Journal articles on the topic 'Computational Combustion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Computational Combustion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Westbrook, Charles K., Yasuhiro Mizobuchi, Thierry J. Poinsot, Phillip J. Smith, and Jürgen Warnatz. "Computational combustion." Proceedings of the Combustion Institute 30, no. 1 (January 2005): 125–57. http://dx.doi.org/10.1016/j.proci.2004.08.275.
Full textBrookes, S. J., R. S. Cant, I. D. J. Dupere, and A. P. Dowling. "Computational Modeling of Self-Excited Combustion Instabilities." Journal of Engineering for Gas Turbines and Power 123, no. 2 (January 1, 2001): 322–26. http://dx.doi.org/10.1115/1.1362662.
Full textChand, Dharmahinder Singh, Daamanjyot Barara, Gautam Ganesh, and Suraj Anand. "Comparison of Efficiency of Conventional Shaped Circular and Elliptical Shaped Combustor." MATEC Web of Conferences 151 (2018): 02002. http://dx.doi.org/10.1051/matecconf/201815102002.
Full textZhang, Qun, Hua Sheng Xu, Tao Gui, Shun Li Sun, Yue Wu, and Dong Bo Yan. "Investigation on Reaction Flow Field of Low Emission TAPS Combustors." Applied Mechanics and Materials 694 (November 2014): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amm.694.45.
Full textHendricks, R. C., D. T. Shouse, W. M. Roquemore, D. L. Burrus, B. S. Duncan, R. C. Ryder, A. Brankovic, N. S. Liu, J. R. Gallagher, and J. A. Hendricks. "Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow." International Journal of Rotating Machinery 7, no. 6 (2001): 375–85. http://dx.doi.org/10.1155/s1023621x0100032x.
Full textGrimm, Felix, Jürgen Dierke, Roland Ewert, Berthold Noll, and Manfred Aigner. "Modelling of combustion acoustics sources and their dynamics in the PRECCINSTA burner test case." International Journal of Spray and Combustion Dynamics 9, no. 4 (July 7, 2017): 330–48. http://dx.doi.org/10.1177/1756827717717390.
Full textYuan, Lei, and Chibing Shen. "Computational investigation on combustion instabilities in a rocket combustor." Acta Astronautica 127 (October 2016): 634–43. http://dx.doi.org/10.1016/j.actaastro.2016.06.015.
Full textRoga, Sukanta, and Krishna Murari Pandey. "Computational Analysis of Hydrogen-Fueled Scramjet Combustor Using Cavities in Tandem Flame Holder." Applied Mechanics and Materials 772 (July 2015): 130–35. http://dx.doi.org/10.4028/www.scientific.net/amm.772.130.
Full textPries, Michael, Andreas Fiolitakis, and Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data." Journal of the Global Power and Propulsion Society 4 (December 18, 2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.
Full textPaul, P. "Computational Fluid Dynamics in Combustion." Defence Science Journal 60, no. 6 (November 20, 2010): 577–82. http://dx.doi.org/10.14429/dsj.60.600.
Full textP, Karthikeyan, Madhavan S, and Silambarasan SM. "Computational analysis of hydrocarbon combustion." IARJSET 8, no. 5 (May 30, 2021): 506–11. http://dx.doi.org/10.17148/iarjset.2021.8588.
Full textColantonio, R. O. "The Applicability of Jet-Shear-Layer Mixing and Effervescent Atomization for Low-NOx Combustors." Journal of Engineering for Gas Turbines and Power 120, no. 1 (January 1, 1998): 17–23. http://dx.doi.org/10.1115/1.2818073.
Full textAithal, S. M. "Charged Species Concentration in Combusting Mixtures Using Equilibrium Chemistry." Journal of Combustion 2018 (October 4, 2018): 1–11. http://dx.doi.org/10.1155/2018/9047698.
Full textLv, Tai, and Shi Ze Zhao. "Numerical Simulation Analysis of the Optimized and Transformed 200MW Pulverized Coal Fired Boiler Burner." Applied Mechanics and Materials 672-674 (October 2014): 1524–27. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.1524.
Full textZhou, Lei, Wanhui Zhao, and Haiqiao Wei. "Effect of improved accelerating method on efficient chemistry calculations in diesel engine." International Journal of Engine Research 19, no. 8 (September 18, 2017): 839–53. http://dx.doi.org/10.1177/1468087417731438.
Full textIbrahim, S. "COMPUTATIONAL FLUID DYNAMICS AND COMBUSTION MODELLING." International Conference on Applied Mechanics and Mechanical Engineering 18, no. 18 (April 1, 2018): 1. http://dx.doi.org/10.21608/amme.2018.34990.
Full textKlose, G., R. Schmehl, R. Meier, G. Maier, R. Koch, S. Wittig, M. Hettel, W. Leuckel, and N. Zarzalis. "Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 817–23. http://dx.doi.org/10.1115/1.1377010.
Full textPang, Yik Siang, Woon Phui Law, Kang Qin Pung, and Jolius Gimbun. "A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner." Bulletin of Chemical Reaction Engineering & Catalysis 13, no. 1 (April 2, 2018): 155. http://dx.doi.org/10.9767/bcrec.13.1.1395.155-169.
Full textSerbin, Sergey. "THERMO ACOUSTIC PROCESSES IN LOW EMISSION COMBUSTION CHAMBER OF GAS TURBINE ENGINE CAPACITY 25 MW." Science Journal Innovation Technologies Transfer, no. 2019-2 (May 5, 2019): 86–90. http://dx.doi.org/10.36381/iamsti.2.2019.86-90.
Full textKarki, K. C., V. L. Oechsle, and H. C. Mongia. "A Computational Procedure for Diffuser-Combustor Flow Interaction Analysis." Journal of Engineering for Gas Turbines and Power 114, no. 1 (January 1, 1992): 1–7. http://dx.doi.org/10.1115/1.2906301.
Full textJames, S., M. S. Anand, M. K. Razdan, and S. B. Pope. "In Situ Detailed Chemistry Calculations in Combustor Flow Analyses." Journal of Engineering for Gas Turbines and Power 123, no. 4 (March 1, 1999): 747–56. http://dx.doi.org/10.1115/1.1384878.
Full textVermes, G., L. E. Barta, and J. M. Bee´r. "Low NOx Emission From an Ambient Pressure Diffusion Flame Fired Gas Turbine Cycle (APGC)." Journal of Engineering for Gas Turbines and Power 125, no. 1 (December 27, 2002): 46–50. http://dx.doi.org/10.1115/1.1520160.
Full textDeng, Xiaowen, Li Xing, Hong Yin, Feng Tian, and Qun Zhang. "Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor." International Journal of Turbo & Jet-Engines 35, no. 1 (March 26, 2018): 71–80. http://dx.doi.org/10.1515/tjj-2016-0021.
Full textCostura, D. M., P. B. Lawless, and S. H. Fankel. "A Computational Model for the Study of Gas Turbine Combustor Dynamics." Journal of Engineering for Gas Turbines and Power 121, no. 2 (April 1, 1999): 243–48. http://dx.doi.org/10.1115/1.2817112.
Full textDinesh, K. K. J. Ranga, M. P. Kirkpatrick, and A. Odedra. "COMPUTATIONAL FLUID DYNAMICS MODELING TOWARD CLEAN COMBUSTION." Computational Thermal Sciences 4, no. 1 (2012): 49–65. http://dx.doi.org/10.1615/computthermalscien.2012004160.
Full textNovozhilov, V., B. Moghtaderi, D. F. Fletcher, and J. H. Kent. "Computational fluid dynamics modelling of wood combustion." Fire Safety Journal 27, no. 1 (July 1996): 69–84. http://dx.doi.org/10.1016/s0379-7112(96)00022-7.
Full textPope, Stephen B., and Zhuyin Ren. "Efficient Implementation of Chemistry in Computational Combustion." Flow, Turbulence and Combustion 82, no. 4 (April 2, 2008): 437–53. http://dx.doi.org/10.1007/s10494-008-9145-3.
Full textJarrahbashi, Dorrin, Sayop Kim, Benjamin W. Knox, and Caroline L. Genzale. "Computational analysis of end-of-injection transients and combustion recession." International Journal of Engine Research 18, no. 10 (April 5, 2017): 1088–110. http://dx.doi.org/10.1177/1468087417701280.
Full textZian, Norhaslina Mat, Hasril Hasini, and Nur Irmawati Om. "Investigation of Syngas Combustion at Variable Methane Composition in Can Combustor Using CFD." Advanced Materials Research 1016 (August 2014): 592–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.592.
Full textZhang, Y. G., Y. G. Bai, X. C. Yu, and Y. F. Liu. "Numerical Analysis of Active Cooling Structure of Engine Combustion Chamber." Advanced Materials Research 629 (December 2012): 564–69. http://dx.doi.org/10.4028/www.scientific.net/amr.629.564.
Full textPekkan, K., and M. R. Nalim. "Two-Dimensional Flow and NOx Emissions in Deflagrative Internal Combustion Wave Rotor Configurations." Journal of Engineering for Gas Turbines and Power 125, no. 3 (July 1, 2003): 720–33. http://dx.doi.org/10.1115/1.1586315.
Full textYAN, Y. W., Y. P. Liu, Y. C. Liu, and J. H. Li. "Experimental and computational investigations of flow dynamics in LPP combustor." Aeronautical Journal 121, no. 1240 (May 31, 2017): 790–802. http://dx.doi.org/10.1017/aer.2017.31.
Full textAndreini, A., C. Bianchini, and A. Innocenti. "Large Eddy Simulation of a Bluff Body Stabilized Lean Premixed Flame." Journal of Combustion 2014 (2014): 1–18. http://dx.doi.org/10.1155/2014/710254.
Full textMcGuirk, J. J. "The aerodynamic challenges of aeroengine gas-turbine combustion systems." Aeronautical Journal 118, no. 1204 (June 2014): 557–99. http://dx.doi.org/10.1017/s0001924000009386.
Full textDawwa, Mahran. "Simulation of Combustion Process in Diesel Engines Based on Eddy Dissipation Model." Applied Mechanics and Materials 823 (January 2016): 315–18. http://dx.doi.org/10.4028/www.scientific.net/amm.823.315.
Full textStitzel, Sarah, and Karen A. Thole. "Flow Field Computations of Combustor-Turbine Interactions Relevant to a Gas Turbine Engine." Journal of Turbomachinery 126, no. 1 (January 1, 2004): 122–29. http://dx.doi.org/10.1115/1.1625691.
Full textDebnath, Pinku, and KM Pandey. "Exergetic efficiency analysis of hydrogen–air detonation in pulse detonation combustor using computational fluid dynamics." International Journal of Spray and Combustion Dynamics 9, no. 1 (June 22, 2016): 44–54. http://dx.doi.org/10.1177/1756827716653344.
Full textRozainee, M., S. P. Ngo, Arshad A. Salema, and K. G. Tan. "Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor." Powder Technology 203, no. 2 (November 2010): 331–47. http://dx.doi.org/10.1016/j.powtec.2010.05.026.
Full textTrevisan, B. P., and W. M. C. Dourado. "EXPERIMENTAL STUDY OF THE INLET FLOW IN A NON-PREMIXED COMBUSTION CHAMBER." Revista de Engenharia Térmica 19, no. 1 (September 9, 2020): 72. http://dx.doi.org/10.5380/reterm.v19i1.76437.
Full textLee, Sang-Hyeon, In-Seuck Jeung, and Youngbin Yoon. "Computational Investigation of Shock-Enhanced Mixing and Combustion." AIAA Journal 35, no. 12 (December 1997): 1813–20. http://dx.doi.org/10.2514/2.56.
Full textLaevsky, Yu M., and T. A. Nosova. "A multidimensional computational model of filtration gas combustion." Sibirskii zhurnal industrial'noi matematiki 23, no. 1 (March 6, 2020): 126–42. http://dx.doi.org/10.33048/sibjim.2020.23.111.
Full textDelprete, Cristiana, Fabio Pregno, and Carlo Rosso. "Internal Combustion Engine Design: a Practical Computational Methodology." SAE International Journal of Engines 2, no. 1 (April 20, 2009): 263–70. http://dx.doi.org/10.4271/2009-01-0477.
Full textLaevsky, Yu M., and T. A. Nosova. "A Multidimensional Computational Model of Filtration Gas Combustion." Journal of Applied and Industrial Mathematics 14, no. 1 (January 2020): 148–61. http://dx.doi.org/10.1134/s1990478920010147.
Full textLee, Sang-Hyeon, In-Seuck Jeung, and Youngbin Yoon. "Computational investigation of shock-enhanced mixing and combustion." AIAA Journal 35 (January 1997): 1813–20. http://dx.doi.org/10.2514/3.13756.
Full textProsser, R., and R. S. Cant. "On the Use of Wavelets in Computational Combustion." Journal of Computational Physics 147, no. 2 (December 1998): 337–61. http://dx.doi.org/10.1006/jcph.1998.6092.
Full textBi, Xiaojie, Maoyu Xiao, Xinqi Qiao, Chia-Fon Lee, and Liu Yu. "Experimental and computational investigation of temperature effects on soot mechanisms." Journal of the Serbian Chemical Society 79, no. 7 (2014): 881–95. http://dx.doi.org/10.2298/jsc130614125b.
Full textGanji, Prabhakara, Rajesh Raju, and Srinivasa Rao. "Computational optimization of biodiesel combustion using response surface methodology." Thermal Science 21, no. 1 Part B (2017): 465–73. http://dx.doi.org/10.2298/tsci161229031g.
Full textZhukov, Victor P. "Verification, Validation, and Testing of Kinetic Mechanisms of Hydrogen Combustion in Fluid-Dynamic Computations." ISRN Mechanical Engineering 2012 (August 13, 2012): 1–11. http://dx.doi.org/10.5402/2012/475607.
Full textSharma, N. Y., and S. K. Som. "Influence of fuel volatility on combustion and emission characteristics in a gas turbine combustor at different inlet pressures and swirl conditions." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 216, no. 3 (May 1, 2002): 257–68. http://dx.doi.org/10.1243/095765002320183577.
Full textReale, Fabrizio, Raffaela Calabria, Fabio Chiariello, Rocco Pagliara, and Patrizio Massoli. "A Micro Gas Turbine Fuelled by Methane-Hydrogen Blends." Applied Mechanics and Materials 232 (November 2012): 792–96. http://dx.doi.org/10.4028/www.scientific.net/amm.232.792.
Full text