Academic literature on the topic 'Computational Combustion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational Combustion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Computational Combustion"

1

Westbrook, Charles K., Yasuhiro Mizobuchi, Thierry J. Poinsot, Phillip J. Smith, and Jürgen Warnatz. "Computational combustion." Proceedings of the Combustion Institute 30, no. 1 (January 2005): 125–57. http://dx.doi.org/10.1016/j.proci.2004.08.275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brookes, S. J., R. S. Cant, I. D. J. Dupere, and A. P. Dowling. "Computational Modeling of Self-Excited Combustion Instabilities." Journal of Engineering for Gas Turbines and Power 123, no. 2 (January 1, 2001): 322–26. http://dx.doi.org/10.1115/1.1362662.

Full text
Abstract:
It is well known that lean premixed combustion systems potentially offer better emissions performance than conventional non-premixed designs. However, premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems. Combustion instabilities (large-scale oscillations in heat release and pressure) have a deleterious effect on equipment, and also tend to decrease combustion efficiency. Designing out combustion instabilities is a difficult process and, particularly if many large-scale experiments are required, also very costly. Computational fluid dynamics (CFD) is now an established design tool in many areas of gas turbine design. However, its accuracy in the prediction of combustion instabilities is not yet proven. Unsteady heat release will generally be coupled to unsteady flow conditions within the combustor. In principle, computational fluid dynamics should be capable of modeling this coupled process. The present work assesses the ability of CFD to model self-excited combustion instabilities occurring within a model combustor. The accuracy of CFD in predicting both the onset and the nature of the instability is reported.
APA, Harvard, Vancouver, ISO, and other styles
3

Chand, Dharmahinder Singh, Daamanjyot Barara, Gautam Ganesh, and Suraj Anand. "Comparison of Efficiency of Conventional Shaped Circular and Elliptical Shaped Combustor." MATEC Web of Conferences 151 (2018): 02002. http://dx.doi.org/10.1051/matecconf/201815102002.

Full text
Abstract:
There have been concerted efforts towards improving the fuel efficiency of the jet engines in the past, with an aim of reducing the incomplete combustion. The process of combustion in a jet engine takes place in the combustor. A study was conducted for enhancement of air-fuel mixing process by computational analysis of an elliptically shaped combustor for a gas turbine engine. The results of computational analysis of an elliptical shape combustor were compared with a circular shape combustor used in gas turbine engines with a identical cross sectional area. The comparison of the computationally derived parameters of the two combustors i.e. temperature, pressure, and velocity are studied and analyzed. The study intends towards the comparison of the combustion efficiencies of the circular and elliptically shaped combustors. The combustion efficency of elliptical chamber is found to be 98.72% at the same time it was observed 56.26% in case of circular type combustor.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Qun, Hua Sheng Xu, Tao Gui, Shun Li Sun, Yue Wu, and Dong Bo Yan. "Investigation on Reaction Flow Field of Low Emission TAPS Combustors." Applied Mechanics and Materials 694 (November 2014): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amm.694.45.

Full text
Abstract:
A twin annular premixing swirler (TAPS) combustor model of low emissions was developed in this study. And computational studies on combustion process in the combustor model were carried out. Standard k-ε Turbulence Model, PDF non-premixed combustion model, Zeldovich thermal NOx formation model and DPM two-phase model were employed. The distributions of some key performance parameters such as gas temperature, flow velocity, concentrations of NOx and CO emissions were obtained and analyzed. At the same time, combustion mechanics inside the TAPS combustor model were investigated. The computational results indicated that the TAPS combustor employed in this study does a better job of improving key combustion performances such as combustion efficiency, total pressure recovery and outlet temperature distribution factor, and reducing NOx and CO emissions at the same time.
APA, Harvard, Vancouver, ISO, and other styles
5

Hendricks, R. C., D. T. Shouse, W. M. Roquemore, D. L. Burrus, B. S. Duncan, R. C. Ryder, A. Brankovic, N. S. Liu, J. R. Gallagher, and J. A. Hendricks. "Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow." International Journal of Rotating Machinery 7, no. 6 (2001): 375–85. http://dx.doi.org/10.1155/s1023621x0100032x.

Full text
Abstract:
The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.
APA, Harvard, Vancouver, ISO, and other styles
6

Grimm, Felix, Jürgen Dierke, Roland Ewert, Berthold Noll, and Manfred Aigner. "Modelling of combustion acoustics sources and their dynamics in the PRECCINSTA burner test case." International Journal of Spray and Combustion Dynamics 9, no. 4 (July 7, 2017): 330–48. http://dx.doi.org/10.1177/1756827717717390.

Full text
Abstract:
A stochastic, hybrid computational fluid dynamics/computational combustion acoustics approach for combustion noise prediction is applied to the PRECCINSTA laboratory scale combustor (prediction and control of combustion instabilities in industrial gas turbines). The numerical method is validated for its ability to accurately reproduce broadband combustion noise levels from measurements. The approach is based on averaged flow field and turbulence statistics from computational fluid dynamics simulations. The three-dimensional fast random particle method for combustion noise prediction is employed for the modelling of time-resolved dynamics of sound sources and sound propagation via linearised Euler equations. A comprehensive analysis of simulated sound source dynamics is carried out in order to contribute to the understanding of combustion noise formation mechanisms. Therefrom gained knowledge can further on be incorporated for the investigation of onset of thermoacoustic phenomena. The method-inherent stochastic Langevin ansatz for the realisation of turbulence related source decay is analysed in terms of reproduction ability of local one- and two-point statistical input and therefore its applicability to complex test cases. Furthermore, input turbulence statistics are varied, in order to investigate the impact of turbulence on the resulting sound pressure spectra for a swirl stabilised, technically premixed combustor.
APA, Harvard, Vancouver, ISO, and other styles
7

Yuan, Lei, and Chibing Shen. "Computational investigation on combustion instabilities in a rocket combustor." Acta Astronautica 127 (October 2016): 634–43. http://dx.doi.org/10.1016/j.actaastro.2016.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roga, Sukanta, and Krishna Murari Pandey. "Computational Analysis of Hydrogen-Fueled Scramjet Combustor Using Cavities in Tandem Flame Holder." Applied Mechanics and Materials 772 (July 2015): 130–35. http://dx.doi.org/10.4028/www.scientific.net/amm.772.130.

Full text
Abstract:
This work presents the computational analysis of scramjet combustor using cavities in tandem flame holder by means of 3D. The fuel used by scramjet combustor with cavities in tandem flame holder is hydrogen, the fluid flow and the work is based on the species transport combustion with standard k-ε viscous model. The Mach number at inlet is 2.47 and stagnation temperature and static pressure for vitiated air are 1000K and 100kPa respectively. These computational analysis is mainly aimed to study the flow structure and combustion efficiency. The computational results are compared qualitatively and quantitatively with experimental results and these are agreed as well. Due to the combustion, the recirculation region behind the cavity injector becomes larger as compared to mixing case which acts as a flame holder. From the analysis, the maximum Mach number of 2.33 is observed in the recirculation areas.
APA, Harvard, Vancouver, ISO, and other styles
9

Pries, Michael, Andreas Fiolitakis, and Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data." Journal of the Global Power and Propulsion Society 4 (December 18, 2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.

Full text
Abstract:
The development of efficient low emission combustion systems requires methods for an accurate and reliable prediction of combustion processes. Computational Fluid Dynamics (CFD) in combination with combustion modelling is an important tool to achieve this goal. For an accurate computation adequate boundary conditions are crucial. Especially data for the temperature distribution on the walls of the combustion chamber are usually not available. The present work focuses on numerical simulations of a high momentum jet flame in a single nozzle FLOX® type model combustion chamber at elevated pressure. Alongside the balance equations for the fluid the energy equation for the solid combustor walls is solved. To assess the accuracy of this approach, the temperature distribution on the inner combustion chamber wall resulting from this Conjugate Heat Transfer (CHT) simulation is compared to measured wall temperatures. The simulation results within the combustion chamber are compared to detailed experimental data. This includes a comparison of the flow velocities, temperatures as well as species concentrations. To further assess the benefit of including the solid domain in a CFD simulation the results of the CHT simulation are compared to results of a CFD computation where constant temperatures are assumed for all walls of the combustion chamber.
APA, Harvard, Vancouver, ISO, and other styles
10

Paul, P. "Computational Fluid Dynamics in Combustion." Defence Science Journal 60, no. 6 (November 20, 2010): 577–82. http://dx.doi.org/10.14429/dsj.60.600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Computational Combustion"

1

Bryden, Kenneth Mark. "Computational modeling of wood combustion." Madison, WI, 1998. http://catalog.hathitrust.org/api/volumes/oclc/40048634.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Dah-Chan. "Computational modelling of solid fuel combustion." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shimada, Yosuke. "Computational science of turbulent mixing and combustion." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5552.

Full text
Abstract:
Implicit Large Eddy Simulation (ILES) with high-resolution and high-order computational modelling has been applied to flows with turbulent mixing and combustion. Due to the turbulent nature, mixing of fuel and air and the subsequent combustion still remain challenging for computational fluid dynamics. However, recently ILES, an advanced numerical approach in Large Eddy Simulation methods, has shown encouraging results in prediction of turbulent flows. In this thesis the governing equations for single phase compressible flow were solved with an ILES approach using a finite volume Godunov-type method without explicit modelling of the subgrid scales. Up to ninth-order limiters were used to achieve high order spatial accuracy. When simulating non chemical reactive flows, the mean flow of a fuel burner was compared with the experimental results and showed good agreement in regions of strong turbulence and recirculation. The one dimensional kinetic energy spectrum was also examined and an ideal k−5/ 3 decay of energy could be seen in a certain range, which increased with grid resolution and order of the limiter. The cut-off wavenumbers are larger than the estimated maximum wavenumbers on the grid, therefore, the numerical dissipation sufficiently accounted for the energy transportation between large and small eddies. The effect of density differences between fuel and air was investigated for a wide range of Atwood number. The mean flow showed that when fuel momentum fluxes are identical the flow structure and the velocity fields were unchanged by Atwood number except for near fuel jet regions. The results also show that the effects of Atwood number on the flow structure can be described with a mixing parameter. In combustion flows simulation, a non filtered Arrhenius model was applied for the chemical source term, which corresponds to the case of the large chemical time scale compared to the turbulent time scale. A methane and air shear flow simulation was performed and the methane reaction rate showed non zero values against all temperature ranges. Small reaction rates were observed in the low temperature range due to the lack of subgrid scale modelling of the chemical source term. Simulation was also performed with fast chemistry approach representing the case of the large turbulent time scale compared to the chemical time scale. The mean flow of burner flames were compared with experimental data and a fair agreement was observed.
APA, Harvard, Vancouver, ISO, and other styles
4

Hossain, Mamdud. "CFD modelling of turbulent non-premixed combustion." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/12230.

Full text
Abstract:
The thesis comprises of a thorough assessment of turbulent non-premixed combustion modelling techniques, emphasising the fundamental issue of turbulence-chemistry interaction. The combustion models studied are the flame-sheet, equilibrium, eddy breakup and laminar flamelet models. An in-house CFD code is developed and all the combustion models are implemented. Fundamental numerical issues involving the discretisation schemes are addressed by employing three discretisation schemes namely, hybrid, power law and TVD. The combustion models are evaluated for a number of fuels ranging from simple H2/CO and CO/H2/N2 to more complex Cl4/H2 burning in bluff body stabilised burners at different inlet fuel velocities. The bluff body burner with its complex recirculation zone provides a suitable model problem for industrial flows. The initial and boundary conditions are simple and well-defined. The bluff body burner also provides a controlled environment for the study of turbulence-chemistry interaction at the neck zone. The high quality experimental database available from the University of Sydney and other reported measurements are used for the validation and evaluation of combustion models. The present calculations show that all the combustion models provide good predictions for near equilibrium flames for temperature and major species. Although the equilibrium chemistry model is capable of predicting minor species, the predictive accuracy is found to be inadequate when compared to the experimental data. The laminae flamelet model is the only model which has yielded good predictions for the minor species. For flames at higher velocities. the laminar flamelet model again has provided better predictions compared to predictions of other models considered. With different fuels, the laminar flamelet model predictions for CO/H2/N2 fuel are better than those for CH4/H2 fuel. The reasons for this discrepancy are discussed in detail. The effects of differential diffusion are studied in the laminar flamelet modelling strategy. The flamelet with unity Lewis number is found to give a better representation of the transport of species. The laminar flamelet model has yielded reasonably good predictions for NO mass fraction. The predictions of NO mass fraction are found to be very sensitive to differential diffusion effects. This study has also considered the issue of inclusion of radiative heat transfer in the laminar flamelet model. The radiation effects are found to be important only where the temperature is very high. The study undertaken and reported in this thesis shows that the presently available laminar flamelet modelling concepts are capable of predicting species concentrations and temperature fields with an adequate degree of accuracy. The flamelet model is also well suited for the prediction of NO emissions. The inclusion of radiation heat transfer has enhanced the predictive capability of the laminar flamelet model.
APA, Harvard, Vancouver, ISO, and other styles
5

Hayes, Carrigan Jo. "Computational studies of combustion processes and oxygenated species." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1186708015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alajmi, Ayedh. "Computational and experimental investigations on biodiesel combustion process." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/14221.

Full text
Abstract:
The combustion process of liquid conventional and biofuels depend on factors ranging from the thermophysicochemical properties associated with such fuels to the combustion infrastructure used to burn them. A third class of fuels commonly referred to as surrogate fuels can be obtained by mixing conventional and biofuels. It is thought that the existence of oxygen atoms in biofuels play a crucial role in the way they burn in a stream of air, in uencing not only the e ciency of the combustion process of such class of fuels but also the emissions. The mechanisms through which the existing oxygen atoms in uence the combustion process of biofuels (and its surrogates) are still debatable and unestablished. This thesis sheds light on the points mentioned in the paragraph above. Extensive computational and experimental work was done to elucidate the combustion process of conventional, surrogate and biofuels. Some of the reaction mechanisms used in modelling the current reactive ow simulation are already tested while others were developed during the course of this work. The computational results have shown good agreement with the available experimental data. One of the most important observations and ndings reported in this work was that when comprehensive reaction models were used, the injected fuels burned at a slower rate compared to the situation when reduced models were employed. While such comprehensive models predicted better ame structure and far better by-products compared to the existing experimental results, it has also led to di erences in some parameters, especially the temperature eld. The computational prediction has also shown that biodiesel produces a marginally higher rate of COx compared to diesel which was also observed experimentally using a Compression Ignition Engine (CIE). Having said so, the experimental work also showed that surrogate fuels perform far better than pure diesel and biodiesel in CIE) in terms of emissions. The experimental work further addressed some phyisical and spectral analysis of diesel, biodiesel and nine blends as well as assessing the performance of a combination of these fuels in a compression ignition engine. The results are in line with what has reported in the literature but also sheds light on important features related to surrogate fuels and explain better the expected structure of such blends which may in uence the way they burn under di erent environments. With regards to the harmfull emissions of the combustion of liquid fuels, biodiesel was found to produce harmful emissions in a lower quantity compared to conventional diesel which is in line with the ndings of many experimental data. The computational ndings have also predicted less energy content and temperature range for biofuels of order 10-15% which is also in agreement with many experimental ndings cited in the literature.
APA, Harvard, Vancouver, ISO, and other styles
7

Hayes, Carrigan J. "Computational studies of combustion processes and oxygenated species." The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1186708015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ikonomou, Evagelos. "A computational study of diesel sprays and combustion." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/7985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leathard, Matthew James. "Computational modelling of coolant heat transfer in internal combustion engines." Thesis, University of Bath, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gómez, Soriano Josep. "Computational assessment of combustion noise of automotive compression-ignited engines." Doctoral thesis, Editorial Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/112726.

Full text
Abstract:
Las crecientes exigencias de la industria están cambiando la forma en que entendemos la sociedad y el entorno en el que vivimos. Frente a la necesidad de un comercio rápido y globalizado, están emergiendo varios problemas de sostenibilidad. Por una parte, ciertos sectores resultan favorecidos, como es el caso del transporte y su radical incremento de actividades. Por otra parte, esto causa un impacto negativo considerable en los ecosistemas terrestres. En este marco, los efectos negativos de la contaminación ambiental y sonora están llegando a límites realmente preocupantes, siendo estos especialmente visibles en los principales núcleos urbanos, donde las autoridades están incluso restringiendo la circulación de los vehículos térmicos. Particularmente, el ruido producido por la quema del combustible en vehículos propulsados por motores de combustión interna alternativos, siendo una de las principales fuente acústicas por delante de otras como la aviación o el ferrocarril, está siendo objeto de recientes estudios para reducir sus efectos perjudiciales en la población. El objetivo principal de esta tesis se centra en el estudio y caracterización de la combustión como fuente de emisiones acústicas. Concretamente, esta investigación tiene como propósito dar respuesta a cuáles son los fenómenos físicos asociados a la generación del ruido en motores de encendido por compresión, así como proponer algunas directrices que ayuden a entender y mejorar -desde el punto de vista de emisiones acústicas y consumo- el diseño de los motores actuales. En una primera aproximación, se recurre a técnicas experimentales de medida para, con el registro de la presión instantánea dentro de la cámara de combustión, caracterizar el origen de las perturbaciones acústicas. A pesar de que la información aportada por estos métodos es relevante, existen limitaciones para recrear la espacialidad del campo acústico y, por tanto, dificultan la comprensión de los fenómenos no estacionarios asociados a este. Por esta razón, en posteriores estudios se recurre al uso de la dinámica de fluidos computacional o CFD, superando así las limitaciones de las técnicas experimentales y permitiendo una visualización completa del problema. Como paso previo e indispensable, se procede a implementar y validar del modelo CFD para asegurar una buena precisión en los resultados y un tiempo de cálculo razonable. La aplicación de métodos de análisis en frecuencia y descomposición modal han permitido estudiar el campo de presiones en el interior de la cámara y así entender mejor su comportamiento. De este modo, ha sido posible encontrar relaciones entre la combustión y la respuesta espectral del campo acústico interno. Los patrones de oscilación de la presión muestran que las estructuras más energéticas, y que por tanto contribuyen a la emisión acústica en mayor medida, están centradas en estructuras macroscópicas de tamaño similar a la geometría de la cámara. Además, se ha demostrado que la posición de la ignición del combustible tiene un efecto directo sobre la amplitud de los modos resonantes y su distribución espacial. Por último, en cuanto a la evaluación de estrategias para mitigar el ruido, se proponen distintos estudios en los que se analizan las tendencias en la emisión acústica al modificar la fuente sonora, mediante la configuración de la inyección y la geometría del sistema de combustión.
Les creixents exigències de la indústria estan canviant la forma en què entenem la societat i l'entorn en què vivim. Davant la necessitat d'un comerç ràpid i globalitzat estan sorgint diversos problemes de sostenibilitat que, per una part afavoreixen que sectors com el del transport incrementen les seues activitats de forma radical, però que per l'altra, causen un impacte negatiu en els ecosistemes terrestres. En aquest context, els efectes negatius de la contaminació ambiental i sonora estan arribant a límits realment preocupants, sent aquests especialment visibles als principals nuclis urbans on les autoritats estan inclús restringit la circulació dels vehicles tèrmics. Particularment, el soroll causat per la crema de combustible en vehicles propulsats per motors de combustió interna alternatius, sent una de les principals fonts acústiques per davant d'altres com l'aviació o el ferrocarril, està sent objecte de recents estudis per tal de reduir els efectes perjudicials en la població. L'objectiu principal d'aquesta tesi es centra en l'estudi i caracterització de la combustió com a font d'emissions acústiques. Concretament, aquesta investigació té com a propòsit donar resposta a quins són els fenòmens físics associats a la generació de soroll en motors d'encès per compressió, així com proposar algunes directrius que ajuden a entendre i millorar -des del punt de vista de les emissions acústiques i consum- el disseny dels motors actuals. En una primera aproximació, es recorre a tècniques experimentals de mesura per a, amb el registre de la pressió instantània en la cambra de combustió, caracteritzar l'origen de les pertorbacions acústiques. Tot i que la informació aportada per aquests mètodes és rellevant, existeixen limitacions per a reconstruir l'espacialitat del camp acústic i, per tant, dificulten la comprensió dels fenòmens no estacionaris associats a aquest. Per aquesta raó, en posteriors estudis es recorre a l'ús de la dinàmica de fluids computacional o CFD, superant així les limitacions de les tècniques experimentals i permetent una visualització completa del problema. Com a pas previ i indispensable, es procedeix a implementar i validar el model CFD per assegurar una bona precisió en els resultats i un temps de càlcul raonable. L'aplicació de mètodes d'anàlisi en freqüència i descomposició modal ha permès estudiar el camp de pressions en l'interior de la càmera i així entendre millor el seu comportament. D'aquesta forma, ha sigut possible trobar relacions entre la combustió i la resposta espectral del camp acústic intern. Els patrons d'oscil·lació de la pressió mostren que les estructures més energètiques, i que per tant contribueixen a l'emissió acústica en major mesura, estan centrades en estructures macroscòpiques de grandària similar a la geometria de la càmera. A més, s'ha demostrat que la posició de la ignició del combustible té un efecte directe sobre l'amplitud dels modes ressonants i la seua distribució espacial. Per últim, pel que fa a l'avaluació de diverses estratègies per a mitigar el soroll, es proposen distints estudis en què s'analitzen les tendències en l'emissió acústica en modificar la font sonora mitjançant la configuració de l'injector i la geometria del sistema de combustió.
The ever-increasing demands of industry are changing the way we understand society and the environment in which we live. In the face of the need for rapid and globalised trade, a number of sustainability issues are emerging which, on the one hand, encourage sectors such as transport to radically increase their activities, but, on the other hand, cause a negative impact on terrestrial ecosystems. In this context, the negative effects of environmental and noise pollution are reaching really worrying limits, these being especially visible in the main urban areas where the authorities are even restricting the circulation of vehicles powered with thermal engines. In particular, the noise produced by the fuel burning in vehicles powered by reciprocating internal combustion engines, being one of the main acoustic sources ahead of others such as aviation or railways, is being the focus of recent studies to reduce its harmful effects on the population. The main objective of this thesis focuses on the study and characterization of combustion as a source of noise emissions. Specifically, this research focuses on addressing the physical phenomena associated with noise generation in compression-ignited engines, as well as proposing some guidelines in order to better understand and improve -from the point of view of noise emissions and fuel consumption- the design of current engines. In a first approach, experimental techniques are used to characterise the source of the acoustic disturbances by recording the instantaneous pressure inside the combustion chamber. Although the information provided by these methods is relevant, there are some limitations to recreate the spatiality of the acoustic field and, therefore, make it difficult to understand the non-stationary phenomena associated with it. For this reason, in subsequent studies the Computational Fluid Dynamics or CFD approach is utilized, thereby overcoming the limitations of experimental techniques and allowing a complete visualization of the problem. As a preliminary and indispensable step, we proceed to implement and validate the CFD model to ensure a good accuracy in the results and a reasonable calculation time. The application of frequency analysis and modal decomposition methods has made it possible to study the pressure field inside the chamber and thus better understand its behaviour. In this way, it has been possible to find relationships between the combustion and the spectral response of the internal acoustic field. The pressure oscillation patterns show that the most energetic structures, and thus contributing the most to the acoustic emission, are centred on macroscopic structures of similar size to the chamber geometry. In addition, the ignition position of the fuel has been shown to have a direct effect on the amplitude of the resonant modes and their spatial distribution. Finally, regarding the evaluation of different strategies for mitigating noise, different studies are proposed in which the trends in noise emission are analysed by modifying the sound source through the injection configuration and the geometry of the combustion system.
Gómez Soriano, J. (2018). Computational assessment of combustion noise of automotive compression-ignited engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112726
TESIS
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Computational Combustion"

1

Shi, Yu. Computational optimization of internal combustion engines. London: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Hao, and Kefa Cen. Combustion Optimization Based on Computational Intelligence. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7875-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shi, Yu, Hai-Wen Ge, and Rolf D. Reitz. Computational Optimization of Internal Combustion Engines. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-619-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Tin Cheung John. An experimental and computational investigation of an annular reverse-flow combustor. [Downsview, Ont.]: University of Toronto, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sussman, Myles A. A computational study of unsteady shock induced combustion of hydrogen-air mixtures. Washington, D. C: American Institute of Aeronautics and Astronautics, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parent, Bernard. Computational study of fuel injection in a shcramjet inlet. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Joseph. An analytical and computational investigation of shock-induced vortical flows with applications to supersonic combustion. Pasadena, Calif: California Institute of Technology, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, T. C. J. An experimental and computational investigation of an annular reverse-flow combustor. [Downsview, Ont.]: Institute for Aerospace Studies, University of Toronto, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Etele, Jason. Computational study of variable area ejector rocket flowfields. [Downsview, Ont: University of Toronto, Institute for Aerospace Studies], 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dash, Sanford M. Computational models for the analysis/design of hypersonic scramjet nozzles - Part 1: Combustor and nozzle models. New York: AIAA, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Computational Combustion"

1

Prosser, Robert, and R. Stewart Cant. "Wavelet Methods in Computational Combustion." In Turbulent Combustion Modeling, 331–51. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ray, J., R. Armstrong, C. Safta, B. J. Debusschere, B. A. Allan, and H. N. Najm. "Computational Frameworks for Advanced Combustion Simulations." In Turbulent Combustion Modeling, 409–37. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Menon, Suresh, Vaidyanathan Sankaran, and Christopher Stone. "Combustion Dynamics of Swirling Turbulent Flames." In Computational Science — ICCS 2001, 1127–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45545-0_124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fischer, Marc, and Uwe Riedel. "Combustion Chemistry and Parameter Estimation." In Contributions in Mathematical and Computational Sciences, 207–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30367-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yaşar, O. "Plasma Modeling of Ignition for Combustion Simulations." In Computational Science — ICCS 2001, 1147–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45545-0_126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Yu, Hai-Wen Ge, and Rolf D. Reitz. "Scaling Laws for Diesel Combustion Systems." In Computational Optimization of Internal Combustion Engines, 147–76. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-619-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liou, May-Fun, and HyoungJin Kim. "Pore Scale Simulation of Combustion in Porous Media." In Computational Fluid Dynamics 2008, 363–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miao, Wenbo, Xiaoli Cheng, and Qiang Wang. "Direct Numerical Simulation of a Compressible Turbulent Mixing Layer with Combustion Chemical Reactions." In Computational Mechanics, 243. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75999-7_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cleary, M. J., J. H. Kent, and R. W. Bilger. "A Computational Method for Combustion Using Conditional Moment Closure." In Computational Fluid Dynamics 2002, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gutheil, Eva. "Issues in Computational Studies of Turbulent Spray Combustion." In ERCOFTAC Series, 1–39. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Computational Combustion"

1

Kunz, O., B. Noll, R. Lueckerath, M. Aigner, and S. Hohmann. "Computational combustion simulation for an aircraft model combustor." In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rahmatika, Annie Mufyda, W. Widiyastuti, Siti Machmudah, Tantular Nurtono, and Sugeng Winardi. "Computational fluid dynamic in combustion process using pulse combustor." In INTERNATIONAL SEMINAR ON FUNDAMENTAL AND APPLICATION OF CHEMICAL ENGINEERING 2016 (ISFAChE 2016): Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4982297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lebedev, A. B., A. N. Secundov, and K. Ya Yakubovskiy. "COMPUTATIONAL MODELING OF SUPERSONIC COMBUSTION." In 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abdel-Salam, Tarek, Surundra Tiwari, and Tajeldin Mohieldin. "Study of Supersonic Combustion Characteristics in a Scramjet Combustor." In 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brookes, Steve J., R. Stewart Cant, Iain D. J. Dupere, and Ann P. Dowling. "Computational Modelling of Self-Excited Combustion Instabilities." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0104.

Full text
Abstract:
It is well known that lean premixed combustion systems potentially offer better emissions performance than conventional non-premixed designs. However, premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems. Combustion instabilities (large-scale oscillations in heat release and pressure) have a deleterious effect on equipment, and also tend to decrease combustion efficiency. Designing out combustion instabilities is a difficult process and, particularly if many large-scale experiments are required, also very costly. Computational fluid dynamics (CFD) is now an established design tool in many areas of gas turbine design. However, its accuracy in the prediction of combustion instabilities is not yet proven. Unsteady heat release will generally be coupled to unsteady flow conditions within the combustor. In principle, computational fluid dynamics should be capable of modelling this coupled process. The present work assesses the ability of CFD to model self-excited combustion instabilities occurring within a model combustor. The accuracy of CFD in predicting both the onset and the nature of the instability is reported.
APA, Harvard, Vancouver, ISO, and other styles
6

Brookes, Steve J., R. Stewart Cant, and Ann P. Dowling. "Modelling Combustion Instabilities Using Computational Fluid Dynamics." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-112.

Full text
Abstract:
The drive for lower emissions has forced combustor designers to consider lean premixed combustion systems. Unfortunately, premixed combustion systems are particularly susceptible to instabilities, raising large periodic fluctuations in heat release and pressure, that may cause structural damage. A reliable computational tool for predicting the onset of these oscillations would be extremely useful during the design process. The work contained in this paper utilises computational fluid dynamics to model a simple premixed combustor, consisting of a bluff-body stabilised flame burning within a cylindrical duct. State of the art models are used to represent the combustion heat release and the turbulent transport within the combustor. Both forced oscillations and a nearly self-excited condition are modelled and compared with experiment.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, W., S. Frankel, and J. Gore. "A numerical study of combustion instability in a dump combustor." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KARKI, K., and H. MONGIA. "Recent developments in computational combustion dynamics." In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Yen-Sen, Bill Wu, Y. Lain, Luke Yang, T. Chou, B. Gu, and J. Wu. "Multiphysics Computational Modeling of Hybrid Rocket Combustion." In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Russo, Lucia, and Paola Russo. "Preface of the “Symposium on Computational Combustion”." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968708.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Computational Combustion"

1

Paolucci, Samuel, and Joseph M. Powers. A Novel Computational Approach to Combustion Modelling. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada400632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gord, James R. Experimental and Computational Characterization of Combustion Phenomena. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada474982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7205200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5470456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6878586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5793958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shipley, Kevin J., William E. Anderson, Matthew E. Harvazinski, and Venkateswaran Sankaran. A Computational Study of Transverse Combustion Instability Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada615844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmadi, G. A computational model for coal transport and combustion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6956707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nichols, B. D., C. Mueller, G. A. Necker, J. R. Travis, J. W. Spore, K. L. Lam, P. Royl, R. Redlinger, and T. L. Wilson. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmadi, G. A computational model for coal transport and combustion. Final technical report. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/90274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography