Academic literature on the topic 'Compression modulus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compression modulus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Compression modulus"

1

Lu, Jie Qun, Yuan Tian, Jia Geng Chen, et al. "Experimental Study on CFRP-PVC Confined RAC under Axial Compression." Solid State Phenomena 294 (July 2019): 143–49. http://dx.doi.org/10.4028/www.scientific.net/ssp.294.143.

Full text
Abstract:
Compared with natural aggregate concrete (NAC), the cylinder compressive strength and elastic modulus of Recycled aggregate concrete (RAC) are decreased, but the brittleness is increased. The axial compression performance of RAC can be improved by external confinement. In this paper, the effects of Polyvinyl chloride (PVC) pipe confinement and composite confinement of PVC pipe and Carbon Fiber Reinforced Polymer (CFRP) on the axial compression performance of RAC were investigated. The results showed that with the increase of the replacement rate of recycled coarse aggregate, the cylinder compressive strength, peak strain and elastic modulus of RAC were decreased; PVC pipe confinement could significantly improve the cylinder compressive strength, peak strain and elastic modulus of RAC; the CFRP could further improve the cylinder compressive strength and elastic modulus of PVC-RAC to a certain extent, and could significantly enhance the peak strain of PVC-RAC. PVC pipe and CFRP-PVC pipe confinement could improve the axial compression performance of RAC more effectively than NAC. Consequently, PVC pipe and CFRP-PVC pipe confinement could reduce the influence of recycled aggregate (RA) quality on variability of RAC axial compression performance.
APA, Harvard, Vancouver, ISO, and other styles
2

SELYAEV, V. P., L. I. KUPRIYASHKINA, E. L. KECHUTKINA, N. N. KISELEV, and O. V. LIYASKIN. "Mechanical Characteristics of Vacuum Thermal Insulation Panels: Deformation Diagrams, Strength, Deformation Modules." Stroitel'nye Materialy 785, no. 10 (2020): 44–51. http://dx.doi.org/10.31659/0585-430x-2020-785-10-44-51.

Full text
Abstract:
The results of studying the mechanical properties of vacuum insulation panels are presented. The compressive strength and deformation modules (elastic and secant) under compression and shear are determined. The dependence of the mechanical characteristics of vacuum insulation panels (VIP) on the type and quantitative ratio of fillers is shown. It is established that the diagram of deformation of the VIP under compression can be described by an analytical function. Experimental studies of the properties of VIP have established that the deformation diagram of VIP has the form characteristic for materials that self-strengthen during loading with a compressive load and is adequately described by the function of G. V. Bulfinger. A method is proposed for determining the coefficients α and β that makes it possible to verify the approximating function using experimental data. Polynomial models describing the dependence of the elastic modulus, strength, and thermal conductivity coefficient on the composition and quantitative ratio of fiber and powder fillers are developed. It is established that the numerical values of the strain modulus depend on the type, amount of powder filler, and their ratio to the fibrous filler. The values of strain and strength models increase with increasing content and size of filler particles. A method for determining the shear modulus for VIP has been developed. It has been experimentally established that the value of the shear modulus for VIP depends on both the filler composition and the characteristics of the panel film shell. Keywords: vacuum insulation panel, diatomite, silica fume, thermal conductivity, strength, compression, shear, modulus of deformation.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Li Shun, Xiao Chen, Jian Tong Xu, and Zhong Yang. "Research on Alkali-Activator and its Effects on Mechanical Properties of Slag-Based Geopolymer at early Age." Applied Mechanics and Materials 556-562 (May 2014): 399–403. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.399.

Full text
Abstract:
This report studied the influence of effects such as type, modulus, dosage of the alkali-activator on mechanical properties of slag-based geopolymer. The analyzing results indicate that compare to the Na2SiO3, K2SiO3has significant activate effects on slag-based geopolymer. The modulus and dosage have obvious significance on early compression strength of slag-based geopolymer. With the increase of modulus, its early compression strength has apparent increase. With the increase of dosage, its early compression strength increase firstly and then decrease. When the dosage is 12%, the compression strength of the material is highest. The change of modulus and dosage of the alkali-activator has little influence on flexural strength of slag-based geopolymer. With the increase of dosage, its ratio of flexural to compressive strength has a downward trend. And the material brittleness addition.
APA, Harvard, Vancouver, ISO, and other styles
4

Saud, Abdullah F., Hakim S. Abdelgader, and Ali S. El-Baden. "Compressive and Tensile Strength of Two-Stage Concrete." Advanced Materials Research 893 (February 2014): 585–92. http://dx.doi.org/10.4028/www.scientific.net/amr.893.585.

Full text
Abstract:
An experimental investigation was conducted to evaluate the compressive, tensile strength and modulus of elasticity of two-stage concrete (TSC) at different water-to-cement ratios. The primary objectives were to measure the elastic modulus, compressive strength and splitting tensile strength of TSC and to determine if there is a quantifiable relationship between compressive and tensile strength. Behavior of TSC in compression has been well documented, but there are little published data on its behavior in tension and modulus of elasticity. This paper presents the experimental results of preplaced, crushed granite aggregate concreted with five different mortar mixture proportions. A total of 48 concrete cylinders were tested in unconfined compression modulus of elasticity and splitting tension at 28 and 90 days. It was found that the modulus of elasticity and splitting tensile strength of two-stage concrete is equivalent or higher than that of conventional concrete at the same compressive strength. Splitting tensile strength can be conservatively estimated using the ACI equation for conventional concrete.
APA, Harvard, Vancouver, ISO, and other styles
5

Koo, W. K. "Compression modulus of a nucleus." Journal of Physics G: Nuclear Physics 12, no. 12 (1986): 1443. http://dx.doi.org/10.1088/0305-4616/12/12/556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koo, W. K. "Compression modulus of a nucleus." Journal of Physics G: Nuclear Physics 12, no. 9 (1986): L197—L199. http://dx.doi.org/10.1088/0305-4616/12/9/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhi, Chao, and Hai Ru Long. "Investigation on Compression Properties of Syntactic Foam Reinforced by Warp Knitted Spacer Fabric." Advanced Materials Research 1095 (March 2015): 531–34. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.531.

Full text
Abstract:
The study aimed to investigate the compression behaviors of syntactic foam reinforced by warp knitted spacer fabric (SF-WKSF). Two kinds of SF-WKSF samples were prepared with warp knitted spacer fabric (WKSF) of different surface layer structures. The compression tests were carried out by MTS 810 material test system and the compression properties of SF-WKSF were analyzed based on its compressive stress–strain curves and modulus values obtained from test results. It is indicated that the surface layer structure of WKSF has significant effects on the compression performance of SF-WKSF, the SF-WKSF made with denser surface layer structure shows higher compressive modulus and yield strength compared to neat syntactic foam (NSF).
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Shuai, and Wenbai Liu. "The Effect of Changing Fly Ash Content on the Modulus of Compression of Stabilized Soil." Materials 12, no. 18 (2019): 2925. http://dx.doi.org/10.3390/ma12182925.

Full text
Abstract:
Adding a curing agent can enhance the mechanical properties of soil including its compressive strength. However, few studies have quantitatively analyzed the compressive strength and microstructure of soils to explore the impact of changes in the microstructure on compressive strength. In addition, the cost of curing agents is too high to be widely used. In this study, curing agents with different proportions of fly ash were added to dredger fill to reduce the amount of curing agents needed. The quantitative analysis of the relationships between the modulus of compression Es and microstructures of stabilized soil samples is presented. The modulus of compression Es was gauged from compression tests. Microscopic images acquired using a scanning electron microscope were processed using the Image-Pro Plus (IPP) image processing software. The microscopic parameters, obtained using IPP, included the average equivalent particle size Dp, the average equivalent aperture size Db, and the plane pore ratio e. This research demonstrated that the fly ash added to the curing agent achieved the same effect as the curing agent, and the amount of curing agent required was reduced. Therefore, the modulus of compression for stabilized soil can be improved. This is due to the hydration products (i.e., calcium silicate hydrate, calcium hydroxide, and ettringite), produced by the hydration reaction, and which adhere to the surface of the particles and fill the spaces among them. Thus, the change in the pore structure and the compactness of the particles helps to increase the modulus of compression. In addition, there was a good linear relationship between the modulus of compression and the microscopic parameters. Using the mathematical relationships between the macroscopic and microscopic parameters, correlations can be built for macro–microscopic research.
APA, Harvard, Vancouver, ISO, and other styles
9

Feng, Yan Feng, Tian Hong Yang, Hua Wei, Hua Guo Gao, and Zhe Zhang. "Research of Inclination Angle Effect on Joint Rock Macromechanical Parameters." Materials Science Forum 704-705 (December 2011): 1089–94. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.1089.

Full text
Abstract:
The joint of rock mass influences and controls the rock mass intensity, deformation characteristics and instability failure in the rock engineering to a great extent. Using the similar material simulation is of different inclination angle of non-penetration jointing and non-jointing rock mass, through using rigid servo compression machine to carry uniaxial compression test, we get a nearly same trend of joint rock mass stress-strain curve of different angle, the curve of inclination angle of 45 is analyzed, the test result shows that the compressive strength first decreases and then increases gradually with the increase of rock inclination angle. The compression intensity is its minimum when of the inclination angle of 45°, and the deformation modulus first decreases and then increases, but deformation modulus of 30° is its minimum. In addition, through the use of developed RFPA2D system to simulate on trial uniaxial compression value based on microscopic damage mechanics, we get the conclusion that the numerical analysis and test result is fitting approximately, it is validated that the numerical model can simulate joint rock well. Keywords: joint rock mass, inclination angle, uniaxial compression, compressive intensity, deformation modulus
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Seonghun, and Gerard A. Ateshian. "Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response." Journal of Biomechanical Engineering 128, no. 4 (2006): 623–30. http://dx.doi.org/10.1115/1.2206201.

Full text
Abstract:
Very limited information is currently available on the constitutive modeling of the tensile response of articular cartilage and its dynamic modulus at various loading frequencies. The objectives of this study were to (1) formulate and experimentally validate a constitutive model for the intrinsic viscoelasticity of cartilage in tension, (2) confirm the hypothesis that energy dissipation in tension is less than in compression at various loading frequencies, and (3) test the hypothesis that the dynamic modulus of cartilage in unconfined compression is dependent upon the dynamic tensile modulus. Experiment 1: Immature bovine articular cartilage samples were tested in tensile stress relaxation and cyclical loading. A proposed reduced relaxation function was fitted to the stress-relaxation response and the resulting material coefficients were used to predict the response to cyclical loading. Adjoining tissue samples were tested in unconfined compression stress relaxation and cyclical loading. Experiment 2: Tensile stress relaxation experiments were performed at varying strains to explore the strain-dependence of the viscoelastic response. The proposed relaxation function successfully fit the experimental tensile stress-relaxation response, with R2=0.970±0.019 at 1% strain and R2=0.992±0.007 at 2% strain. The predicted cyclical response agreed well with experimental measurements, particularly for the dynamic modulus at various frequencies. The relaxation function, measured from 2% to 10% strain, was found to be strain dependent, indicating that cartilage is nonlinearly viscoelastic in tension. Under dynamic loading, the tensile modulus at 10Hz was ∼2.3 times the value of the equilibrium modulus. In contrast, the dynamic stiffening ratio in unconfined compression was ∼24. The energy dissipation in tension was found to be significantly smaller than in compression (dynamic phase angle of 16.7±7.4deg versus 53.5±12.8deg at 10−3Hz). A very strong linear correlation was observed between the dynamic tensile and dynamic compressive moduli at various frequencies (R2=0.908±0.100). The tensile response of cartilage is nonlinearly viscoelastic, with the relaxation response varying with strain. A proposed constitutive relation for the tensile response was successfully validated. The frequency response of the tensile modulus of cartilage was reported for the first time. Results emphasize that fluid-flow dependent viscoelasticity dominates the compressive response of cartilage, whereas intrinsic solid matrix viscoelasticity dominates the tensile response. Yet the dynamic compressive modulus of cartilage is critically dependent upon elevated values of the dynamic tensile modulus.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography