Contents
Academic literature on the topic 'Compressibility Heat Fluid dynamics Porous materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compressibility Heat Fluid dynamics Porous materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Compressibility Heat Fluid dynamics Porous materials"
Malan, A. G., and R. W. Lewis. "An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials." International Journal for Numerical Methods in Engineering 87, no. 1-5 (2011): 412–23. http://dx.doi.org/10.1002/nme.3125.
Full textShajii, A., and J. P. Freidberg. "Theory of low Mach number compressible flow in a channel." Journal of Fluid Mechanics 313 (April 25, 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Full textRomano, V., U. Tammaro, and P. Capuano. "A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study." Nonlinear Processes in Geophysics 19, no. 3 (2012): 323–33. http://dx.doi.org/10.5194/npg-19-323-2012.
Full textCortellessa, Gino, Fausto Arpino, Simona Di Fraia, and Mauro Scungio. "Two-phase explicit CBS procedure for compressible viscous flow transport in porous materials." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 2 (2018): 336–60. http://dx.doi.org/10.1108/hff-02-2017-0080.
Full textAzadbakhti, Reza, Farzad Pourfattah, Abolfazl Ahmadi, Omid Ali Akbari, and Davood Toghraie. "Eulerian–Eulerian multi-phase RPI modeling of turbulent forced convective of boiling flow inside the tube with porous medium." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 5 (2019): 2739–57. http://dx.doi.org/10.1108/hff-03-2019-0194.
Full textMassarotti, Nicola, Michela Ciccolella, Gino Cortellessa, and Alessandro Mauro. "New benchmark solutions for transient natural convection in partially porous annuli." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (2016): 1187–225. http://dx.doi.org/10.1108/hff-11-2015-0464.
Full textQi, Xiaoni, and Yongqi Liu. "Heat Storage Performance of a Honeycomb Ceramic Monolith." Open Fuels & Energy Science Journal 7, no. 1 (2014): 113–20. http://dx.doi.org/10.2174/1876973x01407010113.
Full textOtomo, Yusuke, Edgar Santiago Galicia, and Koji Enoki. "Enhancement of Subcooled Flow Boiling Heat Transfer with High Porosity Sintered Fiber Metal." Applied Sciences 11, no. 3 (2021): 1237. http://dx.doi.org/10.3390/app11031237.
Full textXing, Z. B., Xingchao Han, Hanbing Ke, et al. "Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 8 (2021): 2754–88. http://dx.doi.org/10.1108/hff-07-2020-0481.
Full textMOHAMMADI, ALIASGHAR, and REGHAN J. HILL. "Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels." Journal of Fluid Mechanics 669 (January 14, 2011): 298–327. http://dx.doi.org/10.1017/s0022112010005045.
Full text