To see the other types of publications on this topic, follow the link: Composites Au / gC3N4 / TiO2.

Journal articles on the topic 'Composites Au / gC3N4 / TiO2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Composites Au / gC3N4 / TiO2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jiménez-Calvo, Pablo, Valérie Caps, Mohamed Nawfal Ghazzal, Christophe Colbeau-Justin, and Valérie Keller. "Au/TiO2(P25)-gC3N4 composites with low gC3N4 content enhance TiO2 sensitization for remarkable H2 production from water under visible-light irradiation." Nano Energy 75 (September 2020): 104888. http://dx.doi.org/10.1016/j.nanoen.2020.104888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sutanto, Nelvi, and Srimala Sreekantan. "Photodegradation Improvement of Low-Density Polyethylene Thin Film with gC3N4/5ZnO/TiO2 Photocatalysts." Solid State Phenomena 264 (September 2017): 236–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.264.236.

Full text
Abstract:
LDPE waste disposal is a critical issue nowadays and huge pile of this polymer represents a threat to the environment. Herein, gC3N4/5ZnO/TiO2 photocatalysts (1 wt %) incorporated in LDPE film were investigated and compared with neat LDPE film. Tabletop scanning electron microscopy (SEM) micrograph showed the surface morphologies of neat and LDPE composite films before and after accelerated weathering. Experimental results on LDPE composite films after exposure to UV irradiation showed improvement in degradation rate (~0.274%/hour) in comparison to other study (0.225%/hour). Results of weight lost on LDPE composites after accelerated weathering test (~42.31%) also showed that the degradability increased with the decrease of thickness.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Zuyu, Lihua Zang, Da Li, and Shuangzhen Guo. "One-step hydrothermal synthesis of g-C3N4/TiO2/BiOBr layered hybrid photocatalyst with enhanced visible light degradation of tetracycline." E3S Web of Conferences 261 (2021): 02083. http://dx.doi.org/10.1051/e3sconf/202126102083.

Full text
Abstract:
In this work, a ternary composite photocatalyst with layer structure was synthesized by a one-step hydrothermal method. The visible-light-driven layered ternary photocatalyst exhibited excellent photocatalytic performance for the degradation of tetracycline (TC). The degradation rate of TC reached 88.78% within 60 min under visible light exposure in presence of optimum ratio G-T-B-0.2, which is higher than pure g-C3N4, TiO2 and BiOBr. Scaning electron microscope (SEM), Transmission electron microscope (TEM), Xray diffractometer (XRD), Fourier transform infrared spectra (FTIR), spectrometer and X-ray photoelectron spectroscopy (XPS) were used to character the physicochemical properties of the synthesized samples. Photoelectrochemical measurements and radical trapping experiments revealed that the improvement of photocatalytic performance was mainly attributed to the rapid charge transfer at the interface of gC3N4/TiO2/BiOBr, which was benefit to the separation of photogenerated carriers and visible light absorption. This work provides a facile method for the synthesis of ternary heterojunctions, which has potential applications in environmental remediation.
APA, Harvard, Vancouver, ISO, and other styles
4

Jiménez-Calvo, Pablo, Valérie Caps, and Valérie Keller. "Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges." Renewable and Sustainable Energy Reviews 149 (October 2021): 111095. http://dx.doi.org/10.1016/j.rser.2021.111095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, Imran, and Jong-Oh Kim. "Optimization of photocatalytic performance of a gC3N4–TiO2 nanocomposite for phenol degradation in visible light." Materials Chemistry and Physics 261 (March 2021): 124246. http://dx.doi.org/10.1016/j.matchemphys.2021.124246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ranjan, Nisha, Rashmi C. Shende, Muthusamy Kamaraj, and Sundara Ramaprabhu. "Utilization of TiO2/gC3N4 nanoadditive to boost oxidative properties of vegetable oil for tribological application." Friction 9, no. 2 (July 18, 2020): 273–87. http://dx.doi.org/10.1007/s40544-019-0336-9.

Full text
Abstract:
AbstractThe emergence of vegetable oil as a promising alternative lubricant in the tribological application space has fueled research for making these oils as useful as mineral oils. Tribological modification of vegetable oil by the addition of TiO2/gC3N4 nanocomposite (as a nanoadditive) was studied here. The dispersion of the nanoadditive in the vegetable oil showed good oil dispersion stability without the addition of any surfactant. The tribological studies were conducted in a four-ball tester using ASTM standard D5183. In addition, the effect of temperature on tribological performance was also studied to understand the oxidation behavior of vegetable oil. The results showed a significant improvement in friction and wear properties of the optimized nano-oil. The mechanism behind the improvement in friction and wear properties is annotated in this paper.
APA, Harvard, Vancouver, ISO, and other styles
7

Ali, Imran, and Jong-Oh Kim. "Optimization of photocatalytic performance of a gC3N4–TiO2 nanocomposite for phenol degradation in visible light." Materials Chemistry and Physics 261 (March 2021): 124246. http://dx.doi.org/10.1016/j.matchemphys.2021.124246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oktar, F. N. "Hydroxyapatite–TiO2 composites." Materials Letters 60, no. 17-18 (August 2006): 2207–10. http://dx.doi.org/10.1016/j.matlet.2005.12.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Viswanath, R. N., and S. Ramasamy. "Study of TiO2 nanocrystallites in TiO2SiO2 composites." Colloids and Surfaces A: Physicochemical and Engineering Aspects 133, no. 1-2 (February 1998): 49–56. http://dx.doi.org/10.1016/s0927-7757(97)00111-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nagaoka, Shoji, Yuu Hamasaki, Shin-ichiro Ishihara, Masanori Nagata, Kokoro Iio, Chohachiro Nagasawa, and Hirotaka Ihara. "Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation." Journal of Molecular Catalysis A: Chemical 177, no. 2 (January 2002): 255–63. http://dx.doi.org/10.1016/s1381-1169(01)00271-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Y., S. G. Li, J. Wang, Y. Li, C. H. Ma, and L. Zhang. "Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite." Russian Journal of Physical Chemistry A 88, no. 13 (November 6, 2014): 2471–75. http://dx.doi.org/10.1134/s0036024414130123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Magerramov, A. M., M. M. Kuliev, R. S. Ismayilova, and R. S. Abdullaev. "Dielectric properties of polyethylene/TiO2 composites." Physics and Chemistry of Materials Treatment, no. 5 (2018): 41–46. http://dx.doi.org/10.30791/0015-3214-2018-5-41-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sedneva, T. A., E. P. Lokshin, M. L. Belikov, and A. T. Belyaevskii. "TiO2- and Nb2O5-based photocatalytic composites." Inorganic Materials 49, no. 4 (March 13, 2013): 382–89. http://dx.doi.org/10.1134/s0020168513040134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pe�a, J., M. Vallet-Reg�, and J. San Rom�n. "TiO2-polymer composites for biomedical applications." Journal of Biomedical Materials Research 35, no. 1 (April 1997): 129–34. http://dx.doi.org/10.1002/(sici)1097-4636(199704)35:1<129::aid-jbm13>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hübert, Thomas, Brita Unger, and Michael Bücker. "Sol–gel derived TiO2 wood composites." Journal of Sol-Gel Science and Technology 53, no. 2 (November 20, 2009): 384–89. http://dx.doi.org/10.1007/s10971-009-2107-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Magerramov, A. M., M. M. Kuliev, R. S. Ismayilova, and R. S. Abdullaev. "Dielectric Properties of Polyethylene/TiO2 Composites." Inorganic Materials: Applied Research 10, no. 3 (May 2019): 658–61. http://dx.doi.org/10.1134/s2075113319030237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Elizalde-González, María P., Esmeralda García-Díaz, and Sergio A. Sabinas-Hernández. "Novel preparation of carbon-TiO2 composites." Journal of Hazardous Materials 263 (December 2013): 73–83. http://dx.doi.org/10.1016/j.jhazmat.2013.07.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bleszynski, Monika, and Maciej Kumosa. "Aging resistant TiO2/silicone rubber composites." Composites Science and Technology 164 (August 2018): 74–81. http://dx.doi.org/10.1016/j.compscitech.2018.05.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Debow, Shaun, Tong Zhang, Xusheng Liu, Fuzhan Song, Yuqin Qian, Jian Han, Kathleen Maleski, et al. "Charge Dynamics in TiO2/MXene Composites." Journal of Physical Chemistry C 125, no. 19 (April 30, 2021): 10473–82. http://dx.doi.org/10.1021/acs.jpcc.1c01543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liang, Weibin, Tamara L. Church, and Andrew T. Harris. "Biogenic synthesis of photocatalytically active Ag/TiO2 and Au/TiO2 composites." Green Chemistry 14, no. 4 (2012): 968. http://dx.doi.org/10.1039/c2gc16082j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bai, Shouli, Haiyan Liu, Jianhua Sun, Ye Tian, Song Chen, Jingli Song, Ruixian Luo, Dianqing Li, Aifan Chen, and Chung-Chiun Liu. "Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites." Applied Surface Science 338 (May 2015): 61–68. http://dx.doi.org/10.1016/j.apsusc.2015.02.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sangjan, Suntree, and Wadchara Thongsamer. "Application of Photocatalytic and Adsorption Process for Residue Organic Degradation Using Doped ZnO Composites Hydrogel Beads." Key Engineering Materials 858 (August 2020): 109–15. http://dx.doi.org/10.4028/www.scientific.net/kem.858.109.

Full text
Abstract:
This research aimes to synthesize photocatalyst-sodium alginate composite hydrogel beads which apply for coupled adsorption and photocatalytic degradation of organic residue. Fe3O4, graphitic carbon nitride (g-C3N4), grapheme oxide (GO) and AgNO3 doped ZnO photocatalyst composites hydrogel beads were synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Photocatalytic and adsorption activity are studied by Methylene blue (MB) degradation under sunshine irradiation. The effect of different parameter as photocatalyst types and reaction time were studied upon the efficiency of organic residue degradation. The coupled photocatalytic and adsorption processes were evaluated through various kinetic models such as pseudo-first-order/ pseudo-second-order in Langmuir-Hinshelwood model model, the Elovich model and the intra particle diffusion model. Kinetics studies showed that the coupled photocatalytic and adsorption processes in photodegradation of all sample was well described by the pseudo-second-order model because R2 of all sample were close to 1 which compared with another model. For photodegradation efficiency, the best choice in this condition was g-C3N4 doped ZnO composite hydrogel bead. Photodegradation efficiency and the pseudo second order rate constant of photocatalyst ZnO+gC3N4/SA composite hydrogel bead were 83.80%(for 180 min and up to 96% for 7 hr) and 5.05×10-3 g.mg-1 min-1, respectively.
APA, Harvard, Vancouver, ISO, and other styles
23

Tegze, Borbála, Emőke Albert, Boglárka Dikó, János Madarász, György Sáfrán, and Zoltán Hórvölgyi. "Thin layer photocatalysts of TiO2-Ag composites." Studia Universitatis Babeș-Bolyai Chemia 64, no. 3 (September 30, 2019): 81–98. http://dx.doi.org/10.24193/subbchem.2019.3.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Devikala, S. "Electrical Conductivity Studies of PVA/TiO2 Composites." International Research Journal of Pure and Applied Chemistry 3, no. 3 (January 10, 2013): 257–63. http://dx.doi.org/10.9734/irjpac/2013/3922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Devikala, S. "Electrical Conductivity Studies of PVA/TiO2 Composites." International Research Journal of Pure and Applied Chemistry 3, no. 3 (January 10, 2014): 257–63. http://dx.doi.org/10.9734/irjpac/2014/3922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Contreras-Ruiz, J. C., M. S. Martínez-Gallegos, and E. Ordoñez-Regil. "Surface fractal dimension of composites TiO2-hydrotalcite." Materials Characterization 121 (November 2016): 17–22. http://dx.doi.org/10.1016/j.matchar.2016.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Zhimin, Jianling Zhang, Buxing Han, Jimin Du, Tiancheng Mu, Yong Wang, and Zhenyu Sun. "Solvothermal synthesis of mesoporous Eu2O3–TiO2 composites." Microporous and Mesoporous Materials 81, no. 1-3 (June 2005): 169–74. http://dx.doi.org/10.1016/j.micromeso.2005.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sullalti, Simone, Grazia Totaro, Haroutioun Askanian, Annamaria Celli, Paola Marchese, Vincent Verney, and Sophie Commereuc. "Photodegradation of TiO2 composites based on polyesters." Journal of Photochemistry and Photobiology A: Chemistry 321 (May 2016): 275–83. http://dx.doi.org/10.1016/j.jphotochem.2015.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Murashkevich, A. N., A. S. Lavitskaya, O. A. Alisienok, and I. M. Zharskii. "Fabrication and properties of SiO2/TiO2 composites." Inorganic Materials 45, no. 10 (October 2009): 1146–52. http://dx.doi.org/10.1134/s0020168509100124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, Li, Bai-Lan Zhang, Mei-Zhen Qu, and Zuo-Long Yu. "Preparation and characterization of CNTs–TiO2 composites." Powder Technology 154, no. 1 (June 2005): 70–72. http://dx.doi.org/10.1016/j.powtec.2005.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gurunathan, Karuppasamy, and Dinesh Chandra Trivedi. "Studies on polyaniline and colloidal TiO2 composites." Materials Letters 45, no. 5 (September 2000): 262–68. http://dx.doi.org/10.1016/s0167-577x(00)00115-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pierre, A. C., G. Campet, S. D. Han, S. Y. Huang, E. Duguet, and J. Portier. "TiO2–Polymer Nano–Composites by Sol–Gel." Active and Passive Electronic Components 18, no. 1 (1995): 31–37. http://dx.doi.org/10.1155/1995/32178.

Full text
Abstract:
Sol-gel processes make it possible to develop new hybrid electrolyte materials of the type ceramic-polymer, known as Nano-Crystallite-Insertion-Material (NCIM). They can be used in reversible alkali electrochemical cells after insertion with cations such as Li+. In the present study, TiO2-polyethylene oxide hybrid materials were synthesized from TiCl4and from Ti ethoxide. Their structure is analyzed in relation with the processing parameters. A primary evaluation of the nanoscale composite materials for reversible Li insertion was performed.
APA, Harvard, Vancouver, ISO, and other styles
33

Haitao, Shan, Cui Juqing, Zhang Qiang, Zhuang Wei, He Qihui, Hu Baixing, and Shen Jian. "Preparation and properties of EPDM/TiO2 composites." Journal of Applied Polymer Science 106, no. 1 (2007): 314–19. http://dx.doi.org/10.1002/app.26614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Liaqat, Faroha, Muhammad Nawaz Tahir, Eugen Schechtel, Michael Kappl, Günter K. Auernhammer, Kookheon Char, Rudolf Zentel, Hans-Jürgen Butt, and Wolfgang Tremel. "High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites." Macromolecular Rapid Communications 36, no. 11 (April 30, 2015): 1129–37. http://dx.doi.org/10.1002/marc.201400706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Andronic, Luminita, Alexandru Enesca, Cristina Cazan, and Maria Visa. "TiO2–active carbon composites for wastewater photocatalysis." Journal of Sol-Gel Science and Technology 71, no. 3 (May 15, 2014): 396–405. http://dx.doi.org/10.1007/s10971-014-3393-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kamrannejad, Mohammad Mehdi, Amin Hasanzadeh, Nasim Nosoudi, Lee Mai, and Ali Akbar Babaluo. "Photocatalytic degradation of polypropylene/TiO2 nano-composites." Materials Research 17, no. 4 (August 5, 2014): 1039–46. http://dx.doi.org/10.1590/1516-1439.267214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Velichenko, A. B., V. A. Knysh, T. V. Luk’yanenko, D. Devilly, and F. I. Danilov. "PbO2-TiO2 composites: Electrosynthesis and physicochemical properties." Russian Journal of Applied Chemistry 81, no. 6 (June 2008): 994–99. http://dx.doi.org/10.1134/s107042720806013x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Peng, Hongrui, Zhikun Zhang, and Zhaobo Wang. "Dispersion of TiO2Nanoparticles in TiO2/HIPS Composites." Journal of Dispersion Science and Technology 26, no. 2 (March 2005): 203–6. http://dx.doi.org/10.1081/dis-200045593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cesconeto, F. R., S. Arcaro, F. Raupp-Pereira, J. B. Rodrigues Neto, D. Hotza, and A. P. Novaes de Oliveira. "TiO2 nanoparticulated LZSA glass-ceramic matrix composites." Ceramics International 40, no. 7 (August 2014): 9535–40. http://dx.doi.org/10.1016/j.ceramint.2014.02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Watanabe, Takanobu, Yutaka Haga, and Ryutoku Yosomiya. "Photoconductive properties of annealed TiO2 dispersion composites." Polymer 33, no. 10 (January 1992): 2057–60. http://dx.doi.org/10.1016/0032-3861(92)90871-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Xingwei, Gengchao Wang, Xiaoxuan Li, and Dongming Lu. "Surface properties of polyaniline/nano-TiO2 composites." Applied Surface Science 229, no. 1-4 (May 2004): 395–401. http://dx.doi.org/10.1016/j.apsusc.2004.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pierre, A. C., G. Campet, S. D. Han, E. Duguet, and J. Portier. "TiO2-polymer Nano-composites by sol-gel." Journal of Sol-Gel Science and Technology 2, no. 1-3 (1994): 121–25. http://dx.doi.org/10.1007/bf00486224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bragaglia, M., V. Cherubini, and F. Nanni. "PEEK -TiO2 composites with enhanced UV resistance." Composites Science and Technology 199 (October 2020): 108365. http://dx.doi.org/10.1016/j.compscitech.2020.108365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kameshima, Yoshikazu, Yoshihiro Tamura, Akira Nakajima, and Kiyoshi Okada. "Preparation and properties of TiO2/montmorillonite composites." Applied Clay Science 45, no. 1-2 (June 2009): 20–23. http://dx.doi.org/10.1016/j.clay.2009.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Radecka, M., A. Kusior, A. Lacz, A. Trenczek-Zajac, B. Lyson-Sypien, and K. Zakrzewska. "Nanocrystalline TiO2/SnO2 composites for gas sensors." Journal of Thermal Analysis and Calorimetry 108, no. 3 (November 1, 2011): 1079–84. http://dx.doi.org/10.1007/s10973-011-1966-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Feng, Yu, Jinghua Yin, Minghua Chen, Mingxin Song, Bo Su, and Qingquan Lei. "Effect of nano-TiO2 on the polarization process of polyimide/TiO2 composites." Materials Letters 96 (April 2013): 113–16. http://dx.doi.org/10.1016/j.matlet.2013.01.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rasheed, Rashed Taleb, Hadeel Salah Mansoor, and Bashar Hussein Qasim. "Antibacterial activity of TiO2 and TiO2 composites nanopowders prepared by hydrothermal method." Materials Research Express 6, no. 8 (May 31, 2019): 0850a5. http://dx.doi.org/10.1088/2053-1591/ab2313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chaudhury, S. K., and S. C. Panigrahi. "Influence of TiO2 particles on recrystallization kinetics of Al–2Mg–TiO2 composites." Journal of Materials Processing Technology 182, no. 1-3 (February 2007): 540–48. http://dx.doi.org/10.1016/j.jmatprotec.2006.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sun, Y., Y. Wang, and I. Zhitomirsky. "Dispersing agents for electrophoretic deposition of TiO2 and TiO2–carbon nanotube composites." Colloids and Surfaces A: Physicochemical and Engineering Aspects 418 (February 2013): 131–38. http://dx.doi.org/10.1016/j.colsurfa.2012.11.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Miranda, R., V. Ussui, D. Lazar, J. Marchi, W. Miranda, and P. Cesar. "Synthesis and characterization of Y-TZP/TiO2 composites with different TiO2 contents." Dental Materials 30 (2014): e2. http://dx.doi.org/10.1016/j.dental.2014.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography