-Life (S-N) curves obtained from fatigue tests indicates that the fatigue lives and strengths with and without the PFCS are close to each other as well. Then carefully planned experiments are conducted to investigate the ability of the embedded PFCS to monitor the stress/strain levels and detect damages in composite sandwich structure. Experiments were performed to explore the ability of the embedded PFCS (MFC and PFC) to detect the damages in the structures using modal analysis method. Results from these experiments shows that the PFCS are effective in detecting the initiations of damages like delamination inside these composite sandwich structures through changes in natural frequency modes. Hence a smart composite face skin can be an effective method to monitor the health of the composite sandwich structures’ in-service conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Coburn, Todd. "Moisture Absorption of Composite Sandwich Structures." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39956.

Full text
Abstract:
It is widely understood that moisture can have a detrimental effect on the strength of composite structures. Traditional analysis often focuses on the effects to solid laminates or on the facesheets of composite sandwich structures. However, this focus is often not sufficient to ensure material strength and performance. It has been found that moisture effects on sandwich structures can also have a detrimental effect on secondary failure modes such as shear crimping and facesheet wrinkling, and that these effects can be significant, especially at temperature. A proper assessment of moisture effects on composite sandwich structures involves five key components: development of moisture diffusion constants, prediction of structural moisture levels, development of material allowables at predicted moisture levels, analysis of structure, and modification of the design, when warranted. This paper describes each component of this process, and introduces a simple algorithm to integrate the analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Fugon, D., C. Chen, and K. Peters. "Self-healing sandwich composite structures." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Masayoshi Tomizuka, Chung-Bang Yun, and Jerome P. Lynch. SPIE, 2012. http://dx.doi.org/10.1117/12.915165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

F., Warmuth, and Lange J. "Openings in Sandwich Panels." In 4th International Conference on Steel & Composite Structures. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-6218-3_cc-fr025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SUN, C. "Low velocity impact of composite sandwich panels." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1077.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Composite Sandwich Structures"

1

Perez-Rivera, Anthony, Jonathan Trovillion, Peter Stynoski, and Jeffrey Ryan. Simulated barge impacts on fiber-reinforced polymers (FRP) composite sandwich panels : dynamic finite element analysis (FEA) to develop force time histories to be used on experimental testing. Engineer Research and Development Center (U.S.), January 2024. http://dx.doi.org/10.21079/11681/48080.

Full text
Abstract:
The purpose of this study is to evaluate the dynamic response of fiber-reinforced polymer (FRP) composite sandwich panels subjected to typical barge impact masses and velocities to develop force time histories that can be used in controlled experimental testing. Dynamic analyses were performed on FRP composite sandwich panels using the finite element method software Abaqus/Explicit. The “traction-separation” law in the Abaqus software is used to define the cohesive surface interaction properties to evaluate the damage between FRP composite laminate layers as well as the core separation within the sandwich panels. Numerical models were developed to better under-stand the damage caused by barge impacts and the effects of impacts on the dynamic response of composite structures. Force, displacement, and velocity time histories were obtained with finite element modeling for several mass and velocity cases to develop experimental testing procedures for these types of structures.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography