Academic literature on the topic 'COMPRESSOR BLADES DETERIORATION'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'COMPRESSOR BLADES DETERIORATION.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "COMPRESSOR BLADES DETERIORATION"

1

Gilge, Philipp, Andreas Kellersmann, Jens Friedrichs, and Jörg R. Seume. "Surface roughness of real operationally used compressor blade and blisk." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 14 (2019): 5321–30. http://dx.doi.org/10.1177/0954410019843438.

Full text
Abstract:
Deterioration of axial compressors is in general a major concern in aircraft engine maintenance. Among other effects, roughness in high-pressure compressor reduces the pressure rise and thus efficiency, thereby increasing the specific fuel consumption of an engine. Therefore, it is important to improve the understanding of roughness on compressor blading and their impact on compressor performance. To investigate the surface roughness of rotor blades of a compressors, different stages of an axial high-pressure compressor and a first-stage blisk (BLade–Integrated–dISK) of a regional aircraft eng
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Yan-Ling, and Abdulnaser I. Sayma. "Computational fluid dynamics simulations of blade damage effect on the performance of a transonic axial compressor near stall." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, no. 12 (2014): 2242–60. http://dx.doi.org/10.1177/0954406214553828.

Full text
Abstract:
Gas turbine axial compressor blades may encounter damage during service for various reasons such as damage by debris from casing or foreign objects impacting the blades, typically near the rotor’s tip. This may lead to deterioration of performance and reduction in the surge margin. The damage breaks the cyclic symmetry of the rotor assembly; thus, computational fluid dynamics simulations have to be performed using full annulus compressor assembly. Moreover, downstream boundary conditions are unknown during rotating stall or surge, and simulations become difficult. This paper presents unsteady
APA, Harvard, Vancouver, ISO, and other styles
3

Ghenaiet, A., S. C. Tan, and R. L. Elder. "Prediction of an axial turbomachine performance degradation due to sand ingestion." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 219, no. 4 (2005): 273–87. http://dx.doi.org/10.1243/095765005x7592.

Full text
Abstract:
Erosion of compressor blades due to operation in particulate environments is a serious problem for the manufacturers and users of industrial and aeronautical gas turbines, because of drastic degradations in performance, mostly through blunting of blade leading edges, reduction of chord and increase of tip clearance and surface roughness. This paper presents a numerical study to assess the effects of erosion by sand ingestion on blade geometry deterioration and the subsequent performance degradation. These computations were carried out for an axial turbomachine in steps; first, calculations of
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Shuai, Jun Hu, Xuegao Wang, and Jiajia Ji. "Effect of Non-Uniformity of Rotor Stagger Angle on the Stability of a Low-Speed Axial Compressor." Energies 15, no. 8 (2022): 2714. http://dx.doi.org/10.3390/en15082714.

Full text
Abstract:
It is well known that variations in stagger angle between rotor blades affect compressor performance. In this paper, the stagger angle of blade No. 8 is increased or decreased by six degrees for non-uniformity, and the influence of rotor non-uniformity caused by the change in only one blade stagger angle on the performance and stability of the compressor is investigated. The experimental results show that whether the local rotor stagger angle increases or decreases, the compressor stability will deteriorate. If the stagger angle of blade No. 8 is reduced by six degrees, the flow coefficient at
APA, Harvard, Vancouver, ISO, and other styles
5

Ngoret, Joshua K., and Venkata P. Kommula. "Role of Aluminide coating degradation on Inconel 713 LC used for Compressor Turbines (CT) of Short-haul Aircrafts." MRS Advances 3, no. 38 (2018): 2281–96. http://dx.doi.org/10.1557/adv.2018.207.

Full text
Abstract:
ABSTRACTThis paper investigates the role degradation of protective diffusion aluminide coating on Inconel 713LC used for CT blades of short-haul aircraft fleet played in having the blades prematurely retired from service at 6378 hours, as opposed to their pre-set service time of 10000 hours. The blade samples were subjected to various examinations; X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyse at the; tips, airfoil, as well as the base, transverse and longitudinal, sectioned and unsectioned. As affirmed by
APA, Harvard, Vancouver, ISO, and other styles
6

Rendu, Quentin, and Loic Salles. "Development of a surrogate model for uncertainty quantification of compressor performance due to manufacturing tolerance." Journal of the Global Power and Propulsion Society 7 (August 4, 2023): 257–68. http://dx.doi.org/10.33737/jgpps/168293.

Full text
Abstract:
In gas turbines and jet engines, stagger angle and tip gap variations between adjacent blades lead to the deterioration of performance. To evaluate the effect of manufacturing tolerance on performance, a CFD-based uncertainty quantification analysis is performed in this work. However, evaluating dozens of thousands of rotor assembly through CFD simulations would be computationally prohibitive. A surrogate model is thus developed to predict compressor performance given an ordered set of manufactured blades. The model is used to predict the influence of tip gap and stagger angle variations on ma
APA, Harvard, Vancouver, ISO, and other styles
7

Hönen, Herwart, and Matthias Panten. "Recontouring of Jet Engine Compressor Blades by Flow Simulation." International Journal of Rotating Machinery 7, no. 5 (2001): 365–74. http://dx.doi.org/10.1155/s1023621x01000306.

Full text
Abstract:
In modern jet propulsion systems the core engine has an essential influence on the total engine performance. Especially the high pressure compressor plays an important role in this scheme. Substantial factors here are losses due to tip clearance effects and aerodynamic airfoil quality. During flight operation the airfoils are subject to wear and tear on the leading edge. These effects cause a shortening of the chord length and the leading edge profiles become deformed. This results in a deterioration of the engine efficiency performance level and a reduced stall margin.The paper deals with the
APA, Harvard, Vancouver, ISO, and other styles
8

Suder, K. L., R. V. Chima, A. J. Strazisar, and W. B. Roberts. "The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor." Journal of Turbomachinery 117, no. 4 (1995): 491–505. http://dx.doi.org/10.1115/1.2836561.

Full text
Abstract:
The performance deterioration of a high-speed axial compressor rotor due to surface roughness and airfoil thickness variations is reported. A 0.025 mm (0.001 in.) thick rough coating with a surface finish of 2.54–3.18 rms μm (100–125 rms μin.) is applied to the pressure and suction surface of the rotor blades. Coating both surfaces increases the leading edge thickness by 10 percent at the hub and 20 percent at the tip. Application of this coating results in a loss in efficiency of 6 points and a 9 percent reduction in the pressure ratio across the rotor at an operating condition near the desig
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Song, Jinxin Cheng, Chengwu Yang, Chuangxin Zhou, Shengfeng Zhao, and Xingen Lu. "Optimization Design of a 2.5 Stage Highly Loaded Axial Compressor with a Bezier Surface Modeling Method." Applied Sciences 10, no. 11 (2020): 3860. http://dx.doi.org/10.3390/app10113860.

Full text
Abstract:
Due to the complexity of the internal flow field of compressors, the aerodynamic design and optimization of a highly loaded axial compressor with high performance still have three problems, which are rich engineering design experience, high dimensions, and time-consuming calculations. To overcome these three problems, this paper takes an engineering-designed 2.5-stage highly loaded axial flow compressor as an example to introduce the design process and the adopted design philosophies. Then, this paper verifies the numerical method of computational fluid dynamics. A new Bezier surface modeling
APA, Harvard, Vancouver, ISO, and other styles
10

Kachan, O., and S. Ulanov. "Features of the process of hot extrusion of blanks of the rotor blades of a GTE compressor." Innovative Materials and Technologies in Metallurgy and Mechanical Engineering, no. 1 (September 14, 2021): 41–46. http://dx.doi.org/10.15588/1607-6885-2021-2-7.

Full text
Abstract:
Purpose. Improving the quality of manufacturing of blanks for compressor rotor blades by hot extrusion.
 Research methods and equipment. The research was carried out using a crank press with a force of 1000 kN, in split dies in accordance with a serial technological process.
 The dies were heated up to 150 ... 200 °С, to improve the work when extruding the blanks of the rotor blades made from the titanium alloy ВT8.
 The thickness of the copper coating was measured with an ИTMП-3 magnetic induction device with an error of ± 2 μm.
 X-ray spectral microanalysis was performed
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!