Dissertations / Theses on the topic 'Compressible Two-Phase Flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Compressible Two-Phase Flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sankaran, Vaidyanathan. "Sub-grid Combustion Modeling for Compressible Two-Phase Flows." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5274.
Full textBachmann, Mathieu [Verfasser]. "Dynamics of cavitation bubbles in compressible two-phase fluid flow / Mathieu Bachmann." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1036241467/34.
Full textHoffmann, Malte [Verfasser]. "An Explicit Discontinuous Galerkin Method for Parallel Compressible Two-Phase Flow Simulations / Malte Hoffmann." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149580283/34.
Full textZou, Ziqiang. "A sharp interface method for low Mach two-phase flows with phase change Toward asymptotic-preserving low-Mach correction for sharp interface two-phase flows with capillary effects An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime." Thesis, université Paris-Saclay, 2020. https://tel.archives-ouvertes.fr/tel-03178310.
Full textA sharp interface approach is presented for computing two-phase flows with surface tension and phase change in low Mach regime. To develop such a model, where slight compressible effects are taken into account as well as correct thermodynamical closures, both the liquid and the gas are considered compressible and described by a precise compressible solver. This compressible solver adopt a splitting technique called "acoustic-transport splitting" which splits the Euler system into two parts: acoustic and transport. Based on the acoustic subsystem, an approximate Riemann solver that accounts for surface tension and phase change effects is developed. The interface between two-phase flows is captured by the Level Set method that is considered to be sharp. The interface capturing issue of the Level Set method within the Eulerian framework is the key point of the two-phase flow simulations, and in this work we propose and adopt high-order approaches for interface advection, redistancing and curvature estimation. In low Mach regime, conventional compressible solvers lose accuracy and a low Mach correction is then necessary to reduce the numerical dissipation. For a sharp interface method, the interface is treated as the shock-wave contact discontinuity via the Ghost Fluid method. Without a smooth region at the interface, such discontinuity existing at the interface presents a huge challenge to the design of a numerical scheme. The well-known low Mach fix in literature could lead to significant truncation error, especially for two-phase flows with large density and sound speed ratios. To recover a good asymptotic-preserving property, we propose a new low Mach correction with rigorous asymptotic analysis. Several numerical test cases have been employed to validate the present numerical approach and enlighten its good performance
Hoffmann, Malte [Verfasser], and Claus-Dieter [Akademischer Betreuer] Munz. "An explicit discontinuous Galerkin method for parallel compressible two-phase flow simulations / Malte Hoffmann ; Betreuer: Claus-Dieter Munz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1149680970/34.
Full textPadioleau, Thomas. "Development of "all-régime" AMR simulation methods for fluid dynamics, application in astrophysics and two-phase flows." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP086.
Full textAlthough classic simulation methods for compressible flow are efficient for shock capturing, they are not adapted to variable Mach regimes. Innovative methods using Finite Volume numerical schemes, robust and uniformly accurate with respect to the Mach number (so-called "all-regime"), were recently developed at CEA. These methods allow to solve the equations of compressible flows for both shocks capturing and flows involving very low material speed. Using the ground of these promising results, we propose within this thesis to challenge these new methods in two different application areas: small scale two-phase flows and compressible flows in astrophysics. For both contexts the multi-regime simulation is a key issue: they both rely on a compressible flow modeling but involve convection and compressibility in highly-variable Mach regimes. The "all-regime" approach is a good candidate for capturing highly compressible phenomena while preserving the accuracy in the low speed flows
Mutegi, Mondie Kimandi [Verfasser], and Jürgen [Akademischer Betreuer] Schmidt. "Experimental Investigation of Mass Flow Rate and Pressure-drop through Rupture Disk Devices with Compressible Two-Phase Flow / Mondie Kimandi Mutegi ; Betreuer: Jürgen Schmidt." Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1212030990/34.
Full textYang, Songzhi. "Modeling of Diesel injection in subcritical and supercritical conditions." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC045/document.
Full textTo satisfy latest stringent emission regulations, important progress is still be expected from internal combustion engines. In addition, improving engine efficiency to reduce the emission and fuel consumption has become more essential than before. But many complex phenomena remain poorly understood in this field, such as the fuel injection process. Numerous software programs for computational fluid dynamics (CFD) considering phase change (such as cavitation) and injection modelling, have been developed and used successfully in the injection process. Nevertheless, there are few CFD codes able to simulate correctly transcritical conditions starting from a subcritical fuel temperature condition towards a supercritical mixture in the combustion chamber. Indeed, most of the existing models can simulate either single-phase flows possibly in supercritical condition or two-phase flows in subcritical condition; lacking therefore, a comprehensive model which can deal with transcritical condition including possible phase transition from subcritical to supercritical regimes, or from single-phase to two-phase flows, dynamically. This thesis aims at dealing with this challenge. For that, real fluid compressible two-phase flow models based on Eulerian-Eulerian approach with the consideration of phase equilibrium have been developed and discussed in the present work. More precisely, a fully compressible 6-equation model including liquid and gas phases balance equations solved separately; and a 4-equation model which solves the liquid and gas balance equations in mechanical and thermal equilibrium, are proposed in this manuscript. The Peng-Robinson equation of state (EoS) is selected to close both systems and to deal with the eventual phase change or phase transition. Particularly, a phase equilibrium solver has been developed and validated. Then, a series of 1D academic tests involving the evaporation and condensation phenomena performed under subcritical and supercritical conditions have been simulated and compared with available literature data and analytical results. Then the fully compressible two-phase flow models (6-Equation and 4-Equation systems) have been employed to simulate the cavitation phenomena in a real size 3D nozzle to investigate the effect of dissolved N2 on the inception and developing of cavitation. The good agreement with experimental data proves the solver can handle the complex phase change behavior in subcritical condition. Finally, the capability of the solver in dealing with the transcritical injection at high pressure and temperature conditions has been further validated through the successful modelling of the engine combustion network (ECN) Spray A injector
Quenjel, El Houssaine. "Volumes finis/Eléments finis pour des écoulements diphasiques compressibles en milieux poreux hétérogènes et anisotropes." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0059/document.
Full textThe objective of this thesis is the development and the analysis of robust and consistent numerical schemes for the approximation of compressible two-phase flow models in anisotropic and heterogeneous porous media. A particular emphasis is set on the anisotropy together with the geometric complexity of the medium. The mathematical problem is given in a system of two degenerate and coupled parabolic equations whose main variables are the nonwetting saturation and the global pressure. In view of the difficulties manifested in the considered system, its cornerstone equations are approximated with two different classes of the finite volume family. The first class consists of combining finite elements and finite volumes. Based on standard assumptions on the space discretization and on the permeability tensor, a rigorous convergence analysis of the scheme is carried out thanks to classical arguments. To dispense with the underlined assumptions on the anisotropy ratio and on the mesh, the model has to be first formulated in the factional flux formulation. Moreover, the diffusive term is discretized by a Godunov-like scheme while the convective fluxes are approximated using an upwind technique. The resulting scheme preserves the physical ranges of the computed solution and satisfies the coercivity property. Hence, the convergence investigation holds. Numerical results show a satisfactory qualitative behavior of the scheme even if the medium of interest is anisotropic. The second class allows to consider more general meshes and tensors. It is about a new positive nonlinear discrete duality finite volume method. The main point is to approximate a part of the fluxes using a non standard technique. The application of this ideato a nonlinear diffusion equation yields surprising results. Indeed,not only is the discrete maximum property fulfilled but also the convergence of the scheme is established. Practically, the proposed method shows great promises since it provides a positivity-preserving and convergent scheme with optimal convergence rates
Peluchon, Simon. "Approximation numérique et modélisation de l'ablation liquide." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0739/document.
Full textDuring atmospheric re-entry phase, a spacecraft undergoes a sudden increase of the temperature due to the friction of atmospheric gases. This rise drives to a physical-chemical degradation of the thermal protective system of the object made of composite material. A composite is made of several materials with ablates differently. In this thesis, we mainly focus on the melting of an object during its re-entry phase. Therefore there are three phases: solid, liquid and gas phases. In order to simulate this phenomenon, robust numerical methods have been developed to compute a compressible multiphase flow. The coupling strategy between the solid and the fluid have also been studied. Solvers developed in the present work are based on Finite Volume Method. A splitting strategy is used to compute compressible two-phase flows using the five-equation model with viscous and heat conduction effects. The main idea of the splitting is to separate the acoustic and dissipative phenomena from the transport one. An implicit treatment of the acoustic step is performed while the transport step is solved explicitly. The overall scheme resulting from this splitting operator strategy is very robust, conservative, and preserves contact discontinuities. The boundary interface condition between the solid and the multiphase flow is enforced by mass and energy balances at the wall. The melting front is tracked explicitly using an ALE formulation of the equations. The robustness of the approach and the interest of the semi-implicit formulation are demonstrated through numerical simulations in one and two dimensions on moving curvilinear grids
Sin, Irina. "Modélisation numérique d’écoulement diphasique compressible et transport réactif en milieux poreux - Applications à l'étude de stockage de CO2 et de réservoir de gaz naturel." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0058/document.
Full textHuman activity in the subsurface has rapidly been expanding and diversifying (waste disposal, new mining technologies, high-frequency storage of energy), while the public and regulatory expectations keep growing. The assessment of each step of underground operations requires careful safety and environmental impact evaluations. They rely on elaborate simulators and multiphysics modeling. With its process-based approach, reactive transport simulation provides an effective way to understand and predict the behavior of such complex systems at different time and spatial scale.This work aims at incorporating a compressible multiphase flow into conventional reactive transport framework by an operator splitting approach. A multiphase flow module is developed in the HYTEC reactive transport software. A new approach is then developed to fully couple multiphase multicomponent compressible flow, the complex thermodynamic description of the fluid properties, with existing reactive transport codes. The method is implemented in HYTEC. Some validation is provided, before application to the simulation of underground storage of CO2 and associated impurities
Sin, Irina. "Modélisation numérique d’écoulement diphasique compressible et transport réactif en milieux poreux - Applications à l'étude de stockage de CO2 et de réservoir de gaz naturel." Electronic Thesis or Diss., Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0058.
Full textHuman activity in the subsurface has rapidly been expanding and diversifying (waste disposal, new mining technologies, high-frequency storage of energy), while the public and regulatory expectations keep growing. The assessment of each step of underground operations requires careful safety and environmental impact evaluations. They rely on elaborate simulators and multiphysics modeling. With its process-based approach, reactive transport simulation provides an effective way to understand and predict the behavior of such complex systems at different time and spatial scale.This work aims at incorporating a compressible multiphase flow into conventional reactive transport framework by an operator splitting approach. A multiphase flow module is developed in the HYTEC reactive transport software. A new approach is then developed to fully couple multiphase multicomponent compressible flow, the complex thermodynamic description of the fluid properties, with existing reactive transport codes. The method is implemented in HYTEC. Some validation is provided, before application to the simulation of underground storage of CO2 and associated impurities
Ahmed, Aqeel. "LES of atomization and cavitation for fuel injectors." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR048/document.
Full textThis thesis presents Large Eddy Simulation (LES) of fuel injection, atomization and cavitation inside the fuel injector for applications related to internal combustion engines. For atomization modeling, Eulerian Lagrangian Spray Atomization (ELSA) model is used. The model solves for volume fraction of liquid fuel as well as liquid-gas interface surface density to describe the complete atomization process. In this thesis, flow inside the injector is also considered for subsequent study of atomization. The study presents the application of ELSA model to a typical diesel injector, both in the context of RANS and LES. The model is validated with the help of experimental data available from Engine Combustion Network (ECN). The ELSA model which is normally designed for diffused (unresolved) interfaces, where the exact location of the liquid-gas interface is not considered, is extended to work with Volume of Fluid (VOF) type formulation of two phase flow, where interface is explicitly resolved. The coupling is achieved with the help of Interface Resolution Quality (IRQ) criteria, that takes into account both the interface curvature and modeled amount of interface surface. ELSA model is developed first considering both phases as incompressible, the extension to compressible phase is also briefly studied in this thesis, resulting in compressible ELSA formulation that takes into account varying density in each phase. In collaboration with Imperial College London, the Probability Density Function (PDF) formulation with Stochastic Fields is also explored to study atomization. In modern fuel injection systems, quite oftenthe local pressure inside the injector falls below the vapor saturation pressure of the fuel, resulting in cavitation. Cavitation effects the external flow and spray formulation. Thus, a procedure is required to study the phase change as well as jet formulation using a single and consistent numerical setup. A method is developed in this thesis that couples the phase change inside the injector to the external jet atomization. This is achieved using the volume of fluid formulation where the interface is considered between liquid and gas; gas consists of both the vapor and non condensible ambient air
Boger, Markus [Verfasser]. "Numerical Modeling of Compressible Two-Phase Flows with a Pressure-Based Method / Markus Boger." München : Verlag Dr. Hut, 2014. http://d-nb.info/1051549639/34.
Full textBoger, Markus [Verfasser], and Claus-Dieter [Akademischer Betreuer] Munz. "Numerical modeling of compressible two-phase flows with a pressure-based method / Markus Boger. Betreuer: Claus-Dieter Munz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1050979842/34.
Full textIampietro, David. "Contribution à la simulation d'écoulements diphasiques compressibles à faible vitesse en présence de sauts de pression par approches homogène et bi-fluide." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0535/document.
Full textThe present work focuses on numerical methods for low-material velocity compressible two-phase flows with high pressure jumps. In this context, the material velocity of both phases is small compared with the celerity of the acoustic waves. The flow is said to be a low-Mach number flow. In this work, the equation of state of the considered phase always contains information relative to its compressibility. For example, the low-compressibility of liquid water may lead to fast transients in which high pressure jumps are produced even if the flow Mach number is low. The first part of this work has leaned on two-phase homogeneous-equilibrium models. Thus, both phases have the same velocity, pressure, temperature and the same chemical potential. The construction of what is called an all-Mach-number approximate Riemann solver has been conducted. When no fast transients come through the flow, the above solvers enable computations with CFL conditions based on low-material velocities. As a result, they remain accurate to follow slow material interfaces, or subsonic contact discontinuities. However, when fast shock waves propagate, these solvers automatically adapt in order to capture them. The second part of the thesis has been dedicated to the design of numerical methods enhancing the coupling between convection and relaxation for two-fluid models containing pressure-velocity relaxation effects. In such models, both phases have their own set of variables. A time-implicit staggered scheme, based on the influence of relaxation source terms on linear Riemann problems has been proposed
Carlier, Julien. "Schémas aux résidus distribués et méthodes à propagation des ondes pour la simulation d’écoulements compressibles diphasiques avec transfert de chaleur et de masse." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY008/document.
Full textThe topic of this thesis is the numerical simulation of two-phase flows in an industrial framework. Two-phase flows modelling is a challenging domain to explore, mainly because of the complex phenomena involved, such as cavitation and other transfer processes between phases. Furthermore, these flows occur generally in complex geometries, which makes difficult the development of efficient resolution methods. The models that we consider belong to the class of diffuse interface models, and they allow an easy modelling of transfers between phases. The considered class of models includes a hierarchy of sub-models, which take into account different levels of interactions between phases. To pursue our studies, first we have compared the so-called four-equation and six-equation two-phase flow models, including the effects of mass transfer processes. We have then chosen to focus on the four-equation model. One of the main objective of our work has been to extend residual distribution schemes to this model. In the context of numerical solution methods, it is common to use the conservative form of the balance law. In fact, the solution of the equations under a non-conservative form may lead to a wrong solution to the problem. Nonetheless, solving the equations in non-conservative form may be more interesting from an industrial point of view. To this aim, we employ a recent approach, which allows us to ensure conservation while solving a non-conservative system, at the condition of knowing its conservative form. We then validate our method and apply it to problems with complex geometry. Finally, the last part of our work is dedicated to the evaluation of the validity of the considered diffuse interface model for applications to real industrial problems. By using uncertainty quantification methods, the objective is to get parameters that make our simulations the most plausible, and to target the possible extensions that can make our simulations more realistic
Capuano, Marion. "Simulations numériques d'écoulements diphasiques compressibles, visqueux et conductifs à l'aide de schémas aux différences finies d'ordre élevé." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC016/document.
Full textThis PhD work concerns the simulation of compressible, viscous and conductive two-phase flows, using high-order centered finite-difference schemes. The equations governing two-phase flows are the Navier-Stokes equations in conjunction with two advection equations governing the interface and one equation allowing to estimate the temperature within a liquid and a gas. These are solved using conservative numerical methods which are validated from the resolution of various 1D test cases taken from the literature. The results obtained are in good agreement with the analytical or reference solutions. Then, two 2-D flows composed of two gases are considered. The first case concerns the Richtmyer-Meshkov instability developping at the interface between air and SF6. The second case deals with a cylindrical bubble filled with helium or R22 which is hit by a plane shock wave travelling through air. For these two flows, a grid convergence study is conducted and the numerical solutions compare well with the experimental data of the literature. The effect of the Reynolds number on the deformation of the bubble interface is also shown. Finally, the collpase of an air bubble in water is studied. Firstly, the spherical collapse of the bubble due to its interaction with a spherical converging shock wave is simulated. The results are in good agreement with the solutions predicted by the Rayleigh-Plesset model. The effect of the initial interface thickness and the thermal conductivity on the collapse is investigated. Secondly, the non-spherical collapse of a bubble near a wall impacted by a plane shock wave is considered. The pressure imposed on the wall and the temperature within the flow are quantified. Finally, the influence of the initial stand-off distance between the wall and the bubble is examined
Carmouze, Quentin. "Modélisation et simulation numérique des écoulements diphasiques compressibles denses et dilués." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4094.
Full textThis thesis presents some contributions to the theoretical modelling and numerical simulation of compressible dense and dilute two-phase flows. A new two-phase flow model is built, weakly hyperbolic and thermodynamically consistent. The novelty come from a modification of the volume fraction equation. It implies major consequences on the acoustic waves’ propagation, compared to the Baer & Nunziato (1986) model, which seems more physical compared to the flow topology. Numerical resolution of the new model is addressed through a new Riemann solver with internal reconstruction (RSIR) is built, based on the Linde (2002) method. First, this method is reconsidered and improved in the frame of the Euler equations. Then this method is extended to the new compressible dense and dilute two-phase flows model. This model poses serious difficulties as it is weakly hyperbolic and only valid in the limit of stiff pressure relaxation, implying non self-similar solutions. Thanks to the internal reconstruction approach, a low dissipative Riemann solver is built for the new model. The RSIR method is used to solve solid particles jet instabilities, showing possible explanation of their creation process. Then a study on the multidimensional flow around some discrete particles is done. A Level-Set type method is developed to describe the translation of a rigid body on an unstructured mesh. Thanks to the Overbee limiter developed by Chiapolino et al., (2017) a simple and robust solid/fluid coupling method is built. This method is then extended to 2D and validated through comparisons in the frame of a supersonic flow around a static blunt body. Two-way coupling is then addressed to observe motion of particles induced by shock and creation of clusters
Xiao, Hailong. "Multiscale mortar mixed finite element methods for flow problems in highly heterogeneous porous media." Thesis, 2013. http://hdl.handle.net/2152/23317.
Full texttext
Mazzelli, Federico. "Single & Two-Phase Supersonic Ejectors for Refrigeration Applications." Doctoral thesis, 2016. http://hdl.handle.net/2158/1123035.
Full text