Academic literature on the topic 'Compressible Two-Phase Flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compressible Two-Phase Flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Compressible Two-Phase Flow"

1

Jin, H., J. Glimm, and D. H. Sharp. "Compressible two-pressure two-phase flow models." Physics Letters A 353, no. 6 (May 2006): 469–74. http://dx.doi.org/10.1016/j.physleta.2005.11.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Hyeonseong, and James Glimm. "Weakly compressible two-pressure two-phase flow." Acta Mathematica Scientia 29, no. 6 (November 2009): 1497–540. http://dx.doi.org/10.1016/s0252-9602(10)60001-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lung-an, Ying. "Two phase compressible flow in porous media." Acta Mathematica Scientia 31, no. 6 (November 2011): 2159–68. http://dx.doi.org/10.1016/s0252-9602(11)60391-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aboulhasanzadeh, Bahman, and Kamran Mohseni. "An observable regularization of compressible two-phase flow." Procedia Computer Science 108 (2017): 1943–52. http://dx.doi.org/10.1016/j.procs.2017.05.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trimulyono, Andi, S. Samuel, and Muhammad Iqbal. "Sloshing Simulation of Single-Phase and Two-Phase SPH using DualSPHysics." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 17, no. 2 (June 4, 2020): 50–57. http://dx.doi.org/10.14710/kapal.v17i2.27892.

Full text
Abstract:
The sloshing phenomenon is one of the free surface flow that can endanger liquid cargo carriers such as ships. Sloshing is defined as the resonance of fluid inside a tank caused by external oscillation. When sloshing is close to the natural frequency of the tank it could endanger ships. Particle method has the advantages to be applied because sloshing is dealing with free surface. One of the particle methods is Smoothed Particle Hydrodynamics (SPH). In this study, compressible SPH was used as a result of the pressure oscillation, which exists because of the effect of density fluctuation as nature of weakly compressible SPH. To reduce pressure noise, a filtering method, Low Pass Filter, was used to overcome pressure oscillation. Three pressure sensors were used in the sloshing experiment with a combination of motions and filling ratios. Only one pressure sensor located in the bottom was used to validate the numerical results. A set of SPH parameters were derived that fit for the sloshing problem. The SPH results show a good agreement with the experiment’s. The difference between SPH and experiment is under 1 % for sway, but a larger difference shows in roll. Low pass filter technique could reduce pressure noise, but comprehensive method needs to develop for general implementation.
APA, Harvard, Vancouver, ISO, and other styles
6

Hewedy, N. I. I., M. H. Hamed, A. F. M. Mahrous, and T. A. Ghonim. "Performance Prediction of Compressible Two-Phase Flow through Ejectors." ERJ. Engineering Research Journal 38, no. 1 (January 1, 2015): 31–46. http://dx.doi.org/10.21608/erjm.2015.66773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WOHLETZ, K. "Chapter 7 Pyroclastic surges and compressible two-phase flow." Developments in Volcanology 4 (1998): 247–312. http://dx.doi.org/10.1016/s1871-644x(01)80008-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BURMAN, E. "ADAPTIVE FINITE ELEMENT METHODS FOR COMPRESSIBLE TWO-PHASE FLOW." Mathematical Models and Methods in Applied Sciences 10, no. 07 (October 2000): 963–89. http://dx.doi.org/10.1142/s0218202500000495.

Full text
Abstract:
We apply the adaptive streamline diffusion method for compressible flow in conservation variables using P1×P0 finite elements to a conservative model of two-phase flow. The adaptive algorithm is based on an a posteriori error estimate involving certain stability factors related to a linearized dual problem. For a model problem we prove that the stability factors are bounded. We compute the stability factors for some numerical examples in one- and two-space dimensions.
APA, Harvard, Vancouver, ISO, and other styles
9

Amaziane, B., and L. Pankratov. "Homogenization of compressible two-phase two-component flow in porous media." Nonlinear Analysis: Real World Applications 30 (August 2016): 213–35. http://dx.doi.org/10.1016/j.nonrwa.2016.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jin, H., J. Glimm, and D. H. Sharp. "Entropy of averaging for compressible two-pressure two-phase flow models." Physics Letters A 360, no. 1 (December 2006): 114–21. http://dx.doi.org/10.1016/j.physleta.2006.07.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Compressible Two-Phase Flow"

1

Sankaran, Vaidyanathan. "Sub-grid Combustion Modeling for Compressible Two-Phase Flows." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5274.

Full text
Abstract:
A generic formulation for modeling the sub-grid combustion in compressible, high Reynolds number, two-phase, reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of the complex flow-fields such as those encountered in many combustion systems. In LES-LEM, all the physical processes such as molecular diffusion, small and large scale turbulent convection and chemical reaction are modeled separately but concurrently at their respective time scales. This multi-scale phenomena is solved using a two-scale numerical approach, wherein molecular diffusion, small scale turbulent convection and chemical reaction are grouped as small scale processes and the convection at the (LES grid) resolved scales are deemed as the large scale processes. Small-scale processes are solved using a hybrid finite-difference Monte-carlo type approach in a one-dimensional domain. Large-scale advection on the three-dimensional LES grid is modeled in a Lagrangian manner that conserves mass. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Power Systems' combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Comparison of the energy growth in the fundamental and sub-harmonic mode in the presence and absence of the droplets shows excellent agreement with spectral DNS. Finally, to test the ability of the present two-phase LES-LEM in simulating partially premixed combustion, a LES of freely propagating partially premixed flame in a droplet-laden isotropic turbulent field is conducted. LES-LEM along with the spray models correctly captures the flame structure in the partially premixed flames. It was found that most of the fuel droplets completely vaporize before reaching the flame, and hence provides a continuous supply of reactants, which results in an intense reaction zone similar to a premixed flame. Some of the droplets that did not evaporate completely, traverse through the flame and vaporize suddenly in the post flame zone. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. Triple flame structure are also observed in the flow-field due to the equivalence ratio fluctuations.
APA, Harvard, Vancouver, ISO, and other styles
2

Bachmann, Mathieu [Verfasser]. "Dynamics of cavitation bubbles in compressible two-phase fluid flow / Mathieu Bachmann." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1036241467/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoffmann, Malte [Verfasser]. "An Explicit Discontinuous Galerkin Method for Parallel Compressible Two-Phase Flow Simulations / Malte Hoffmann." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149580283/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zou, Ziqiang. "A sharp interface method for low Mach two-phase flows with phase change Toward asymptotic-preserving low-Mach correction for sharp interface two-phase flows with capillary effects An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime." Thesis, université Paris-Saclay, 2020. https://tel.archives-ouvertes.fr/tel-03178310.

Full text
Abstract:
Une approche d'interface raide est présentée pour le calcul des écoulements diphasiques avec tension superficielle et changement de phase en régime à faible nombre de Mach. Pour développer un tel modèle, où de légers effets compressibles sont pris en compte ainsi que des fermetures thermodynamiques correctes, le liquide et le gaz sont considérés comme compressibles et décrits par un solveur compressible précis. Ce solveur compressible adopte une technique de décomposition appelée "décomposition du transport acoustique" qui décompose le système Euler en deux parties: acoustique et transport. Sur la base du sous-système acoustique, un solveur de Riemann approximatif qui tient compte des effets de tension superficielle et de changement de phase est développé. L'interface de l'écoulement diphasique est capturée par la méthode de Level Set et considérée comme raide. La problème de la capture d'interface de la méthode Level Set dans le cadre Eulérien est le point clé des simulations d'écoulement diphasique, et dans ce travail, nous proposons et adoptons des approches d'ordre élevé pour l'advection de l'interface, la redistanciation et l'estimation de la courbure. En régime à faible nombre de Mach, les solveurs compressibles conventionnels perdent en précision et une correction à faible Mach est alors nécessaire pour réduire la dissipation numérique. Pour une méthode d'interface raide, l'interface est traitée comme la discontinuité de contact via la méthode Ghost Fluid. Sans une région lisse à l'interface, une telle discontinuité existant à l'interface présente un énorme défi pour la conception d'un schéma numérique. La correction à faible Mach bien connue dans la littérature pourrait conduire à une erreur de troncature significative, en particulier pour les écoulements diphasiques avec de grands rapports de densité et de vitesse du son. Pour retrouver une bonne propriété de préservation asymptotique, nous proposons une nouvelle correction à faible Mach avec une analyse asymptotique rigoureuse. Plusieurs cas de test numériques ont été utilisés pour valider la présente approche numérique et montrer ses bonnes performances
A sharp interface approach is presented for computing two-phase flows with surface tension and phase change in low Mach regime. To develop such a model, where slight compressible effects are taken into account as well as correct thermodynamical closures, both the liquid and the gas are considered compressible and described by a precise compressible solver. This compressible solver adopt a splitting technique called "acoustic-transport splitting" which splits the Euler system into two parts: acoustic and transport. Based on the acoustic subsystem, an approximate Riemann solver that accounts for surface tension and phase change effects is developed. The interface between two-phase flows is captured by the Level Set method that is considered to be sharp. The interface capturing issue of the Level Set method within the Eulerian framework is the key point of the two-phase flow simulations, and in this work we propose and adopt high-order approaches for interface advection, redistancing and curvature estimation. In low Mach regime, conventional compressible solvers lose accuracy and a low Mach correction is then necessary to reduce the numerical dissipation. For a sharp interface method, the interface is treated as the shock-wave contact discontinuity via the Ghost Fluid method. Without a smooth region at the interface, such discontinuity existing at the interface presents a huge challenge to the design of a numerical scheme. The well-known low Mach fix in literature could lead to significant truncation error, especially for two-phase flows with large density and sound speed ratios. To recover a good asymptotic-preserving property, we propose a new low Mach correction with rigorous asymptotic analysis. Several numerical test cases have been employed to validate the present numerical approach and enlighten its good performance
APA, Harvard, Vancouver, ISO, and other styles
5

Hoffmann, Malte [Verfasser], and Claus-Dieter [Akademischer Betreuer] Munz. "An explicit discontinuous Galerkin method for parallel compressible two-phase flow simulations / Malte Hoffmann ; Betreuer: Claus-Dieter Munz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1149680970/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Padioleau, Thomas. "Development of "all-régime" AMR simulation methods for fluid dynamics, application in astrophysics and two-phase flows." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP086.

Full text
Abstract:
Bien que performantes pour la capture des chocs, la plupart des méthodes de simulation standards ne sont pas adaptées à des régimes de Mach variés. Des méthodes numériques innovantes, utilisant des schémas de type Volumes Finis, robustes et précises uniformément selon le nombre de Mach (dites "tout régime") ont été récemment élaborées au CEA. Ces méthodes permettent de résoudre les équations de la mécanique des fluides compressibles pour capturer des chocs, mais aussi pour simuler des écoulements à très faible vitesse. Fort de ces résultats prometteurs, nous proposons dans cette thèse de mettre à l’épreuve ces nouvelles méthodes dans deux domaines applicatifs différents: les écoulements diphasiques à petit échelle et les écoulements compressibles en astrophysique. Pour ces deux domaines la simulation multi-régime est un point difficile. En effet, ces deux contextes d’applications ont pour cœur une modélisation d’écoulement compressible mais mettent en jeu des phénomènes de convection et de compressibilité à des régimes de Mach très variés. L’approche "tout régime" permettra de capturer des phénomènes très compressibles tout en gardant la précision sur les écoulements basse vitesse
Although classic simulation methods for compressible flow are efficient for shock capturing, they are not adapted to variable Mach regimes. Innovative methods using Finite Volume numerical schemes, robust and uniformly accurate with respect to the Mach number (so-called "all-regime"), were recently developed at CEA. These methods allow to solve the equations of compressible flows for both shocks capturing and flows involving very low material speed. Using the ground of these promising results, we propose within this thesis to challenge these new methods in two different application areas: small scale two-phase flows and compressible flows in astrophysics. For both contexts the multi-regime simulation is a key issue: they both rely on a compressible flow modeling but involve convection and compressibility in highly-variable Mach regimes. The "all-regime" approach is a good candidate for capturing highly compressible phenomena while preserving the accuracy in the low speed flows
APA, Harvard, Vancouver, ISO, and other styles
7

Mutegi, Mondie Kimandi [Verfasser], and Jürgen [Akademischer Betreuer] Schmidt. "Experimental Investigation of Mass Flow Rate and Pressure-drop through Rupture Disk Devices with Compressible Two-Phase Flow / Mondie Kimandi Mutegi ; Betreuer: Jürgen Schmidt." Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1212030990/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Songzhi. "Modeling of Diesel injection in subcritical and supercritical conditions." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC045/document.

Full text
Abstract:
Pour satisfaire aux dernières réglementations en matière d'émissions, des progrès importants sont encore attendus des moteurs à combustion interne. De plus, améliorer l'efficacité du moteur pour réduire les émissions et la consommation de carburant est devenu plus essentiel qu'auparavant. Mais, de nombreux phénomènes complexes restent mal compris dans ce domaine, tels que le processus d'injection de carburant. Nombreux logiciels pour la dynamique des fluides numérique (CFD) prenant en compte le changement de phase (comme la cavitation) et la modélisation de l’injection ont été développés et utilisés avec succès dans le processus d’injection. Néanmoins, il existe peu de codes CFD capables de simuler avec précision des conditions d’injection transcritiques, à partir d'une condition de température de carburant sous-critique vers un mélange supercritique dans la chambre de combustion. En effet, la plupart des modèles existants peuvent simuler des écoulements à phase unique, éventuellement dans des conditions supercritiques, ou des écoulements diphasiques dans des conditions sous-critiques. Par conséquent, il manque un modèle complet capable de traiter les conditions transcritiques, y compris la transition de phase possible entre les régimes souscritiques et supercritiques, ou entre les écoulements monophasiques et diphasiques, de manière dynamique. Cette thèse a pour objectif de relever ce défi.Pour cela, des modèles d'écoulement diphasique compressible de fluide réel basés sur une approche eulérienne-eulérienne avec prise en compte de l'équilibre de phase ont été développés et discutés dans le présent travail. Plus précisément, un modèle à 6-équation entièrement compressibles incluant les équations de bilan des phases liquide et gazeuse résolues séparément ; et un modèle à 4-équation qui résout les équations des bilans liquide et gazeux en équilibre mécanique et thermique sont proposés dans ce manuscrit. L’équation d’état Peng-Robinson EoS est sélectionné pour fermer les deux systèmes et pour faire face aux éventuels changements de phase et à la transition ou à la séparation des phases. En particulier, un solveur d'équilibre de phase a été développé et validé. Ensuite, une série de tests académiques 1D portant sur les phénomènes d'évaporation et de condensation effectués dans des conditions sous-critiques et supercritiques a été simulée et comparée aux données de la littérature et aux résultats académiques disponibles. Ensuite, les modèles d'écoulement en deux phases entièrement compressibles (systèmes à 6-équation et à 4- équation) ont été utilisés pour simuler les phénomènes de cavitation dans une buse 3D de taille réelle afin d'étudier l'effet de l’azote dissous sur la création et le développement de la cavitation. Le bon accord avec les données expérimentales prouve que le solveur proposé est capable de gérer le comportement complexe du changement de phase dans des conditions sous-critiques. Enfin, la capacité du solveur à traiter l’injection transcritique à des pressions et températures élevées a été validée par la modélisation réussie de l’injecteur Spray A du réseau de combustion moteur (ECN)
To satisfy latest stringent emission regulations, important progress is still be expected from internal combustion engines. In addition, improving engine efficiency to reduce the emission and fuel consumption has become more essential than before. But many complex phenomena remain poorly understood in this field, such as the fuel injection process. Numerous software programs for computational fluid dynamics (CFD) considering phase change (such as cavitation) and injection modelling, have been developed and used successfully in the injection process. Nevertheless, there are few CFD codes able to simulate correctly transcritical conditions starting from a subcritical fuel temperature condition towards a supercritical mixture in the combustion chamber. Indeed, most of the existing models can simulate either single-phase flows possibly in supercritical condition or two-phase flows in subcritical condition; lacking therefore, a comprehensive model which can deal with transcritical condition including possible phase transition from subcritical to supercritical regimes, or from single-phase to two-phase flows, dynamically. This thesis aims at dealing with this challenge. For that, real fluid compressible two-phase flow models based on Eulerian-Eulerian approach with the consideration of phase equilibrium have been developed and discussed in the present work. More precisely, a fully compressible 6-equation model including liquid and gas phases balance equations solved separately; and a 4-equation model which solves the liquid and gas balance equations in mechanical and thermal equilibrium, are proposed in this manuscript. The Peng-Robinson equation of state (EoS) is selected to close both systems and to deal with the eventual phase change or phase transition. Particularly, a phase equilibrium solver has been developed and validated. Then, a series of 1D academic tests involving the evaporation and condensation phenomena performed under subcritical and supercritical conditions have been simulated and compared with available literature data and analytical results. Then the fully compressible two-phase flow models (6-Equation and 4-Equation systems) have been employed to simulate the cavitation phenomena in a real size 3D nozzle to investigate the effect of dissolved N2 on the inception and developing of cavitation. The good agreement with experimental data proves the solver can handle the complex phase change behavior in subcritical condition. Finally, the capability of the solver in dealing with the transcritical injection at high pressure and temperature conditions has been further validated through the successful modelling of the engine combustion network (ECN) Spray A injector
APA, Harvard, Vancouver, ISO, and other styles
9

Quenjel, El Houssaine. "Volumes finis/Eléments finis pour des écoulements diphasiques compressibles en milieux poreux hétérogènes et anisotropes." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0059/document.

Full text
Abstract:
Cette thèse est centrée autour du développement et de l'analyse des schémas volumes finis robustes afin d'approcher les solutions du modèle diphasique compressible en milieux poreux hétérogènes et anisotropes. Le modèle à deux phases compressibles comprend deux équations paraboliques dégénérées et couplées dont les variables principales sont la saturation du gaz et la pression globale. Ce système est discrétisé à l'aide de deux méthodes différentes (CVFE et DDFV) qui font partie de la famille des volumes finis. La première classe à laquelle on s'intéresse consiste à combiner la méthode des volumes finis et celle des éléments finis. Dans un premier temps, on considère un schéma volume finis upwind pour la partie convective et un schéma de type éléments finis conformes pour la diffusion capillaire. Sous l'hypothèse que les coefficients de transmissibilités sont positifs, on montre que la saturation vérifie le principe du maximum et on établit des estimations d'énergies permettant de démontrer la convergence du schéma. Dans un second temps, on a mis en place un schéma positif qui corrige le précédent. Ce schéma est basé sur une approximation des flux diffusifs par le schéma de Godunov. L'avantage est d'établir la bornitude des solutions approchées ainsi que les estimations uniformes sur les gradients discrets sans aucune contrainte ni sur le maillage ni sur la perméabilité. En utilisant des arguments classiques de compacité, on prouve rigoureusement la converge du schéma. Chaque schéma est validé par des simulations numériques qui montrent bien le comportement attendu d'une telle solution. Concernant la deuxième classe, on s'intéressera tout d'abord à la construction et à l'étude d'un nouveau schéma de type DDFV (Discrete Duality Finite Volume) pour une équation de diffusion non linéaire dégénérée. Cette méthode permet d' avantage de prendre en compte des maillages très généraux et des perméabilités quelconques. L'idée clé de cette discrétisation est d'approcher les flux dans la direction normale par un schéma centré et d'utiliser un schéma décentré dans la direction tangentielle. Par conséquent, on démontre que la solution approchée respecte les bornes physiques et on établit aussi des estimations d'énergie. La convergence du schéma est également établie. Des résultats numériques confirment bien ceux de la théorie. Ils exhibent en outre que la méthode est presque d'ordre deux
The objective of this thesis is the development and the analysis of robust and consistent numerical schemes for the approximation of compressible two-phase flow models in anisotropic and heterogeneous porous media. A particular emphasis is set on the anisotropy together with the geometric complexity of the medium. The mathematical problem is given in a system of two degenerate and coupled parabolic equations whose main variables are the nonwetting saturation and the global pressure. In view of the difficulties manifested in the considered system, its cornerstone equations are approximated with two different classes of the finite volume family. The first class consists of combining finite elements and finite volumes. Based on standard assumptions on the space discretization and on the permeability tensor, a rigorous convergence analysis of the scheme is carried out thanks to classical arguments. To dispense with the underlined assumptions on the anisotropy ratio and on the mesh, the model has to be first formulated in the factional flux formulation. Moreover, the diffusive term is discretized by a Godunov-like scheme while the convective fluxes are approximated using an upwind technique. The resulting scheme preserves the physical ranges of the computed solution and satisfies the coercivity property. Hence, the convergence investigation holds. Numerical results show a satisfactory qualitative behavior of the scheme even if the medium of interest is anisotropic. The second class allows to consider more general meshes and tensors. It is about a new positive nonlinear discrete duality finite volume method. The main point is to approximate a part of the fluxes using a non standard technique. The application of this ideato a nonlinear diffusion equation yields surprising results. Indeed,not only is the discrete maximum property fulfilled but also the convergence of the scheme is established. Practically, the proposed method shows great promises since it provides a positivity-preserving and convergent scheme with optimal convergence rates
APA, Harvard, Vancouver, ISO, and other styles
10

Peluchon, Simon. "Approximation numérique et modélisation de l'ablation liquide." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0739/document.

Full text
Abstract:
Lors de sa rentrée dans l’atmosphère d’une planète, un engin spatial subit un échauffement important dû aux frottements des gaz atmosphériques sur la paroi. Cette élévation de température conduit à une dégradation physico-chimique du bouclier thermique de l’objet constitué de matériaux composites. Un composite est constitué de divers matériaux qui s’ablatent différemment. Dans cette thèse, nous nous intéressons essentiellement à la fusion d’un matériau durant sa phase de rentrée atmosphérique. Nous sommes donc en présence de trois phases : solide, liquide et gaz. Pour simuler ce phénomène, des méthodes numériques robustes ont été mises au point pour calculer l’écoulement diphasique compressible autour de l’objet. Le couplage entre le solide et l’écoulement fluide a aussi été étudié. Les méthodes numériques développées durant cette thèse sont basées sur une approche volumes finis. Une stratégie de décomposition d’opérateurs est utilisée pour résoudre le modèle diphasique à cinq équations avec les termes de dissipation modélisant l’écoulement fluide. L’idée principale de cette décomposition d’opérateurs est de séparer les phénomènes acoustiques et dissipatifs des phénomènes de transport. Un traitement implicite de l’étape acoustique est réalisé tandis que l’étape de transport est résolue explicitement. Le schéma semi-implicite global est alors très robuste, conservatif et préserve les discontinuités de contact. Les conditions d’interface entre les domaines fluide et solide sont déduites des bilans de masse et d’énergie à la paroi. Le front de fusion est suivi explicitement grâce à une formulation ALE des équations. La robustesse de l’approche et l’apport de la formulation semi-implicite sont finalement démontrés grâce à des expériences numériques mono et bidimensionnelles sur maillages curvilignes mobiles
During atmospheric re-entry phase, a spacecraft undergoes a sudden increase of the temperature due to the friction of atmospheric gases. This rise drives to a physical-chemical degradation of the thermal protective system of the object made of composite material. A composite is made of several materials with ablates differently. In this thesis, we mainly focus on the melting of an object during its re-entry phase. Therefore there are three phases: solid, liquid and gas phases. In order to simulate this phenomenon, robust numerical methods have been developed to compute a compressible multiphase flow. The coupling strategy between the solid and the fluid have also been studied. Solvers developed in the present work are based on Finite Volume Method. A splitting strategy is used to compute compressible two-phase flows using the five-equation model with viscous and heat conduction effects. The main idea of the splitting is to separate the acoustic and dissipative phenomena from the transport one. An implicit treatment of the acoustic step is performed while the transport step is solved explicitly. The overall scheme resulting from this splitting operator strategy is very robust, conservative, and preserves contact discontinuities. The boundary interface condition between the solid and the multiphase flow is enforced by mass and energy balances at the wall. The melting front is tracked explicitly using an ALE formulation of the equations. The robustness of the approach and the interest of the semi-implicit formulation are demonstrated through numerical simulations in one and two dimensions on moving curvilinear grids
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Compressible Two-Phase Flow"

1

Wang, B. Y. Asymptotic solutions to compressible laminar boundary-layer solutions for dusty-gas flow over a semi-infinite flat plate. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, B. Y. Finite-difference solutions for compressible laminar boundary-layer flows of a dusty gas over a semi-infinite flat plate. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

T, Papageorgiou Demetrios, Smyrlis Yiorgos S, and Institute for Computer Applications in Science and Engineering., eds. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Compressible Two-Phase Flow"

1

Osher, Stanley, and Ronald Fedkiw. "Two-Phase Compressible Flow." In Applied Mathematical Sciences, 167–88. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/0-387-22746-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vincent, Stéphane, Jean-Luc Estivalézes, and Ruben Scardovelli. "Compressible (Low-Mach) Two-Phase Flows." In Small Scale Modeling and Simulation of Incompressible Turbulent Multi-Phase Flow, 171–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09265-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doležal, Richard. "Two Flow Heat Exchanger with a One-Phase Compressible Working Medium Flow." In Lecture Notes in Engineering, 44–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83152-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chalons, Christophe, Jim Magiera, Christian Rohde, and Maria Wiebe. "A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow." In Theory, Numerics and Applications of Hyperbolic Problems I, 309–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91545-6_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dao, Thu-Huyen, Michael Ndjinga, and Frédéric Magoulès. "A Schur Complement Method for Compressible Two-Phase Flow Models." In Lecture Notes in Computational Science and Engineering, 759–68. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05789-7_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

So, K. K., X. Y. Hu, and N. A. Adams. "Anti-diffusion Interface Sharpening Technique for Two-Phase Compressible Flow Simulations." In 28th International Symposium on Shock Waves, 57–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25685-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Romenski, Evgeniy, Galina Reshetova, and Ilya Peshkov. "Computational Model for Compressible Two-Phase Flow in Deformed Porous Medium." In Computational Science and Its Applications – ICCSA 2021, 224–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86653-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rohde, Christian. "Fully Resolved Compressible Two-Phase Flow: Modelling, Analytical and Numerical Issues." In New Trends and Results in Mathematical Description of Fluid Flows, 115–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94343-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liang, Shan, Wei Liu, and Li Yuan. "Solving Seven-Equation Model of Compressible Two-Phase Flow Using CUDA-GPU." In Communications in Computer and Information Science, 25–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53962-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tokareva, Svetlana, and Eleuterio Toro. "A Flux Splitting Method for the Baer-Nunziato Equations of Compressible Two-Phase Flow." In Springer Proceedings in Mathematics & Statistics, 127–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57394-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Compressible Two-Phase Flow"

1

COAKLEY and J. CHAMPNEY. "Numerical simulation of compressible, turbulent, two-phase flow." In 18th Fluid Dynamics and Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Helluy, Philippe. "Lattice Boltzmann methods for compressible two-phase flow problems." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sakthi, Gokul Siddarth Mani, Laila Abu-Farah, and Natalie Germann. "CFD Modelling of Compressible Two-Phase Flow with Phase Change Using OpenFOAM." In The 8th World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2023. http://dx.doi.org/10.11159/icmfht23.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Williams, Randall, and Richard Welle. "Solid cryogen formation in a throttled two-phase compressible flow." In 6th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nowakowski, A. F., B. V. Librovich, and L. Lue. "Reactor Safety Analysis Based on a Developed Two-Phase Compressible Flow Simulation." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58351.

Full text
Abstract:
The direct numerical simulation of multiphase flow is a challenging research topic with various key applications. In the present work, a computational simulation of multi-phase compressible flow has been proposed for safety analysis of chemical reactors. The main objective of a pressure relief system is to prevent accidents occurring from over pressurisation of the reactor. We are particularly interested in understanding the phenomena associated with emergency pressure relief systems for batch-type reactors and storage vessels. Existence of multiphase flow is significantly influenced by the interface between the phases and the associated discontinuities across the phase. The approach, which builds on the method first introduced by Saurel and Abgrall [1], was developed for solving two-phase compressible flow problems. Each phase is separately described by conservation equations. The interactions between two phases appear in the basic equations as transfer terms across the interface. The equations are complemented by state equations for the two phases and by additional correlations for the right-hand side coupling terms. The method is able to deal with multiphase mixtures and interface problems between compressible fluids. The key difference compared to classical two-fluid model is the presence of separate pressures fields associated with phases and introduction of pressure and velocity relaxation procedures. The relaxation operators tackle the boundary conditions at the interface and consequently the model is valid for fluid mixtures, as well as for pure fluids. The numerical technique requires the system to be decomposed and involves a non-conservative hyperbolic solver, an instantaneous pressure relaxation procedure and source term operators. The solution is obtained by succession of integrators using a second-order accurate scheme. The ultimate goal of this research is to use the method for studying the venting problem in reactor systems after verifying its performance on a series of standardised test cases documented in the literature.
APA, Harvard, Vancouver, ISO, and other styles
6

Kourakos, Vasilios, Sai¨d Chabane, Patrick Rambaud, and Jean-Marie Buchlin. "Flowforce in Safety Relief Valve Under Incompressible, Compressible and Two-Phase Flow Conditions." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57896.

Full text
Abstract:
The use of relief valves is crucial for the safety of power plants. Indeed, these simple and robust in their design valves are the ultimate protection when all other systems are insufficient. This study is focused on valve opening characteristics which can be concluded through the determination of flowforces applied at the valve disk. A spring loaded safety relief valve (1 1/2″ G 3″) and transparent model of this valve are tested under static conditions. The spring is removed and the forces exerted at the valve disk for different inlet pressures and lift positions are measured. Compressible, incompressible and two-phase flow behaviors are investigated and compared. Inversed force of air and water is noticed above a certain value of valve lift. Numerical simulations are performed to verify experimental findings.
APA, Harvard, Vancouver, ISO, and other styles
7

Herbst, Rhameez Sheldon, and Dia Zeidan. "Compressible two-phase flow using a fourth order time-accurate TVD-SLIC method." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wemmenhove, Rik, Erwin Loots, Roel Luppes, and Arthur E. P. Veldman. "Modeling Two-Phase Flow With Offshore Applications." In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67460.

Full text
Abstract:
With the trend towards offshore LNG production and offloading, sloshing of LNG in partially filled tanks has become an important research subject for the offshore industry. LNG sloshing may induce impact pressures on the containment system and may affect the motions of the LNG carrier. So far, LNG sloshing has been studied mainly using model experiments with an oscillation tank. However, the development of Navier-Stokes solvers with a detailed handling of the free surface allows the numerical simulation of sloshing. It should be investigated, however, how accurate the results of this type of simulations are for this complex flow problem. The paper first presents the details of the numerical model, an improved Volume Of Fluid (iVOF) method. The program has been developed initially to study the sloshing of liquid fuel in satellites. Later, the numerical model has been used for calculations of green water loading and the analysis of anti-roll tanks, including the coupling with ship motions. Recently, the model has been extended to incorporate two-phase flow. This extension improves its ability to simulate the effect of gas bubbles of different sizes. Gas bubbles are present in virtually all relevant offshore situations; not only at LNG sloshing but also during green water events, bow slamming and water entry. In a two-phase flow model, both the liquid and the gas phase can have their own continuity and momentum equations. The handling of the compressibility of the gas phase is a major issue in the design of a two-phase flow model. However, as a first step in the modeling process, the gas phase is considered as incompressible. For a dambreak experiment, results of the one-phase model, the incompressible two-phase model and model experiment results have been compared. It is shown that the physics are more accurately simulated with the incompressible two-phase model. Furthermore, the paper will show results of the incompressible model for LNG sloshing. The physics of LNG sloshing and several other applications can be approached better by taking the compressibility into account. Therefore, as a second step, a compressible model is currently under construction, involving adiabatic compression of the gas phase.
APA, Harvard, Vancouver, ISO, and other styles
9

Shyue, Keh-Ming. "An Adaptive Moving-Mesh Relaxation Scheme for Compressible Two-Phase Barotropic Flow With Cavitation." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-04009.

Full text
Abstract:
We describe a simple relaxation scheme for the efficient numerical resolution of compressible two-phase barotropic flow with and without cavitation on moving meshes. The algorithm uses a curvilinear-coordinate formulation of the relaxation model proposed by Saurel et al. (J. Comput. Phys. 228 (2009) 1678–1712) as the basis, and employs a wave-propagation based relaxed scheme to solve the model system on a mapped grid that is constructed by a conventional mesh-redistribution procedure for better solution adaptation. Sample numerical results in both one and two space dimensions are present that show the feasibility of the proposed method for practical problems.
APA, Harvard, Vancouver, ISO, and other styles
10

Wemmenhove, Rik, Roel Luppes, Arthur E. P. Veldman, and Tim Bunnik. "Application of a VOF Method to Model Compressible Two-Phase Flow in Sloshing Tanks." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57254.

Full text
Abstract:
The growing transport of LNG in partially filled tanks raises the demand to have accurate methods to predict the fluid behaviour in these sloshing tanks and the effect of the sloshing fluid on the tanker motion. To examine the motion of the sloshing fluid, model experiments have been carried out on a scale of 1:10. Different tank filling ratios and types of motion have been tested to study the sloshing fluid behaviour for various sea states. The model experiments have been carried out to provide extensive validation material for the numerical method ComFLOW. The details of this improved Volume Of Fluid (iVOF) method are presented in the paper. The method resolves the governing equations in both fluids, one of them being compressible. The compressibility of the second phase is especially important for more violent flow conditions, when two-phase phenomena such as air entrapment and air entrainment occur frequently. Particular attention in the numerical method has been paid to the treatment of the flow variables around the interface, especially the density. The fluid is convected by means of a first-or second-order upwind scheme. The behaviour of the sloshing fluid strongly depends upon the regularity of the tank motion and the filling ratio of the tank. Video frames, wave probes and pressure transducers have been used to compare the fluid flow of simulation and experiment. Two-phase effects such as air entrapment are more common for increasing tank filling ratios and for more irregular tank motion. A realistic simulation of these effects is possible by modeling two-phase flow, especially when using a relatively fine grid and applying the less-dissipative second-order upwind scheme. Compared to the earlier paper on the numerical simulation of sloshing in LNG tanks [8], where the numerical method was validated for regular sway motion, more extensive attention is paid to the accuracy of the applied discretisation schemes in space and time. The results of different schemes are now evaluated for both regular and irregular sway and roll motion of LNG tanks.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography