Journal articles on the topic 'Composites à base plâtre'

To see the other types of publications on this topic, follow the link: Composites à base plâtre.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Composites à base plâtre.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, Taek-Soo, Jae-Young Ryu, Jin-Kyu Lee, and Jung-Chan Bae. "Synthesis of Cu-base/Ni-base amorphous powder composites." Materials Science and Engineering: A 449-451 (March 2007): 804–8. http://dx.doi.org/10.1016/j.msea.2006.02.335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rémillard, Audrey M., Bernard Hétu, Pascal Bernatchez, and Pascal Bertran. "The Drift des Demoiselles on the Magdalen Islands (Québec, Canada): sedimentological and micromorphological evidence of a Late Wisconsinan glacial diamict." Canadian Journal of Earth Sciences 50, no. 5 (May 2013): 545–63. http://dx.doi.org/10.1139/cjes-2011-0115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The deposits identified as being the Drift des Demoiselles, which is the upper unit of the southern Magdalen Islands (Québec, Canada), belong to two units of different origin, glacial and glaciomarine. At Anse à la Cabane, the glacial deposit comprises two subunits: a glacitectonite at the base and a subglacial traction till at the top. Numerous glaciotectonic deformation structures suggest ice flow towards the southeast. The till is above an organic horizon dated to ∼47–50 ka BP. New data presented here show that the southern part of the Magdalen archipelago was glaciated during the Late Wisconsinan. We relate this ice flow to the Escuminac ice cap, whose centre of dispersion was located in the Gulf of St. Lawrence, northwest of the islands. At Anse au Plâtre, the top of the Drift des Demoiselles is a glaciomarine deposit. At Anse à la Cabane, the till is covered by a stratified subtidal unit located at ∼20 m above sea level. Both were deposited during the marine transgression that followed deglaciation. At Anse à la Cabane, three ice-wedge casts truncate the till and the subtidal unit, providing evidence that periglacial conditions occurred on the archipelago after deglaciation.
3

Kaneko, Takeshi. "Mechanical properties of sintered tungsten base composites." Journal of the Japan Society of Powder and Powder Metallurgy 35, no. 2 (1988): 63–71. http://dx.doi.org/10.2497/jjspm.35.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Damnernsawat, Jiraporn, Pongpan Kaewtatip, Nattaya Tosangthum, Bhanu Vetayanugul, Pongsak Wila, and Ruangdaj Tongsri. "Sintered Frictional SiC-Reinforced Cu-Base Composites." Key Engineering Materials 659 (August 2015): 345–49. http://dx.doi.org/10.4028/www.scientific.net/kem.659.345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lead-free frictional materials are important components in safety and power transmission parts of automobiles. In order to avoid using lead-containing friction modifiers, non-toxic ceramic particles are considered to be used as reinforcements. In this research work, copper-based friction materials have been developed by using press and sinter method. Pre-alloyed bronze (Cu-10Sn) powder was admixed with iron (Fe), graphite (C) and varied amounts of silicon carbide (SiC) powders. The admixed powders were compacted into disc-shape samples, which were then sintered at different temperatures in the range of 800-950 °C. It was found that sintered density and hardness of the sintered copper-based friction materials reduced with increasing SiC content. Microstructures of the sintered materials showed inhomogeneity due to uneven distribution of coarse Fe and SiC particles. The coarse SiC particles also prohibited bonding between metal powder particles. However, the sintered materials showed high room-temperature friction coefficients, which were in the range of 0.50-0.90, particularly the materials containing 4 wt. % of SiC particles.
5

Lugovskoi, Yu F. "Energy dissipation in condensed copper base composites." Soviet Powder Metallurgy and Metal Ceramics 30, no. 3 (March 1991): 243–46. http://dx.doi.org/10.1007/bf00794917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, X., T. Zhang, D. Marchant, and V. Morris. "Combustion Synthesis of Ni/Al Base Composites." Advanced Materials Research 545 (July 2012): 50–55. http://dx.doi.org/10.4028/www.scientific.net/amr.545.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper presents a new ignition technique to synthesize NiAl based composites using high frequency induction heating to ignite the combustion reaction. A high resolution thermal imaging camera and two infrared thermometers were used to monitor the complete temperature profiles during synthesis. Thermodynamic calculations were performed to predict the combustion temperature and the effect of preheating temperatures. The results show that the combustion reaction for Ni/Al based composites can be ignited using a high frequency induction heater. High density, multi layer TiC-NiAl composites can be produced using this method, but to ignite the combustion reaction by induction heating for the Ni/Al+Ti/C system, there is a limit for the content of Ti/C, above which the ignition will not start. Ultra fine TiC was synthesized using this technique.
7

Moustafa, S. F. "Casting of Graphitic Al–Si Base Composites." Canadian Metallurgical Quarterly 33, no. 3 (July 1994): 259–64. http://dx.doi.org/10.1179/cmq.1994.33.3.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brizitskii, V. M., V. G. Grebenkina, D. E. Dyshel', L. I. Panov, K. A. Brizitskaya, and M. D. Smolin. "Electrical properties of cobalt molybdate-base composites." Soviet Powder Metallurgy and Metal Ceramics 28, no. 6 (June 1989): 472–75. http://dx.doi.org/10.1007/bf00795304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dahotre, Narendra B., T. Dwayne McCay, and Mary Helen McCay. "Laser surface modification of zinc-base composites." JOM 42, no. 6 (June 1990): 44–47. http://dx.doi.org/10.1007/bf03220977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pilling, John. "Superplasticity in aluminium base metal matrix composites." Scripta Metallurgica 23, no. 8 (August 1989): 1375–80. http://dx.doi.org/10.1016/0036-9748(89)90062-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tabaru, Tatsuo, K. Shobu, Jin Hak Kim, Hisatoshi Hirai, and Shuji Hanada. "Oxidation Resistance Coating for Niobium Base Structural Composites." Materials Science Forum 426-432 (August 2003): 2581–86. http://dx.doi.org/10.4028/www.scientific.net/msf.426-432.2581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Eckert, Jürgen, J. Das, G. He, W. Löser, Evan Ma, Yi Li, M. L. Sui, T. G. Woodcock, and A. Gebert. "In Situ Formed Bulk Nanostructured Ti-Base Composites." Journal of Metastable and Nanocrystalline Materials 24-25 (September 2005): 31–36. http://dx.doi.org/10.4028/www.scientific.net/jmnm.24-25.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Trojanová, Zuzanka, Zdeněk Drozd, Pavel Lukáč, and S. Kúdela. "Deformation Processes in Mg-Li-Al Base Composites." Materials Science Forum 419-422 (March 2003): 817–22. http://dx.doi.org/10.4028/www.scientific.net/msf.419-422.817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bolayir, Giray, Mehmet Turgut, İhsan Hubbezoğlu, Orhan Murat Doğan, Selda Keskin, Arife Doğan, and Bülent Bek. "Evaluation of Laser Treatment on Reline-Base Composites." Journal of Adhesion 83, no. 2 (February 28, 2007): 117–27. http://dx.doi.org/10.1080/00218460701196598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Speidel, M. O. "Hardenable austenitic PM iron base metal matrix composites." Metal Powder Report 53, no. 5 (May 1998): 41. http://dx.doi.org/10.1016/s0026-0657(98)85074-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

W. Kowalik, Robert, and Mohan G. Hebsur. "Cyclic oxidation study of MoSi2–Si3N4 base composites." Materials Science and Engineering: A 261, no. 1-2 (March 1999): 300–303. http://dx.doi.org/10.1016/s0921-5093(98)01109-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dwight, David W., Frederick M. Fowkes, David A. Cole, Mary Jo Kulp, Philippe J. Sabat, Lawrence Salvati, and T. Clare Huang. "Acid-base interfaces in fiber-reinforced polymer composites." Journal of Adhesion Science and Technology 4, no. 1 (January 1990): 619–32. http://dx.doi.org/10.1163/156856190x00568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wolff, I. M., and G. Sauthoff. "High-temperature behavior of precious metal base composites." Metallurgical and Materials Transactions A 27, no. 9 (September 1996): 2642–52. http://dx.doi.org/10.1007/bf02652357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schröder, J., and K. U. Kainer. "Magnesium-base hybrid composites prepared by liquid infiltration." Materials Science and Engineering: A 135 (March 1991): 33–36. http://dx.doi.org/10.1016/0921-5093(91)90532-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Maloney, Michael J., and Ralph J. Hecht. "Development of continuous-fiber-reinforced MoSi2-base composites." Materials Science and Engineering: A 155, no. 1-2 (June 1992): 19–31. http://dx.doi.org/10.1016/0921-5093(92)90309-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Alman, D. E., K. G. Shaw, N. S. Stoloff, and K. Rajan. "Fabrication, structure and properties of MoSi2-base composites." Materials Science and Engineering: A 155, no. 1-2 (June 1992): 85–93. http://dx.doi.org/10.1016/0921-5093(92)90315-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Ming, Hai Hao, Ying De Song, and Xing Guo Zhang. "The Thermal Conductivity Analysis of Sip/Al Base Composites." Materials Science Forum 675-677 (February 2011): 775–78. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Aluminum base composites with particles reinforced have high thermal conductivity, low thermal expansion coefficient, low density, and excellent working ability. On one hand the Sip/Al composites are prepared by pressure-less infiltration in experiments and take advantage of the finite element analysis to establish the models of Sip/Al composites. On the other hand, the Sip/Al composites morphology, the particles size, the volume fraction and the ratio between different Si particles have been discussed in the experiments. In experiments how they affect the thermal conductivity of the composites also has been explained. The thermal conductivity of Sip/Al composites is around 100 W/(m.k) at 50°C. When the Si volume fraction is definite, the thermal conductivity of the composites is little affected by the morphology, the size and the ratio between different Si particles. The study also showed that with the element Si content increasing, the thermal conductivity will decrease.
23

Suzuki, Hirowo, and Kuniteru Mihara. "High Strength High Conductive Copper Base In-Situ Composites." Materia Japan 38, no. 9 (1999): 714–21. http://dx.doi.org/10.2320/materia.38.714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Wei Fu. "Nanoparticulate-Reinforced Ti-Base Composites Prepared by Laser Cladding." Advanced Materials Research 497 (April 2012): 311–14. http://dx.doi.org/10.4028/www.scientific.net/amr.497.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With preplaced Ti-8Al-1Mo-1V + BN powder mixtures, the Ti-base composite coatings with in-suit synthesis nano particulates were obtained by laser cladding on titanium alloy substrate. The microstructures, fracture morphology, phase composition and mechanical property were studied by SEM, XRD and micro-hardness tests. The results show that, there are two kinds of typical nano particulates in the composites, i.e. the TiB with a diameter of ~400nm and the Ti2N with a diameter of ~10 nm. Both the TiB and Ti2N reinforced particulates are uniformly distributed in the composites. As a result, the average hardness of the composites were ~360HV0.05 which is about 20% higher than the substrate. In the composites, the distribution of Ti2N particulates shows a peculiar characteristic of dendrite-like morphologies. The analysis shows that the Ti2N precipitates out from the solid state α-Ti(N) is the reason why Ti2N is only of a diameter of ~10nm and distributes in a certain way of dendrite-like morphologies.
25

Eckert, J., J. Das, G. He, M. Calin, and K. B. Kim. "Ti-base bulk nanostructure-dendrite composites: Microstructure and deformation." Materials Science and Engineering: A 449-451 (March 2007): 24–29. http://dx.doi.org/10.1016/j.msea.2006.02.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Yisan, Xinyuan Zhang, Guangting Zeng, and Fengchun Li. "Cast sinter technique for producing iron base surface composites." Materials & Design 21, no. 5 (October 2000): 447–52. http://dx.doi.org/10.1016/s0261-3069(00)00036-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Konstanty, Janusz Stefan, and Dorota Tyrala. "Wear mechanism of iron-base diamond-impregnated tool composites." Wear 303, no. 1-2 (June 2013): 533–40. http://dx.doi.org/10.1016/j.wear.2013.04.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cyffka, M., and E. Hornbogen. "Description of anisotropic wear rates of polymer-base composites." Journal of Materials Science Letters 5, no. 4 (April 1986): 424–26. http://dx.doi.org/10.1007/bf01672349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Heringhaus, F., and D. Raabe. "Recent advances in the manufacturing of copper-base composites." Journal of Materials Processing Technology 59, no. 4 (June 1996): 367–72. http://dx.doi.org/10.1016/0924-0136(95)02179-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Minakova, R. V., A. P. Kresanova, N. D. Lesnik, A. A. Malyshenko, and S. O. Antonov. "Structure formation and properties of molybdenum-base powder composites." Soviet Powder Metallurgy and Metal Ceramics 27, no. 2 (February 1988): 132–36. http://dx.doi.org/10.1007/bf00802738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dannemann, K., N. S. Stoloff, and D. J. Duquette. "High temperature fatigue of three nickel-base eutectic composites." Materials Science and Engineering 95 (November 1987): 63–71. http://dx.doi.org/10.1016/0025-5416(87)90498-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shimizu, Yoshiaki, Toshiyasu Nishimura, and Manabu Tamura. "Corrosion Performance of Al-base Metal-Matrix-Composites (MMC)." Zairyo-to-Kankyo 40, no. 6 (1991): 406–12. http://dx.doi.org/10.3323/jcorr1991.40.406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

TUDORACHI, NITA, and AURICA P. CHIRIAC. "Biodegradable polymeric template for magnetic composites on its base." Polimery 54, no. 11/12 (November 2009): 806–13. http://dx.doi.org/10.14314/polimery.2009.806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Miaosheng, Wu, and Zhou Zhulin. "Optimum design of adhesive bonding of resin-base composites." Applied Mathematics and Mechanics 18, no. 11 (November 1997): 1093–97. http://dx.doi.org/10.1007/bf00132803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gao, Jicheng, Sunyi Zhang, Huiming Jin, and Yifu Shen. "Fabrication of Al7075/PI composites base on FSW technology." International Journal of Advanced Manufacturing Technology 104, no. 9-12 (August 20, 2019): 4377–86. http://dx.doi.org/10.1007/s00170-019-04235-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zuev, A. A., L. R. Lyusova, and N. P. Boreiko. "Chlorinated Isoprene Rubbers in Adhesive Composites." International Polymer Science and Technology 44, no. 5 (May 2017): 25–28. http://dx.doi.org/10.1177/0307174x1704400505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Now there is not a single area of industry that can do without adhesive elastomer materials. Composites based on synthetic rubbers comprise 75% of the total volume of adhesive materials produced, which is due to the combination of unique properties typical of the elastomer base of the adhesive. The base of many imported adhesives for the bonding of rubber to metal is chlorinated natural rubber. As an alternative, chlorinated synthetic isoprene rubber has been proposed, developed at the Scientific Research Institute for Synthetic Rubber in St Petersburg. The chlorinated isoprene rubber was compared with imported chlorinated natural rubber in adhesive composites, and the physicomechanical properties of mixes based on a blend of chlorinated rubber and nitrile butadiene rubber were investigated. The investigation was conducted on chlorinated natural rubber of grade Pergut S20, chlorinated isoprene rubber SKI-3, and nitrile butadiene rubbers of grades BNKS-28AMN and SKN-26S. The influence of the ratio of chlorinated rubber to nitrile butadiene rubber and the technological factors of mix preparation on the properties of films produced from them was established. It was shown that, in terms of the level of properties, home-produced chlorinated rubber can be used as the base for adhesives for hot bonding of rubber to metal instead of imported Pergut S20.
37

Saldin, Vitaly I., and Alexander K. Tsvetnikov. "Composites on Base of the Ultradispersed Polytetrafluoroethylene and Chitosan Salts." Journal of Materials Science and Chemical Engineering 04, no. 12 (2016): 22–28. http://dx.doi.org/10.4236/msce.2016.412003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

V. G., Goffman, Gorokhovsky A. V., Gorshkov N. V., Telegina O. S., Kovnev A. V., Orozaliev E. E., and Sleptsov V. V. "Impedance spectroscopy of polymer composites based on base potassium polytitanate." Electrochemical Energetics 14, no. 3 (2014): 141–48. http://dx.doi.org/10.18500/1608-4039-2014-14-3-141-148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Work is devoted to the study of electrochemical and dielectric properties of the base potassium polytitanate and polymer composite based on it. The temperature dependence of ac-conductivity, permittivity, dielectric loss tangent. An increase in the dielectric constant of the composite with respect to the values of the dielectric constant of the base potassium polytitanate. The values of the dc-conductivity.
39

Shayakhmetov, U. Sh, A. U. Shayakhmetov, A. V. Zakharov, A. R. Khamidullin, and A. T. Gazizova. "The refractory composites on base of the pirophyllite raw materials." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 6 (July 26, 2018): 8–13. http://dx.doi.org/10.17073/1683-4518-2018-6-8-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The results of the physical and chemical investigation of the pyrophillite from the Bashkortostan Republic's Kul-YurtTau deposition are shown in the article. The features of the strengthening, of the structure as well as the hardening kinetics were defined for the refractory composite on base of quartz-pyrophillite primary stuff.
40

Asthana, R., and S. N. Tewari. "Interface response to solidification in sapphire-reinforced Ni-base composites." Advanced Composite Materials 9, no. 4 (January 2000): 265–307. http://dx.doi.org/10.1163/15685510052000039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ghomashchi, M. R. "Fabrication of near net-shape aluminium base intermetallic matrix composites." Metal Powder Report 57, no. 7-8 (July 2002): 86. http://dx.doi.org/10.1016/s0026-0657(02)80347-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gronostajski, J. Z., H. Marciniak, and A. Matuszak. "Production of composites on the base of AlCu4 alloy chips." Journal of Materials Processing Technology 60, no. 1-4 (June 1996): 719–22. http://dx.doi.org/10.1016/0924-0136(96)02410-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Okada, Katsuzo, and Makoto Yoshida. "New self-lubricating aluminum alloy base composites for vacuum technology." Vacuum 41, no. 7-9 (January 1990): 1876–78. http://dx.doi.org/10.1016/0042-207x(90)94119-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

ISONISHI, Kazuo. "Consolidation and Mechanical Properties of FeAl Base in-situ Composites." Proceedings of the Materials and processing conference 2004.12 (2004): 91–92. http://dx.doi.org/10.1299/jsmemp.2004.12.91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Satoh, Hiroshi, Qin Ouyang, and Katsuzo Okada. "Sliding Friction Properties on Self-lubricating White Metal Base Composites." Transactions of the Japan Society of Mechanical Engineers Series C 60, no. 572 (1994): 1371–75. http://dx.doi.org/10.1299/kikaic.60.1371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Arajs, S., and T. A. Jenkins. "Electrical resistivity of some directionally solidified nickel-base eutectic composites." Physica Status Solidi (a) 108, no. 1 (July 16, 1988): 343–49. http://dx.doi.org/10.1002/pssa.2211080136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dutkiewicz, Jan, Lidia Lityńska-Dobrzyńska, Łukasz Rogal, Wojciech Maziarz, and Tomasz Czeppe. "Cu/Ti base multicomponent amorphous Cu47Ti33Zr11Ni8Si1 and nanocrystalline silver composites." physica status solidi (a) 207, no. 5 (April 15, 2010): 1109–13. http://dx.doi.org/10.1002/pssa.200983352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mathieu, S., S. Knittel, P. Berthod, S. Mathieu, and M. Vilasi. "On the oxidation mechanism of niobium-base in situ composites." Corrosion Science 60 (July 2012): 181–92. http://dx.doi.org/10.1016/j.corsci.2012.03.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Radmilovic, V., G. Thomas, and S. K. Das. "Microstructure of α-Al base matrix and SiC particulate composites." Materials Science and Engineering: A 132 (February 1991): 171–79. http://dx.doi.org/10.1016/0921-5093(91)90373-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Jinyang. "Manufacturing of Fibrous Composites for Engineering Applications." Journal of Composites Science 6, no. 7 (June 24, 2022): 187. http://dx.doi.org/10.3390/jcs6070187.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography