Academic literature on the topic 'Compressive properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compressive properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Compressive properties"
Lv, Qing Fang, Ji Hong Qin, and Ran Zhu. "Size Effect on Mechanical Properties of LVL." Advanced Materials Research 887-888 (February 2014): 824–29. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.824.
Full textSu, Yi Ming, Ying Hou, and Guang Ping Zou. "Research on Compression Mechanical Properties of Metal-Net Rubber." Applied Mechanics and Materials 858 (November 2016): 179–83. http://dx.doi.org/10.4028/www.scientific.net/amm.858.179.
Full textMa, Yong Sheng, Cheng Sun, Xin Ni Mu, and Xin Li. "The Simulation Research of In-Plane Static Compression Properties of Honeycomb Paperboard Based on FEA." Advanced Materials Research 631-632 (January 2013): 1061–67. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.1061.
Full textZhang, Xiaohui, Chao Zhang, and Pibo Ma. "Mechanical properties of hollow polyester monofilament: Compression and tension behaviors." Journal of Engineered Fibers and Fabrics 14 (January 2019): 155892501983753. http://dx.doi.org/10.1177/1558925019837537.
Full textHuo, Fu Lei, Guo Li Zhang, Jia Lu Li, Guang Wei Chen, and Li Chen. "Study on the Compression Properties of Epoxy Matrix Composites Reinforced by PES Warp-Knitted Spacer Fabric." Advanced Materials Research 217-218 (March 2011): 1208–11. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.1208.
Full textFartini, M. S., M. S. Abdul Majid, Mohd Afendi, R. Daud, and Azizul Mohamad. "Effect of Nano-Clay and their Dispersion Techniques on Compressive Properties of Unsaturated Polyester Resin." Applied Mechanics and Materials 554 (June 2014): 27–31. http://dx.doi.org/10.4028/www.scientific.net/amm.554.27.
Full textWang, Dong Mei. "Compressive Constitutive Relation for Multi-Layer Corrugated Boards." Applied Mechanics and Materials 80-81 (July 2011): 365–69. http://dx.doi.org/10.4028/www.scientific.net/amm.80-81.365.
Full textSun, Ji Shu, Li Jie Ma, Yuan Ming Dou, and Ji Zhou. "Effect of Strain Rate on the Compressive Mechanical Properties of Concrete." Advanced Materials Research 450-451 (January 2012): 244–47. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.244.
Full textYao, Jia Wei, Yu Pu Song, Li Kun Qin, and Ling Xia Gao. "Mechanical Properties and Failure Criteria of Concrete under Biaxial Tension and Compression." Advanced Materials Research 261-263 (May 2011): 252–55. http://dx.doi.org/10.4028/www.scientific.net/amr.261-263.252.
Full textJumahat, A., C. Soutis, F. R. Jones, and A. Hodzic. "Improved Compressive Properties of a Unidirectional Cfrp Laminate Using Nanosilica Particles." Advanced Composites Letters 19, no. 6 (November 2010): 096369351001900. http://dx.doi.org/10.1177/096369351001900604.
Full textDissertations / Theses on the topic "Compressive properties"
SALAMI, MOHAMMAD REZA. "CONSTITUTIVE MODELLING OF CONCRETE AND ROCKS UNDER MULTIAXIAL COMPRESSIVE LOADINGS." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/184202.
Full textThotakuri, Manoj Varma. "Transverse compressive properties of honeycomb core under oblique loading." Thesis, Wichita State University, 2007. http://hdl.handle.net/10057/1558.
Full textThesis (M.S)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
"December 2007."
Thotakuri, Manoj Varma Raju K. Suresh. "Transverse compressive properties of honeycomb core under oblique loading /." Thesis, A link to full text of this thesis in SOAR, 2007. http://hdl.handle.net/10057/1558.
Full textWhitley, Karen Suzanne. "Tensile and Compressive Mechanical Behavior of IM7/PETI-5 at Cryogenic Temperatures." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/35944.
Full textIn order for future space transportation vehicles to be considered economically viable, the extensive use of lightweight materials is critical. For spacecraft with liquid fueled rocket engines, one area identified as a potential source for significant weight reduction is the replacement of traditional metallic cryogenic fuel tanks with newer designs based on polymer matrix composites. For long-term applications such as those dictated by manned, reusable launch vehicles, an efficient cryo-tank design must ensure a safe and reliable operating environment. To execute this design, extensive experimental data must be collected on the lifetime durability of PMC's subjected to realistic thermal and mechanical environments. However, since polymer matrix composites (PMC's) have seen limited use as structural materials in the extreme environment of cryogenic tanks, the available literature provides few sources of experimental data on the strength, stiffness, and durability of PMC's operating at cryogenic temperatures.
It is recognized that a broad spectrum of factors influence the mechanical properties of PMC's including material selection, composite fabrication and handling, aging or preconditioning, specimen preparation, laminate ply lay-up, and test procedures. It is the intent of this thesis to investigate and report performance of PMC's in cryogenic environments by providing analysis of results from experimental data developed from a series of thermal/mechanical tests. The selected test conditions represented a range of exposure times, loads and temperatures similar to those experienced during the lifetime of a cryogenic, hydrogen fuel tank. Fundamental, lamina-level material properties along with properties of typical design laminates were measured, analyzed, and correlated against test environments. Material stiffness, strength, and damage, will be given as a function of both cryogenic test temperatures and pre-test cryogenic aging conditions.
This study focused on test temperature, preconditioning methods, and laminate configuration as the primary test variables. The material used in the study, (IM7/PETI-5), is an advanced carbon fiber, thermoplastic polyimide composite.Master of Science
Hagman, Anton. "Influence of inhomogeneities on the tensile and compressive mechanical properties of paperboard." Doctoral thesis, KTH, Hållfasthetslära (Avd.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185917.
Full textEgenskaperna hos ett kartongark kan grovt delas upp i två kategorier: i-planet egenskaper och ut-ur-planet egenskaper. I-planet egenskaperna har länge varit ett område som pappersmekanister och andra pappersforskare visat intresse för. Anledningen till detta är att de är avgörande för hur väl det går att konvertera kartongen till färdiga förpackningar, samt hur väl de förpackningarna klarar sin uppgift. Dragegenskaperna prövas när kartongen dras genom tryck- och konverteringsmaskiner i hög hastighet. Tryckegenskaperna spelar stor roll för hur väl en förpackning klarar att staplas och hålla sitt innehåll intakt. Inhomogeniteter påverkar både drag och tryckegenskaper. Papprets naturliga variation påverkar dragegenskaperna hos kartongen och kan orsaka problem för kartongmakarna. Särskilt när utvecklingen går mot mer avancerade kartong utseenden. Å andra sidan så använder sig kartongmakare flitigt av egenskapsvariationer genom tjockleken på kartongen, när dom vill åstadkomma böjstyva kartonger utan att slösa med fibrer. I detta fall är det intressant att veta hur de lokala kompressionsegenskaperna påverkas av kartongens ut-ur-planet profil. Det första två uppsatserna i denna avhandling, A och B, handlar om just detta. Uppsatserna C, D och E avhandlar hur i-planet variationer påverkar kartongens egenskaper. I Artikel A undersöks vilka skademekanismer som aktiveras under ett kortspannskompressionstest (SCT). Tre flerskiktskartonger undersöktes. De hade valts så att de hade distinkt olika skjuvstyrkeprofiler. Kartongerna karakteriserades och datan användes som materialdata i en finit element modell av SCT-testet. Modellen bestod av skikt, betraktade som kontinuum, mellan vilka det fanns kohesiva ytor. Huvudmekanismen i SCT var att kartongen delaminerade på grund av skjuvskador. Den andra uppsatsen, Artikel B, var en fortsättning på den första. Denna gång undersöktes fem flerskiktskartonger framtagna så att de hade olika skjuvstyrka beroende på positionen i tjockleksled. Det konstaterades att kompressionsegenskaperna lokalt styrs av skjuvstyrkeprofilen och styvhetsgradienter. Vidare konstaterades det att mekanismerna innan kartongen delaminerar är, i huvudsak, elastiska. Den tredje artikeln, Artikel C, fokuserade på hur dragprov på kartong påverkas av provstorleken och töjningsvariationen. Tre olika flerskiktskartonger användes som provmaterial och provbitar med olika storlek analyserades. Förutom dragprov så användes digital image correlation (DIC) för analysen. Det visade sig att den globala töjbarheten varierade med storleken på provet beroende på kvoten mellan längd och bredd. DIC visade att detta i sin tur berodde på att zoner med hög töjbarhet aktiverades i provet. Dessa zoner hade samma storlek oberoende av provstorlek och påverkade därför den totala töjbarheten olika mycket. Artikel D undersöker töjningszonerna som sågs i Artikel C samt hur de påverkas av kreppning. Vidare undersöktes pappersproverna med hjälp av termografi. Termografin visade att varma zoner uppstod i proven när det töjdes. Zonerna blev synliga när provet töjdes plastiskt. Termografi kördes parallellt med DIC på några prover. Det visade sig att de varma zonerna överenstämde med zoner med hög lokal töjning. Vidare kunde det visas att dessa zoner övenstämde med papperets mikrostruktur, formationen. En finit element analys av hur papper med olika formation töjs gjordes. Delar av provningen gjordes på kreppade papper som har högre töjbarhet. Det visades sig att någon form av skada hade överlagrats på papprets mikrostruktur under kreppningen, och att den deformationen återtogs när pappret töjdes. I den sista artikeln, Artikel E, behandlas hur VFM (Virtual Field Method) kan användas på DIC-data från kartong. DIC-datan som användes hämtades från Artikel C. Detta gjordes för att visa på hur olika VFM-formuleringar kan användas för att karakterisera styvhetsvariationen hos kartong. Provet delades upp i tre subregioner baserat på den axiella töjningsgraden. VFM-analysen visade att dessa subregioners styvhet och tvärkontraktionstal sjönk monotont, men att skillnaden mellan regionerna ökade med ökande spänning. även om endast ett prov undersöktes, så indikerade resultaten att områden med hög styvhet endast förbättrar de mekaniska egenskaperna marginellt. Analysen visade också att även om subregionerna inte är sammanhängande, så har dom liknande mekaniska egenskaper.
QC 20160429
Haas, Caroline Marie Burrell. "Effect of Massage-Like Compressive Loading on Muscle Mechanical Properties." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343714522.
Full textRickles, Stacey A. "Microstructural and compressive properties of a metal/ceramic syntactic foam." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/19677.
Full textSchwarz, Chaid Daniel. "Modeling of the radial compressive properties of an aortic stent graft." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/3533.
Full textStåhlberg, Daniel. "Thermoset polymers and coatings subjected to high compressive loads." Doctoral thesis, KTH, Fiber- och polymerteknik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4091.
Full textQC 20100921
Farah, Raoaa. "Correlations Between Index Properties and Unconfined Compressive Strength of Weathered Ocala Limestone." UNF Digital Commons, 2011. http://digitalcommons.unf.edu/etd/142.
Full textBooks on the topic "Compressive properties"
Whittenberger, J. Daniel. 1200 K compressive properties of N-containing NiAl. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textMrse, Anthony Michael. Effects of fibre misalignment on compressive properties of advanced thermoplastic composites. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.
Find full textCarr, Debra Julie. The influence of matrix properties on the compressive strength of CFRP [carbon fibre reinforced plastics]. Birmingham: University of Birmingham, 1994.
Find full textRubinstein, Robert. Transport coefficients in weakly compressible turbulence. Hampton, Va: National Aeronautics Space Administration, Langley Research Center, 1996.
Find full textTimell, T. E. Bibliography, historical background, determination, structure, chemistry, topochemistry, physical properties, origin, and formation of compression wood. Berlin: Springer-Verlag, 1986.
Find full textJames, Palmer. Compressible flow tables for engineers: With appropriate computer programs, for estimating property changes caused by friction heat transfer and/or shock waves. Basingstoke: Macmillan Education, 1987.
Find full textE, Ingham P., Aitken B. L, and Wool Research Organisation of New Zealand., eds. The effect of lubricants on the bulk, compression properties, and drape of wool batting. Christchurch: Wronz, 1986.
Find full textBakis, Charles E. Fatigue response of notched laminates subjected to tension-compression cyclic loads. Blacksburg, Va: Virginia Polytechnic Institute and State University, 1986.
Find full textWitte, David W. Computer code for determination of thermally perfect gas properties. Hampton: National Aeronautics and Space Administration, Langley Research Center, 1994.
Find full textRubinstein, Robert. Transport coefficients in rotating weakly compressible turbulence: Under contracts NAS1-19480 & NAS1-97046. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textBook chapters on the topic "Compressive properties"
Gupta, Nikhil, Dinesh Pinisetty, and Vasanth Chakravarthy Shunmugasamy. "Compressive Properties." In Reinforced Polymer Matrix Syntactic Foams, 43–52. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01243-8_6.
Full textCervenka, V., and P. Bouska. "Automated Testing of Concrete Compressive Properties." In Experimental Stress Analysis, 11–20. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4416-9_2.
Full textFang, Qin, Hao Wu, and Xiangzhen Kong. "Dynamic Compressive Mechanical Properties of UHPCC." In UHPCC Under Impact and Blast, 31–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6842-2_2.
Full textHellstén, Niko, Antti J. Karttunen, Charlotta Engblom, Alexander Reznichenko, and Erika Rantala. "Compressive Properties of Micro-spherical SiO2 Particles." In Advances in Powder and Ceramic Materials Science, 57–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36552-3_6.
Full textZhang, Qiu Ming, Xiao Dong He, and Yao Li. "Compressive Properties of Quartzite Microcrystallite Glass Ceramics." In Key Engineering Materials, 469–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.469.
Full textHur, Bo Young, Bu Keoun Park, Sang Youl Kim, and Hoon Bae. "Compressive Properties of Open Cell Aluminum Foams." In Materials Science Forum, 472–75. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.472.
Full textAmin, Heet, Jianshen Wang, Ali A. H. Ameri, Hongxu Wang, Daniel East, and Juan P. Escobedo-Diaz. "Compressive Properties of Additively Manufactured Titanium-Carbide." In Characterization of Minerals, Metals, and Materials 2021, 297–307. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65493-1_29.
Full textMarkley, F. W., J. A. Hoffman, and D. P. Muniz. "Cryogenic Compressive Properties of Basic Epoxy Resin Systems." In Advances in Cryogenic Engineering Materials, 119–26. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-9871-4_14.
Full textMichiels, S., and J. F. Harper. "The Compressive Properties of Glass/Carbon Laminated Composites." In Composite Structures, 799–809. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3662-4_59.
Full textOllivier, Jean-Pierre, Myriam Massat, and Marie-Pierre Yssorche. "Relationships Between Transport Properties and Compressive Strength of Concrete." In The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability, 313–23. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8646-7_15.
Full textConference papers on the topic "Compressive properties"
Suda, Mitsunori, Jiahui Yang, Takanori Kitamura, Kanta Ito, Kenji Wada, Zhiyuan Zhang, Yuqiu Yang, and Hiroyuki Hamada. "Lateral Compressive Properties of Paper Tube." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37923.
Full textLateju, Omotinuola S., Modupe A. Onitiri, and Esther T. Akinlabi. "Compressive Properties of Post Cured Talc/Fiber Glass Filled Epoxy Composites." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71448.
Full textLiu, Yue, Weicheng Gao, Wei Liu, and Zhou Hua. "Numerical Analysis and Mechanical Properties of Nomex™ Honeycomb Core." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72654.
Full textVan Sligtenhorst, Caleb R., Duane S. Cronin, and G. Wayne Brodland. "High Strain Rate Compressive Properties of Soft Tissue." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41258.
Full textSchwarz, Chaid, and Madhavan L. Raghavan. "Radial Compressive Properties of an Aortic Stent Graft." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80889.
Full textYu, Dianyou, Zhichao Xu, and Yingchun Liu. "Compressive properties of post-fire strain hardening cementitious composites." In ADVANCES IN ENERGY SCIENCE AND ENVIRONMENT ENGINEERING II: Proceedings of 2nd International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5029803.
Full textSuzuki, Nobuhisa, Joe Zhou, and Masao Toyoda. "Compressive Strain Limits of High-Strength Linepipes." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64526.
Full textSuhr, Jonghwan. "Visco-Elastic Properties of Aligned Multi-Walled Carbon Nanotube Blocks." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42611.
Full textKrishnan, Ramaswamy, Monika Kopacz, Michael J. Carter, and Gerard A. Ateshian. "Strain Dependent Variations in the Frictional Properties of Bovine Articular Cartilage." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59275.
Full textGiordano, Rossella, Pietro Guccione, Giuseppe Cifarelli, Luigi Mascolo, and Giovanni Nico. "Focusing SAR images by compressive sensing: Study of interferometric properties." In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7327044.
Full textReports on the topic "Compressive properties"
Economy, James. Composites with Improved Compressive Properties. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada283411.
Full textChartrand, Rick, and Valentina Staneva. Restricted isometry properties and nonconvex compressive sensing. Office of Scientific and Technical Information (OSTI), November 2007. http://dx.doi.org/10.2172/1454956.
Full textFawaz, Scott A., Anthony N. Palazotto, and Chyi-Shan Wang. Compressive Properties of High Performance Polymeric Fibers. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada207271.
Full textMarkley, F., J. Hoffman, and D. Muniz. Cryogenic Compressive Properties of Basic Epoxy Resin Systems. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/1156262.
Full textEwart, Lynn M., Elizabeth A. McLaughlin, and Kim D. Gittings. Investigation of the Compressive Material Properties of PZT and PMN. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada379761.
Full textE. Cikanek, T. Grant, and R. Blakely. DATA QUALIFICATION AND DATA SUMMARY REPORT: INTACT ROCK PROPERTIES DATA ON UNIAXIAL COMPRESSIVE STRENGTH, TRIAXIAL COMPRESSIVE STRENGTH, FRICTION ANGLE, AND COHESION. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/838662.
Full textGroeneveld, Andrew, Theresa Ahlborn, C. Kennan Crane, and Wendy Long. Effect of fiber orientation on dynamic compressive properties of an ultra-high performance concrete. Geotechnical and Structures Laboratory (U.S.), August 2017. http://dx.doi.org/10.21079/11681/22806.
Full textPinkerton, Gary Wayne. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/431169.
Full textGroves, S., and B. Cunningham. Tensile and Compressive Mechanical Properties of Billet Pressed LX17-1 as a Function of Temperature and Strain Rate. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/802097.
Full textSanta Maria, J. A., B. F. Schultz, J. B. Ferguson, N. Gupta, and P. K. Rohatgi. Effect of Hollow Sphere Size and Distribution on the Quasi-Static and High Strain Rate Compressive Properties of Al-A380-Al2O3 Syntactic Foams. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada565575.
Full text