Academic literature on the topic 'Computational aided drug discovery'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational aided drug discovery.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Computational aided drug discovery"

1

Bajorath, Jürgen. "Computer-aided drug discovery." F1000Research 4 (August 26, 2015): 630. http://dx.doi.org/10.12688/f1000research.6653.1.

Full text
Abstract:
Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approach
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Anu, Lalubhai Jangid, Nusrat Shaikh, and Jitendra Bhangale. "Computer-Aided Drug Design Boon in Drug Discovery." Asian Journal of Organic & Medicinal Chemistry 7, no. 1 (2022): 55–64. http://dx.doi.org/10.14233/ajomc.2022.ajomc-p361.

Full text
Abstract:
An innovative sequential step of detecting new medicines or drugs dependent on the information of a target is called drug design. The drug is a small molecule that alters the capacity of a bimolecular, example, protein, receptor or catalyst that leads to restorative incentive for patients. Designing of drug by computational method helped steady use of computational science to find, improve and study drugs as well as biologically related active molecules. The displaying examines like the structure-based plan; ligand-based drugs structure; database looking and restricting partiality dependent on
APA, Harvard, Vancouver, ISO, and other styles
3

Richards, W. Graham. "Computer-aided drug discovery." Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 99, no. 1-2 (1992): 105–11. http://dx.doi.org/10.1017/s0269727000013087.

Full text
Abstract:
Synopsis:The role of computers in drug discovery depends on just how much is known about the target macromolecule. If atomic detail of the receptor is known, binding free energy differences between drug variants may be computed. Major effort is being expended in extending the area of applicability of such studies by predicting protein structure based on homologies with known protein crystal data. Where no target structure is available, computational methods can provide leads by defining transition state structures and then using the approach of molecular similarity to define stable mimics to a
APA, Harvard, Vancouver, ISO, and other styles
4

KIRBOĞA, Kevser Kübra, and Ecir KÜÇÜKSİLLE. "Bilgisayar Destekli İlaç Keşfi Üzerine Bakışlar." Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11, no. 2 (2022): 1. http://dx.doi.org/10.55007/dufed.1103457.

Full text
Abstract:
The drug development and discovery process are challenging, take 15 to 20 years, and require approximately 1.5-2 billion dollars, from the critical selection of the target molecule to post-clinical market application. Several computational drug design methods identify and optimize target biologically lead compounds. Given the complexity and cost of the drug discovery process in recent years, computer-assisted drug discovery (CADD) has spread over a broad spectrum. CADD methods support the discovery of target molecules, optimization of small target molecules, analysis, and development processes
APA, Harvard, Vancouver, ISO, and other styles
5

Surabhi, Surabhi, and BK Singh. "COMPUTER AIDED DRUG DESIGN: AN OVERVIEW." Journal of Drug Delivery and Therapeutics 8, no. 5 (2018): 504–9. http://dx.doi.org/10.22270/jddt.v8i5.1894.

Full text
Abstract:
Discovery and development of a new drug is generally known as a very complex process which takes a lot of time and resources. So now a day’s computer aided drug design approaches are used very widely to increase the efficiency of the drug discovery and development course. Various approaches of CADD are evaluated as promising techniques according to their need, in between all these structure-based drug design and ligand-based drug design approaches are known as very efficient and powerful techniques in drug discovery and development. These both methods can be applied with molecular docking to v
APA, Harvard, Vancouver, ISO, and other styles
6

Nero, Tracy L., Michael W. Parker, and Craig J. Morton. "Protein structure and computational drug discovery." Biochemical Society Transactions 46, no. 5 (2018): 1367–79. http://dx.doi.org/10.1042/bst20180202.

Full text
Abstract:
The first protein structures revealed a complex web of weak interactions stabilising the three-dimensional shape of the molecule. Small molecule ligands were then found to exploit these same weak binding events to modulate protein function or act as substrates in enzymatic reactions. As the understanding of ligand–protein binding grew, it became possible to firstly predict how and where a particular small molecule might interact with a protein, and then to identify putative ligands for a specific protein site. Computer-aided drug discovery, based on the structure of target proteins, is now a w
APA, Harvard, Vancouver, ISO, and other styles
7

Sehgal, Vijay Kumar, Supratik Das, and Anand Vardhan. "Computer Aided Drug Designing." International Journal of Medical and Dental Sciences 6, no. 1 (2017): 1433. http://dx.doi.org/10.18311/ijmds/2017/18804.

Full text
Abstract:
Designing of drugs and their development are a time and resource consuming process. There is an increasing effort to introduce the role of computational approach to chemical and biological space in order to organise the design and development of drugs and their optimisation. The role of Computer Aided Drug Designing (CADD) are nowadays expressed in Nanotechnology, Molecular biology, Biochemistry etc. It is a diverse discipline where various forms of applied and basic researches are interlinked with each other. Computer aided or in Silico drug designing is required to detect hits and leads. Opt
APA, Harvard, Vancouver, ISO, and other styles
8

Ejalonibu, Murtala A., Segun A. Ogundare, Ahmed A. Elrashedy, et al. "Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach." International Journal of Molecular Sciences 22, no. 24 (2021): 13259. http://dx.doi.org/10.3390/ijms222413259.

Full text
Abstract:
Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB) epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then subjected to different tests, including clinical trials, to study its effectiveness against the pathogen in the host. In recent times, new techniques, which involve computational and analytical methods, enhanced th
APA, Harvard, Vancouver, ISO, and other styles
9

Bajorath, Jürgen. "Computational chemistry and computer-aided drug discovery: Part II." Future Medicinal Chemistry 8, no. 15 (2016): 1799–800. http://dx.doi.org/10.4155/fmc-2013-0123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bajorath, Jürgen. "Computational chemistry and computer-aided drug discovery: Part I." Future Medicinal Chemistry 8, no. 14 (2016): 1705–6. http://dx.doi.org/10.4155/fmc-2016-0264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!