Academic literature on the topic 'Compressibility Heat Fluid dynamics Porous materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compressibility Heat Fluid dynamics Porous materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Compressibility Heat Fluid dynamics Porous materials"
Malan, A. G., and R. W. Lewis. "An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials." International Journal for Numerical Methods in Engineering 87, no. 1-5 (February 11, 2011): 412–23. http://dx.doi.org/10.1002/nme.3125.
Full textShajii, A., and J. P. Freidberg. "Theory of low Mach number compressible flow in a channel." Journal of Fluid Mechanics 313 (April 25, 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Full textRomano, V., U. Tammaro, and P. Capuano. "A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study." Nonlinear Processes in Geophysics 19, no. 3 (May 10, 2012): 323–33. http://dx.doi.org/10.5194/npg-19-323-2012.
Full textCortellessa, Gino, Fausto Arpino, Simona Di Fraia, and Mauro Scungio. "Two-phase explicit CBS procedure for compressible viscous flow transport in porous materials." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 2 (February 5, 2018): 336–60. http://dx.doi.org/10.1108/hff-02-2017-0080.
Full textAzadbakhti, Reza, Farzad Pourfattah, Abolfazl Ahmadi, Omid Ali Akbari, and Davood Toghraie. "Eulerian–Eulerian multi-phase RPI modeling of turbulent forced convective of boiling flow inside the tube with porous medium." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 5 (July 17, 2019): 2739–57. http://dx.doi.org/10.1108/hff-03-2019-0194.
Full textMassarotti, Nicola, Michela Ciccolella, Gino Cortellessa, and Alessandro Mauro. "New benchmark solutions for transient natural convection in partially porous annuli." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (May 3, 2016): 1187–225. http://dx.doi.org/10.1108/hff-11-2015-0464.
Full textQi, Xiaoni, and Yongqi Liu. "Heat Storage Performance of a Honeycomb Ceramic Monolith." Open Fuels & Energy Science Journal 7, no. 1 (December 31, 2014): 113–20. http://dx.doi.org/10.2174/1876973x01407010113.
Full textOtomo, Yusuke, Edgar Santiago Galicia, and Koji Enoki. "Enhancement of Subcooled Flow Boiling Heat Transfer with High Porosity Sintered Fiber Metal." Applied Sciences 11, no. 3 (January 29, 2021): 1237. http://dx.doi.org/10.3390/app11031237.
Full textXing, Z. B., Xingchao Han, Hanbing Ke, Q. G. Zhang, Zhiping Zhang, Huijin Xu, and Fuqiang Wang. "Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 8 (March 22, 2021): 2754–88. http://dx.doi.org/10.1108/hff-07-2020-0481.
Full textMOHAMMADI, ALIASGHAR, and REGHAN J. HILL. "Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels." Journal of Fluid Mechanics 669 (January 14, 2011): 298–327. http://dx.doi.org/10.1017/s0022112010005045.
Full textDissertations / Theses on the topic "Compressibility Heat Fluid dynamics Porous materials"
Harvey, Jeremy Paul. "Oscillatory compressible flow and heat transfer in porous media application to cryocooler regenerators /." Diss., Available online, Georgia Institute of Technology, 2003:, 2003. http://etd.gatech.edu/theses/available/etd-11022003-000618/unrestricted/HarveyJeremyP200312.pdf.
Full textDesai, Prateen V., Committee Chair; Ghiaasiaan, S. Mostafa, Committee Member; Yoda, Minami, Committee Member; Kirkconnell, Carl S., Committee Member; Morris, Jeffrey F., Committee Member. Includes bibliographical references.
Harvey, Jeremy Paul. "Parametric Study of Cryocooler Regenerator Performance." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15480.
Full textVisser, Coert Johannes. "Modelling heat and mass flow through packed pebble beds a heterogeneous volume-averaged approach /." Pretoria : [s.n.], 2007. http://upetd.up.ac.za/thesis/available/etd-08292008-125630/.
Full textPsimas, Michael J. "Experimental and numerical investigation of heat and mass transfer due to pulse combustor jet impingement." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33863.
Full textTavares, Renato Normandia. "Simulação numérica da convecção mista em cavidade preenchida com meio poroso heterogêneo e homogêneo." Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/1657.
Full textIn this work is presented mixed convection heat transfer inside a lid-driven cavity heated from below and filled with heterogeneous and homogeneous porous medium. In the heterogeneous approach, the solid domain is represented by heat conductive equally spaced blocks; the fluid phase surrounds the blocks being limited by the cavity walls. The homogeneous or pore-continuum approach is characterized by the cavity porosity and permeability. Generalized mass, momentum and energy conservation equations are obtained in dimensionless form to represent both the continuum and the pore-continuum models. The numerical solution is obtained via the finite volume method. QUICK interpolation scheme is set for numerical treatment of the advection terms and SIMPLE algorithm is applied for pressure-velocity coupling. Aiming the laminar regime, the flow parameters are kept in the range of 102≤Re≤103 and 103≤Ra≤106 for both the heterogeneous and homogeneous approaches. In the tested configurations for the continuous model, 9, 16, 36, and 64 blocks are considered for each combination of Re and Ra being the microscopic porosity set as constant φ=0,64 . For the pore-continuum model the Darcy number (Da) is set according to the number of blocks in the heterogeneous cavity and the φ. Numerical results of the comparative study between the microscopic and macroscopic approaches are presented. As a result, average Nusselt number equations for the continuum and the pore continuum models as a function of Ra and Re are obtained.
Meira, Rodrigo Esperança da Cunha Pimentel de. "Estudo do escoamento de fluidos de lei de potência e de Bingham em canal parcialmente poroso utilizando o método Lattice Boltzmann." Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2715.
Full textNeste trabalho, propõe-se o estudo numérico do escoamento de fluidos de lei de potência e Bingham junto à interface entre uma região livre e outra porosa (interface fluido-porosa) utilizando o método lattice Boltzmann. Para tanto, considera-se o escoamento entre placas planas e paralelas entre as quais se faz presente um meio poroso abordado de forma heterogênea (resolução espacial da ordem de grandeza dos poros), representado através de obstáculos sólidos quadrados uniformemente distribuídos na parte inferior do canal. As análises realizadas mostram o efeito dos diversos parâmetros adimensionais que descrevem o problema sobre o fator de atrito na região livre do canal. De um modo geral, constata-se que a discrepância entre os fatores de atrito na região livre do canal e para o escoamento entre placas planas e paralelas cresce com o aumento da porosidade e do número de Bingham e com as reduções do número de obstáculos que compõem o meio poroso, número de Reynolds e índice de lei de potência. Ademais, propõe-se a adaptação do modelo analítico para a representação da interface fluido- porosa para escoamento de fluido newtoniano proposto por Ochoa-Tapia e Whitaker (1995b) ao escoamento de fluido de lei de potência, verificando-se a possibilidade de incorporar o comportamento não newtoniano do fluido ao parâmetro empírico do modelo.
The goal of this work is to numerically investigate the flow of power law and Bingham fluids next to the interface between a free and a porous region (fluid-porous interface) using the lattice Boltzmann method. For this, the flow between parallel plates partially filled by a porous material is studied, with the porous medium being represented by a set of solid square obstacles uniformly distributed in lower half of the channel. Results show the influence of non-dimensional parameters in the free region friction factor. In geral, it is observed that the friction factor decreases when porosity or Bingham number are increased and number of obstacles, Reynolds number or power law index are lowered. Moreover, it is porposed the application of the fluid-porous interface model proposed by Ochoa-Tapia e Whitaker (1995b) to the flow of power law fluids by varying the stress jump coefficient with the power law index.
Lavarda, Jairo Vinícius. "Convecção natural de fluidos de lei de potência e de Bingham em cavidade fechada preenchida com meio heterogêneo." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1306.
Full textVários estudos numéricos investigaram cavidades fechadas sob o efeito da convecção natural preenchidas com fluidos newtonianos generalizados (FNG) nos últimos anos pelas aplicações diretas em trocadores de calor compactos, no resfriamento de sistemas eletrônicos e na engenharia de polímeros. Neste trabalho é realizada a investigação numérica do processo de convecção natural de fluidos de lei de Potência e de Bingham em cavidades fechadas, aquecidas lateralmente e preenchidas com meios heterogêneos e bloco centrado. O meio heterogêneo é constituído de blocos sólidos, quadrados, desconectados e condutores de calor. Como parâmetros são utilizados a faixa de Rayleigh de 104 à 107, índice de potência n de 0, 6 à 1, 6, número de Bingham de 0, 5 até Bimax , sendo investigado da influência do número de Prandtl para cada modelo de fluido. Nas cavidades com meio heterogêneo são utilizadas as quantidades de blocos de 9, 16, 36 e 64, mantendo-se a razão entre a condutividade térmica do sólido e do fluido κ = 1. Para as cavidades com bloco centrado, são utilizados os tamanhos adimensionais de 0, 1 à 0, 9 com κ = 0, 1; 1 e 10. A modelagem matemática é realizada pelas equações de balanço de massa, de quantidade de movimento e de energia. As simulações são conduzidas no programa comercial ANSYS FLUENT R . Inicialmente são resolvidos problemas com fluidos newtonianos em cavidade limpa, seguida de cavidade preenchida com meio heterogêneo e posteriormente bloco centrado para validação da metodologia de solução. Na segunda etapa é realizada o estudo com os modelos de fluidos de lei de Potência e de Bingham seguindo a mesma sequência. Os resultados são apresentados na forma de linhas de corrente, isotermas e pelo número de Nusselt médio na parede quente. De maneira geral, a transferência de calor na cavidade é regida pelo número de Rayleigh, tamanho e condutividade térmica dos blocos, pelo índice de potência para o modelo de lei de Potência e do número de Bingham para o modelo de Bingham. O número de Prandtl tem grande influência nos dois modelos de fluidos. O meio heterogêneo reduz a transferência de calor na cavidade quando interfere na camada limite térmica para ambos os fluidos, sendo feita uma previsão analítica para o fluido de lei de Potência. Para bloco centrado, a interferência na camada limite com fluido de lei de Potência também foi prevista analiticamente. A transferência de calor aumentou com bloco de baixa condutividade térmica e pouca interferência e com bloco de alta condutividade térmica e grande interferência, para ambos os fluidos.
Many studies have been carried out in square enclosures with generalized Newtonian fluids with natural convection in past few years for directly applications in compact heat exchangers, cooling of electronics systems and polymeric engineering. The natural convection in square enclosures with differently heated sidewalls, filled with power-law and Bingham fluids in addition with heterogeneous medium and centered block are analyzed in this study. The heterogeneous medium are solid, square, disconnected and conducting blocks. The parameters used are the Rayleigh number in the range 104 - 107 , power index n range of 0, 6 - 1, 6, Bingham number range of 0, 5 - Bimax , being the influence of Prandtl number investigated for each fluid model. The number of blocks for heterogeneous medium are 9, 16, 36 and 64, keeping constant solid to fluid conductive ratio, κ = 1. For enclosures with centered block are used the nondimensional block size from 0, 1 to 0, 9, with solid to fluid conductive ratio in range κ = 0, 1; 1 and 10. Mathematical modeling is done by mass, momentum and energy balance equations. The solution of equations have been numerically solved in ANSYS FLUENT R software. Firstly, numerical solutions for validation with Newtonian fluids in clean enclosures are conducted, followed by enclosures with heterogeneous medium and centered block. Subsequently, numerical solutions of power-law and Bingham fluids with same enclosures configurations are conducted. The results are reported in the form of streamlines, isotherms and average Nusselt number at hot wall. In general, the heat transfer process in enclosure is governed by Rayleigh number, size and thermal conductivity of the blocks, power index n for power-law fluid and Bingham number for Bingham fluid. Both fluid models are very sensitive with Prandtl number changes. Heterogeneous medium decrease heat transfer in enclosure when affects thermal boundary layer for both fluid models. One analytical prediction was made for power-law fluid. An increase in heat transfer occurs with low thermal conductivity block and few interference and with high thermal conductivity block and great interference, for both fluids.
"Local and global fluctuations in a porous medium." 2005. http://library.cuhk.edu.hk/record=b5896431.
Full textThesis submitted in: July 2004.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 116-123).
Text in English; abstracts in English and Chinese.
Mak Chung Ming = Duo kong jie zhi zhong de ju bu xing yu zheng ti xing zhang luo / Mai Zhongming.
Abstract (in English) --- p.i
Abstract (in Chinese) --- p.ii
Acknowledgements --- p.iii
Table of Contents --- p.iv
List of Figures --- p.vi
List of Tables --- p.ix
Chapters
Chapter 1. --- Introduction --- p.1
Chapter 1.1 --- Motivation of research on porous medium --- p.1
Chapter 1.2 --- Description of porous medium --- p.2
Chapter 1.3 --- Brief history of research of thermal convection in porous medium --- p.5
Chapter 2. --- Background --- p.7
Chapter 2.1 --- Introduction --- p.7
Chapter 2.2 --- Governing equations and parameters --- p.8
Chapter 2.3 --- Review of literature --- p.15
Chapter 2.4 --- Summary --- p.20
Chapter 3. --- Instrumentation --- p.21
Chapter 3.1 --- Experimental setup --- p.21
Chapter 3.1.1 --- Porous medium --- p.21
Chapter 3.1.2 --- Working fluid --- p.24
Chapter 3.1.3 --- Container cell --- p.25
Chapter 3.1.4 --- Top plate --- p.26
Chapter 3.1.5 --- Bottom plate --- p.28
Chapter 3.2 --- Thermistors and its calibration --- p.28
Chapter 3.3 --- Other apparatuses --- p.31
Chapter 4. --- Data analysis and results --- p.33
Chapter 4.1 --- Measurement of global heat flux --- p.33
Chapter 4.1.1 --- Heat transfer characteristic --- p.34
Chapter 4.2 --- Local temperature measurements --- p.37
Chapter 4.2.1 --- 3mm bead´ؤwater system (small cell) --- p.38
Chapter 4.2.2 --- 6mm bead´ؤwater system (small cell) --- p.44
Chapter 4.2.3 --- 6mm bead´ؤwater system (large cell) --- p.64
Chapter 4.2.4 --- 10mm bead´ؤwater system (large cell) --- p.76
Chapter 4.3 --- Correlation of the time series --- p.96
Chapter 4.4 --- Thermal pulse experiment --- p.101
Chapter 5. --- Conclusions --- p.111
Appendix --- p.114
Bibliography --- p.116
Visser, Coert Johannes. "Modelling heat and mass flow through packed pebble beds : a heterogeneous volume-averaged approach." Diss., 2008. http://hdl.handle.net/2263/27623.
Full textDissertation (MEng)--University of Pretoria, 2008.
Mechanical and Aeronautical Engineering
unrestricted
Books on the topic "Compressibility Heat Fluid dynamics Porous materials"
Ene, Horia I. Thermal flow in porous media. Dordrecht, Holland: D. Reidel Pub. Co., 1987.
Find full textMarcelo J.S. de Lemos. Turbulent Impinging Jets into Porous Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textModelling heat and mass transfer in freezing porous media. Hauppauge, N.Y., USA: Nova Science Publishers, 2012.
Find full textAmerican Society of Mechanical Engineers. Winter Meeting. Heat transfer and flow in porous media: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, Texas, November 25-30, 1990. New York, N.Y: ASME, 1990.
Find full textNield, Donald A. Convection in Porous Media. 4th ed. New York, NY: Springer New York, 2013.
Find full textLemos, Marcelo J. S. de. Turbulent Impinging Jets into Porous Materials. Springer, 2012.
Find full textBrondenbrener, Leonid. Modelling Heat and Mass Transfer in Freezing Porous Media. Nova Science Publishers, Incorporated, 2012.
Find full textB, Sagar, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Regulatory Applications., Analytic and Computational Research, Inc., and Center for Nuclear Waste Regulatory Analyses (Southwest Research Institute), eds. PORFLOW: A multifluid multiphase model for simulating flow, heat transfer, and mass transport in fractured porous media : user's manual, version 2.41. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textBook chapters on the topic "Compressibility Heat Fluid dynamics Porous materials"
Furbish, David Jon. "Porous Media Flows." In Fluid Physics in Geology. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195077018.003.0017.
Full textConference papers on the topic "Compressibility Heat Fluid dynamics Porous materials"
Martins-Costa, Maria Laura, and Roge´rio M. Saldanha da Gama. "Forced Convection Flow Through an Unsaturated Wellbore." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41128.
Full textEnright, Ryan, Cormac Eason, Tara Dalton, and Todd Salamon. "Transport in Superhydrophobic Microchannels: A Porous Modeling Approach." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32823.
Full textSobera, M. P., C. R. Kleijn, P. Brasser, and H. E. A. van den Akker. "Multiscale CFD of the Flow, Heat and Mass Transfer Through a Porous Material With Application to Protective Garments." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3106.
Full textAviles-Ramos, Cuauhtemoc, and Clifford Rudy. "Steady-State Heat Transfer Modeling of a Calorimeter Measurement Chamber." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32091.
Full textYuan, Jinliang, Guogang Yang, and Bengt Sunde´n. "CFD Approach Analysis of Chemical Reactions Coupled Convective Heat Transfer in Reformer Ducts." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56077.
Full textHo, Clifford K., and Walter Gerstle. "Terrestrial Heat Repository for Months of Storage (THERMS): A Novel Radial Thermocline System." In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-63066.
Full textKisselev, Arcadii E., Gennadii V. Kobelev, Valerii F. Strizhov, and Alexander D. Vasiliev. "Debris Thermal Hydraulics Modeling of QUENCH Experiments." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89457.
Full text