Academic literature on the topic 'Computational Combustion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational Combustion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Computational Combustion"
Westbrook, Charles K., Yasuhiro Mizobuchi, Thierry J. Poinsot, Phillip J. Smith, and Jürgen Warnatz. "Computational combustion." Proceedings of the Combustion Institute 30, no. 1 (January 2005): 125–57. http://dx.doi.org/10.1016/j.proci.2004.08.275.
Full textBrookes, S. J., R. S. Cant, I. D. J. Dupere, and A. P. Dowling. "Computational Modeling of Self-Excited Combustion Instabilities." Journal of Engineering for Gas Turbines and Power 123, no. 2 (January 1, 2001): 322–26. http://dx.doi.org/10.1115/1.1362662.
Full textChand, Dharmahinder Singh, Daamanjyot Barara, Gautam Ganesh, and Suraj Anand. "Comparison of Efficiency of Conventional Shaped Circular and Elliptical Shaped Combustor." MATEC Web of Conferences 151 (2018): 02002. http://dx.doi.org/10.1051/matecconf/201815102002.
Full textZhang, Qun, Hua Sheng Xu, Tao Gui, Shun Li Sun, Yue Wu, and Dong Bo Yan. "Investigation on Reaction Flow Field of Low Emission TAPS Combustors." Applied Mechanics and Materials 694 (November 2014): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amm.694.45.
Full textHendricks, R. C., D. T. Shouse, W. M. Roquemore, D. L. Burrus, B. S. Duncan, R. C. Ryder, A. Brankovic, N. S. Liu, J. R. Gallagher, and J. A. Hendricks. "Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow." International Journal of Rotating Machinery 7, no. 6 (2001): 375–85. http://dx.doi.org/10.1155/s1023621x0100032x.
Full textGrimm, Felix, Jürgen Dierke, Roland Ewert, Berthold Noll, and Manfred Aigner. "Modelling of combustion acoustics sources and their dynamics in the PRECCINSTA burner test case." International Journal of Spray and Combustion Dynamics 9, no. 4 (July 7, 2017): 330–48. http://dx.doi.org/10.1177/1756827717717390.
Full textYuan, Lei, and Chibing Shen. "Computational investigation on combustion instabilities in a rocket combustor." Acta Astronautica 127 (October 2016): 634–43. http://dx.doi.org/10.1016/j.actaastro.2016.06.015.
Full textRoga, Sukanta, and Krishna Murari Pandey. "Computational Analysis of Hydrogen-Fueled Scramjet Combustor Using Cavities in Tandem Flame Holder." Applied Mechanics and Materials 772 (July 2015): 130–35. http://dx.doi.org/10.4028/www.scientific.net/amm.772.130.
Full textPries, Michael, Andreas Fiolitakis, and Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data." Journal of the Global Power and Propulsion Society 4 (December 18, 2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.
Full textPaul, P. "Computational Fluid Dynamics in Combustion." Defence Science Journal 60, no. 6 (November 20, 2010): 577–82. http://dx.doi.org/10.14429/dsj.60.600.
Full textDissertations / Theses on the topic "Computational Combustion"
Bryden, Kenneth Mark. "Computational modeling of wood combustion." Madison, WI, 1998. http://catalog.hathitrust.org/api/volumes/oclc/40048634.html.
Full textLin, Dah-Chan. "Computational modelling of solid fuel combustion." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305380.
Full textShimada, Yosuke. "Computational science of turbulent mixing and combustion." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5552.
Full textHossain, Mamdud. "CFD modelling of turbulent non-premixed combustion." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/12230.
Full textHayes, Carrigan Jo. "Computational studies of combustion processes and oxygenated species." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1186708015.
Full textAlajmi, Ayedh. "Computational and experimental investigations on biodiesel combustion process." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/14221.
Full textHayes, Carrigan J. "Computational studies of combustion processes and oxygenated species." The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1186708015.
Full textIkonomou, Evagelos. "A computational study of diesel sprays and combustion." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/7985.
Full textLeathard, Matthew James. "Computational modelling of coolant heat transfer in internal combustion engines." Thesis, University of Bath, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248102.
Full textGómez, Soriano Josep. "Computational assessment of combustion noise of automotive compression-ignited engines." Doctoral thesis, Editorial Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/112726.
Full textLes creixents exigències de la indústria estan canviant la forma en què entenem la societat i l'entorn en què vivim. Davant la necessitat d'un comerç ràpid i globalitzat estan sorgint diversos problemes de sostenibilitat que, per una part afavoreixen que sectors com el del transport incrementen les seues activitats de forma radical, però que per l'altra, causen un impacte negatiu en els ecosistemes terrestres. En aquest context, els efectes negatius de la contaminació ambiental i sonora estan arribant a límits realment preocupants, sent aquests especialment visibles als principals nuclis urbans on les autoritats estan inclús restringit la circulació dels vehicles tèrmics. Particularment, el soroll causat per la crema de combustible en vehicles propulsats per motors de combustió interna alternatius, sent una de les principals fonts acústiques per davant d'altres com l'aviació o el ferrocarril, està sent objecte de recents estudis per tal de reduir els efectes perjudicials en la població. L'objectiu principal d'aquesta tesi es centra en l'estudi i caracterització de la combustió com a font d'emissions acústiques. Concretament, aquesta investigació té com a propòsit donar resposta a quins són els fenòmens físics associats a la generació de soroll en motors d'encès per compressió, així com proposar algunes directrius que ajuden a entendre i millorar -des del punt de vista de les emissions acústiques i consum- el disseny dels motors actuals. En una primera aproximació, es recorre a tècniques experimentals de mesura per a, amb el registre de la pressió instantània en la cambra de combustió, caracteritzar l'origen de les pertorbacions acústiques. Tot i que la informació aportada per aquests mètodes és rellevant, existeixen limitacions per a reconstruir l'espacialitat del camp acústic i, per tant, dificulten la comprensió dels fenòmens no estacionaris associats a aquest. Per aquesta raó, en posteriors estudis es recorre a l'ús de la dinàmica de fluids computacional o CFD, superant així les limitacions de les tècniques experimentals i permetent una visualització completa del problema. Com a pas previ i indispensable, es procedeix a implementar i validar el model CFD per assegurar una bona precisió en els resultats i un temps de càlcul raonable. L'aplicació de mètodes d'anàlisi en freqüència i descomposició modal ha permès estudiar el camp de pressions en l'interior de la càmera i així entendre millor el seu comportament. D'aquesta forma, ha sigut possible trobar relacions entre la combustió i la resposta espectral del camp acústic intern. Els patrons d'oscil·lació de la pressió mostren que les estructures més energètiques, i que per tant contribueixen a l'emissió acústica en major mesura, estan centrades en estructures macroscòpiques de grandària similar a la geometria de la càmera. A més, s'ha demostrat que la posició de la ignició del combustible té un efecte directe sobre l'amplitud dels modes ressonants i la seua distribució espacial. Per últim, pel que fa a l'avaluació de diverses estratègies per a mitigar el soroll, es proposen distints estudis en què s'analitzen les tendències en l'emissió acústica en modificar la font sonora mitjançant la configuració de l'injector i la geometria del sistema de combustió.
The ever-increasing demands of industry are changing the way we understand society and the environment in which we live. In the face of the need for rapid and globalised trade, a number of sustainability issues are emerging which, on the one hand, encourage sectors such as transport to radically increase their activities, but, on the other hand, cause a negative impact on terrestrial ecosystems. In this context, the negative effects of environmental and noise pollution are reaching really worrying limits, these being especially visible in the main urban areas where the authorities are even restricting the circulation of vehicles powered with thermal engines. In particular, the noise produced by the fuel burning in vehicles powered by reciprocating internal combustion engines, being one of the main acoustic sources ahead of others such as aviation or railways, is being the focus of recent studies to reduce its harmful effects on the population. The main objective of this thesis focuses on the study and characterization of combustion as a source of noise emissions. Specifically, this research focuses on addressing the physical phenomena associated with noise generation in compression-ignited engines, as well as proposing some guidelines in order to better understand and improve -from the point of view of noise emissions and fuel consumption- the design of current engines. In a first approach, experimental techniques are used to characterise the source of the acoustic disturbances by recording the instantaneous pressure inside the combustion chamber. Although the information provided by these methods is relevant, there are some limitations to recreate the spatiality of the acoustic field and, therefore, make it difficult to understand the non-stationary phenomena associated with it. For this reason, in subsequent studies the Computational Fluid Dynamics or CFD approach is utilized, thereby overcoming the limitations of experimental techniques and allowing a complete visualization of the problem. As a preliminary and indispensable step, we proceed to implement and validate the CFD model to ensure a good accuracy in the results and a reasonable calculation time. The application of frequency analysis and modal decomposition methods has made it possible to study the pressure field inside the chamber and thus better understand its behaviour. In this way, it has been possible to find relationships between the combustion and the spectral response of the internal acoustic field. The pressure oscillation patterns show that the most energetic structures, and thus contributing the most to the acoustic emission, are centred on macroscopic structures of similar size to the chamber geometry. In addition, the ignition position of the fuel has been shown to have a direct effect on the amplitude of the resonant modes and their spatial distribution. Finally, regarding the evaluation of different strategies for mitigating noise, different studies are proposed in which the trends in noise emission are analysed by modifying the sound source through the injection configuration and the geometry of the combustion system.
Gómez Soriano, J. (2018). Computational assessment of combustion noise of automotive compression-ignited engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112726
TESIS
Books on the topic "Computational Combustion"
Shi, Yu. Computational optimization of internal combustion engines. London: Springer, 2011.
Find full textZhou, Hao, and Kefa Cen. Combustion Optimization Based on Computational Intelligence. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7875-0.
Full textShi, Yu, Hai-Wen Ge, and Rolf D. Reitz. Computational Optimization of Internal Combustion Engines. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-619-1.
Full textHu, Tin Cheung John. An experimental and computational investigation of an annular reverse-flow combustor. [Downsview, Ont.]: University of Toronto, 1991.
Find full textSussman, Myles A. A computational study of unsteady shock induced combustion of hydrogen-air mixtures. Washington, D. C: American Institute of Aeronautics and Astronautics, 1994.
Find full textParent, Bernard. Computational study of fuel injection in a shcramjet inlet. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.
Find full textYang, Joseph. An analytical and computational investigation of shock-induced vortical flows with applications to supersonic combustion. Pasadena, Calif: California Institute of Technology, 1991.
Find full textHu, T. C. J. An experimental and computational investigation of an annular reverse-flow combustor. [Downsview, Ont.]: Institute for Aerospace Studies, University of Toronto, 1990.
Find full textEtele, Jason. Computational study of variable area ejector rocket flowfields. [Downsview, Ont: University of Toronto, Institute for Aerospace Studies], 2004.
Find full textDash, Sanford M. Computational models for the analysis/design of hypersonic scramjet nozzles - Part 1: Combustor and nozzle models. New York: AIAA, 1986.
Find full textBook chapters on the topic "Computational Combustion"
Prosser, Robert, and R. Stewart Cant. "Wavelet Methods in Computational Combustion." In Turbulent Combustion Modeling, 331–51. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_14.
Full textRay, J., R. Armstrong, C. Safta, B. J. Debusschere, B. A. Allan, and H. N. Najm. "Computational Frameworks for Advanced Combustion Simulations." In Turbulent Combustion Modeling, 409–37. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_17.
Full textMenon, Suresh, Vaidyanathan Sankaran, and Christopher Stone. "Combustion Dynamics of Swirling Turbulent Flames." In Computational Science — ICCS 2001, 1127–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45545-0_124.
Full textFischer, Marc, and Uwe Riedel. "Combustion Chemistry and Parameter Estimation." In Contributions in Mathematical and Computational Sciences, 207–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30367-8_10.
Full textYaşar, O. "Plasma Modeling of Ignition for Combustion Simulations." In Computational Science — ICCS 2001, 1147–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45545-0_126.
Full textShi, Yu, Hai-Wen Ge, and Rolf D. Reitz. "Scaling Laws for Diesel Combustion Systems." In Computational Optimization of Internal Combustion Engines, 147–76. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-619-1_5.
Full textLiou, May-Fun, and HyoungJin Kim. "Pore Scale Simulation of Combustion in Porous Media." In Computational Fluid Dynamics 2008, 363–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_46.
Full textMiao, Wenbo, Xiaoli Cheng, and Qiang Wang. "Direct Numerical Simulation of a Compressible Turbulent Mixing Layer with Combustion Chemical Reactions." In Computational Mechanics, 243. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75999-7_43.
Full textCleary, M. J., J. H. Kent, and R. W. Bilger. "A Computational Method for Combustion Using Conditional Moment Closure." In Computational Fluid Dynamics 2002, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_6.
Full textGutheil, Eva. "Issues in Computational Studies of Turbulent Spray Combustion." In ERCOFTAC Series, 1–39. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0_1.
Full textConference papers on the topic "Computational Combustion"
Kunz, O., B. Noll, R. Lueckerath, M. Aigner, and S. Hohmann. "Computational combustion simulation for an aircraft model combustor." In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3706.
Full textRahmatika, Annie Mufyda, W. Widiyastuti, Siti Machmudah, Tantular Nurtono, and Sugeng Winardi. "Computational fluid dynamic in combustion process using pulse combustor." In INTERNATIONAL SEMINAR ON FUNDAMENTAL AND APPLICATION OF CHEMICAL ENGINEERING 2016 (ISFAChE 2016): Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4982297.
Full textLebedev, A. B., A. N. Secundov, and K. Ya Yakubovskiy. "COMPUTATIONAL MODELING OF SUPERSONIC COMBUSTION." In 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-39.
Full textAbdel-Salam, Tarek, Surundra Tiwari, and Tajeldin Mohieldin. "Study of Supersonic Combustion Characteristics in a Scramjet Combustor." In 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3550.
Full textBrookes, Steve J., R. Stewart Cant, Iain D. J. Dupere, and Ann P. Dowling. "Computational Modelling of Self-Excited Combustion Instabilities." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0104.
Full textBrookes, Steve J., R. Stewart Cant, and Ann P. Dowling. "Modelling Combustion Instabilities Using Computational Fluid Dynamics." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-112.
Full textZhao, W., S. Frankel, and J. Gore. "A numerical study of combustion instability in a dump combustor." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2720.
Full textKARKI, K., and H. MONGIA. "Recent developments in computational combustion dynamics." In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2808.
Full textChen, Yen-Sen, Bill Wu, Y. Lain, Luke Yang, T. Chou, B. Gu, and J. Wu. "Multiphysics Computational Modeling of Hybrid Rocket Combustion." In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5607.
Full textRusso, Lucia, and Paola Russo. "Preface of the “Symposium on Computational Combustion”." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968708.
Full textReports on the topic "Computational Combustion"
Paolucci, Samuel, and Joseph M. Powers. A Novel Computational Approach to Combustion Modelling. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada400632.
Full textGord, James R. Experimental and Computational Characterization of Combustion Phenomena. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada474982.
Full textAhmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7205200.
Full textAhmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5470456.
Full textAhmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6878586.
Full textAhmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5793958.
Full textShipley, Kevin J., William E. Anderson, Matthew E. Harvazinski, and Venkateswaran Sankaran. A Computational Study of Transverse Combustion Instability Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada615844.
Full textAhmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6956707.
Full textNichols, B. D., C. Mueller, G. A. Necker, J. R. Travis, J. W. Spore, K. L. Lam, P. Royl, R. Redlinger, and T. L. Wilson. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1218.
Full textAhmadi, G. A computational model for coal transport and combustion. Final technical report. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/90274.
Full text