Journal articles on the topic 'Computational fluid dynamics; Naval architecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Computational fluid dynamics; Naval architecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gomatam, Sreekar, S. Vengadesan, and S. K. Bhattacharyya. "Numerical simulations of flow past an autonomous underwater vehicle at various drift angles." Journal of Naval Architecture and Marine Engineering 9, no. 2 (December 24, 2012): 135–52. http://dx.doi.org/10.3329/jname.v9i2.12567.
Full textSakthivel, R., S. Vengadesan, and S. K. Bhattacharyya. "Application of non-linear k-e turbulence model in flow simulation over underwater axisymmetric hull at higher angle of attack." Journal of Naval Architecture and Marine Engineering 8, no. 2 (November 22, 2011): 149–63. http://dx.doi.org/10.3329/jname.v8i2.6984.
Full textOanta, Emil. "Original Computer Based Solutions in Structural Studies." Advanced Materials Research 837 (November 2013): 440–45. http://dx.doi.org/10.4028/www.scientific.net/amr.837.440.
Full textRamamurti, R., W. Sandberg, P. Vaiana, J. Kellogg, and D. Cylinder. "Computational fluid dynamics study of unconventional air vehicle configurations." Aeronautical Journal 109, no. 1097 (July 2005): 337–47. http://dx.doi.org/10.1017/s0001924000000786.
Full textKaijima, Sawako, Roland Bouffanais, Karen Willcox, and Suresh Naidu. "Computational Fluid Dynamics for Architectural Design." Architectural Design 83, no. 2 (March 2013): 118–23. http://dx.doi.org/10.1002/ad.1566.
Full textXu, Wenzhe, Grzegorz Filip, and Kevin J. Maki. "A Method for the Prediction of Extreme Ship Responses Using Design-Event Theory and Computational Fluid Dynamics." Journal of Ship Research 64, no. 01 (March 1, 2020): 48–60. http://dx.doi.org/10.5957/jsr.2020.64.1.48.
Full textBaliño, J. L., A. E. Larreteguy, and E. F. Gandolfo Raso. "A general bond graph approach for computational fluid dynamics." Simulation Modelling Practice and Theory 14, no. 7 (October 2006): 884–908. http://dx.doi.org/10.1016/j.simpat.2006.03.001.
Full textYahyai, Mahmoud, Amir Saedi Daryan, Masoud Ziaei, and Seyed Masoud Mirtaheri. "Wind effect on milad tower using computational fluid dynamics." Structural Design of Tall and Special Buildings 20, no. 2 (March 2011): 177–89. http://dx.doi.org/10.1002/tal.522.
Full textKundrák, János, Károly Gyáni, Béla Tolvaj, Zoltán Pálmai, Róbert Tóth, and Angelos P. Markopoulos. "Thermotechnical modelling of hard turning: A computational fluid dynamics approach." Simulation Modelling Practice and Theory 70 (January 2017): 52–64. http://dx.doi.org/10.1016/j.simpat.2016.10.003.
Full textGonzales, Howell B., John Tatarko, Mark E. Casada, Ronaldo G. Maghirang, Lawrence J. Hagen, and Charles J. Barden. "Computational Fluid Dynamics Simulation of Airflow through Standing Vegetation." Transactions of the ASABE 62, no. 6 (2019): 1713–22. http://dx.doi.org/10.13031/trans.13449.
Full textGötz, J., K. Iglberger, C. Feichtinger, S. Donath, and U. Rüde. "Coupling multibody dynamics and computational fluid dynamics on 8192 processor cores." Parallel Computing 36, no. 2-3 (February 2010): 142–51. http://dx.doi.org/10.1016/j.parco.2010.01.005.
Full textSmith, William D., and Austars R. Schnore. "Towards an RCC-Based Accelerator for Computational Fluid Dynamics Applications." Journal of Supercomputing 30, no. 3 (December 2004): 239–61. http://dx.doi.org/10.1023/b:supe.0000045211.07895.cb.
Full textTahara, Y., F. Stern, and Y. Himeno. "Computational Fluid Dynamics–Based Optimization of a Surface Combatant." Journal of Ship Research 48, no. 04 (December 1, 2004): 273–87. http://dx.doi.org/10.5957/jsr.2004.48.4.273.
Full textHan, L. H., T. Indinger, X. Y. Hu, and N. A. Adams. "Wavelet-based adaptive multi-resolution solver on heterogeneous parallel architecture for computational fluid dynamics." Computer Science - Research and Development 26, no. 3-4 (April 20, 2011): 197–203. http://dx.doi.org/10.1007/s00450-011-0167-z.
Full textEl-Helw, Mohamed, Mohamed Fayed, and Adel El-Shobaky. "Studying different scenarios of operating air conditioning system in smoke management using computational fluid dynamics in naval ships." Thermal Science 22, no. 6 Part B (2018): 2973–86. http://dx.doi.org/10.2298/tsci170211123e.
Full textCao, Wei, Zheng Hua Wang, and Chuan Fu Xu. "A Survey of General Purpose Computation of GPU for Computational Fluid Dynamics." Advanced Materials Research 753-755 (August 2013): 2731–35. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.2731.
Full textHaupt, W. "Zur Simulation von auftriebserregten Raumluftströmungen mit Hilfe von Computational Fluid Dynamics (CFD)." Bauphysik 23, no. 6 (November 2001): 338–43. http://dx.doi.org/10.1002/bapi.200101730.
Full textLow, Wan Shi, Nahrizul Adib Kadri, and Wan Abu Bakar bin Wan Abas. "Computational Fluid Dynamics Modelling of Microfluidic Channel for Dielectrophoretic BioMEMS Application." Scientific World Journal 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/961301.
Full textLiu, Ji Tang, Zhao Song Ma, Shi Hai Li, and Ying Zhao. "A GPU Accelerated Red-Black SOR Algorithm for Computational Fluid Dynamics Problems." Advanced Materials Research 320 (August 2011): 335–40. http://dx.doi.org/10.4028/www.scientific.net/amr.320.335.
Full textKastner, Patrick, and Timur Dogan. "A cylindrical meshing methodology for annual urban computational fluid dynamics simulations." Journal of Building Performance Simulation 13, no. 1 (December 18, 2019): 59–68. http://dx.doi.org/10.1080/19401493.2019.1692906.
Full textPeri, Daniele, and Emilio F. Campana. "Multidisciplinary Design Optimization of a Naval Surface Combatant." Journal of Ship Research 47, no. 01 (March 1, 2003): 1–12. http://dx.doi.org/10.5957/jsr.2003.47.1.1.
Full textNiemeyer, Kyle E., and Chih-Jen Sung. "Recent progress and challenges in exploiting graphics processors in computational fluid dynamics." Journal of Supercomputing 67, no. 2 (September 11, 2013): 528–64. http://dx.doi.org/10.1007/s11227-013-1015-7.
Full textMoonesun, Mohammad, Yuri Mikhailovich Korol, Hosein Dalayeli, Davood Tahvildarzade, Mehran Javadi, Mohammad Jelokhaniyan, and Asghar Mahdian. "Optimization on submarine stern design." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 231, no. 1 (August 3, 2016): 109–19. http://dx.doi.org/10.1177/1475090215625673.
Full textNiu, J. L., Y. M. Tang, and C. M. Mak. "The Application of Computational Fluid Dynamics to the Assessment of Green Features in Buildings: Part 2: Communal Sky Gardens." Architectural Science Review 48, no. 4 (December 2005): 337–44. http://dx.doi.org/10.3763/asre.2005.4841.
Full textWoo, Mino, Robert T. Nishida, Mario A. Schriefl, Marc E. J. Stettler, and Adam M. Boies. "Open-source modelling of aerosol dynamics and computational fluid dynamics: Nodal method for nucleation, coagulation, and surface growth." Computer Physics Communications 261 (April 2021): 107765. http://dx.doi.org/10.1016/j.cpc.2020.107765.
Full textHauser, Thomas, and Raymond LeBeau. "Optimization of a Computational Fluid Dynamics Code for the Memory Hierarchy: A Case Study." International Journal of High Performance Computing Applications 24, no. 3 (January 11, 2010): 299–318. http://dx.doi.org/10.1177/1094342009358413.
Full textHadade, Ioan, Feng Wang, Mauro Carnevale, and Luca di Mare. "Some useful optimisations for unstructured computational fluid dynamics codes on multicore and manycore architectures." Computer Physics Communications 235 (February 2019): 305–23. http://dx.doi.org/10.1016/j.cpc.2018.07.001.
Full textSubramani, Anil K., Eric G. Paterson, and Fred Stern. "CFD Calculation of Sinkage and Trim." Journal of Ship Research 44, no. 01 (March 1, 2000): 59–82. http://dx.doi.org/10.5957/jsr.2000.44.1.59.
Full textLongo, Joe, and Fred Stern. "Uncertainty Assessment for Towing Tank Tests With Example for Surface Combatant DTMB Model 5415." Journal of Ship Research 49, no. 01 (March 1, 2005): 55–68. http://dx.doi.org/10.5957/jsr.2005.49.1.55.
Full textGao, Jun, Jia-ning Zhao, Xiao-dong Li, and Fu-sheng Gao. "Evaluation of a Zonal Model for Large Enclosures Using Computational Fluid Dynamics." Journal of Asian Architecture and Building Engineering 6, no. 2 (November 2007): 379–85. http://dx.doi.org/10.3130/jaabe.6.379.
Full textKim, Dongyoung, Yagin Kim, Jiajia Li, Robert V. Wilson, J. Ezequiel Martin, and Pablo M. Carrica. "Boundary Layer Transition Models for Naval Applications: Capabilities and Limitations." Journal of Ship Research 63, no. 4 (December 1, 2019): 294–307. http://dx.doi.org/10.5957/josr.09180066.
Full textAbdelkhalek, Hany, Duan Feng Han, Liang Tian Gao, and Qing Wang. "Computational Fluid Dynamics and Numerical Acoustic Response for Ship Accommodation Areas due to Propeller Excitation, towards a Human Factors Recommendations." Applied Mechanics and Materials 707 (December 2014): 406–11. http://dx.doi.org/10.4028/www.scientific.net/amm.707.406.
Full textGutiérrez, José E., Blas Zamora, and Jerónimo A. Esteve. "Alternative Teaching Methodology in Marine Engineering Courses: employing TIC & CFD Tools." Modelling in Science Education and Learning 7 (March 30, 2014): 25. http://dx.doi.org/10.4995/msel.2014.2087.
Full textAyguade, Eduard, Marc Gonzalez, Xavier Martorell, and Gabriele Jost. "Employing nested OpenMP for the parallelization of multi-zone computational fluid dynamics applications." Journal of Parallel and Distributed Computing 66, no. 5 (May 2006): 686–97. http://dx.doi.org/10.1016/j.jpdc.2005.06.019.
Full textSchönauer, W., and W. Gentzsch. "The efficient use of vector computers with emphasis to computational fluid dynamics." Parallel Computing 2, no. 1 (March 1985): 79–82. http://dx.doi.org/10.1016/0167-8191(85)90020-1.
Full textScurtu, Ionut Cristian, and Valeriu Nicolae Panaitescu. "Turbulent Flow Numerical Simulation for Unconventional Propulsion." Revista de Chimie 70, no. 10 (November 15, 2019): 3508–11. http://dx.doi.org/10.37358/rc.19.10.7585.
Full textElsadek, Hazem, Xiao Bing Zhang, Mahmod M. Rashad, and Cheng Cheny. "Two Phase Flow Modeling of the Interior Ballistics for a Naval Medium Caliber Gun with Guided Projectile." Applied Mechanics and Materials 465-466 (December 2013): 531–35. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.531.
Full textLee, Seyong, John Gounley, Amanda Randles, and Jeffrey S. Vetter. "Performance portability study for massively parallel computational fluid dynamics application on scalable heterogeneous architectures." Journal of Parallel and Distributed Computing 129 (July 2019): 1–13. http://dx.doi.org/10.1016/j.jpdc.2019.02.005.
Full textCropper, Paul C., Tong Yang, Malcolm Cook, Dusan Fiala, and Rehan Yousaf. "Coupling a model of human thermoregulation with computational fluid dynamics for predicting human–environment interaction." Journal of Building Performance Simulation 3, no. 3 (September 2010): 233–43. http://dx.doi.org/10.1080/19401491003615669.
Full textAckerman, Aidan, Jonathan Cave, Chien-Yu Lin, and Kyle Stillwell. "Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach." International Journal of Architectural Computing 17, no. 2 (May 16, 2019): 125–47. http://dx.doi.org/10.1177/1478077119849659.
Full textChopard, Bastien, and Alexandre Masselot. "Cellular automata and lattice Boltzmann methods: a new approach to computational fluid dynamics and particle transport." Future Generation Computer Systems 16, no. 2-3 (December 1999): 249–57. http://dx.doi.org/10.1016/s0167-739x(99)00050-3.
Full textde Macêdo Wahrhaftig, Alexandre, and Marcelo Araujo da Silva. "Using computational fluid dynamics to improve the drag coefficient estimates for tall buildings under wind loading." Structural Design of Tall and Special Buildings 27, no. 3 (October 19, 2017): e1442. http://dx.doi.org/10.1002/tal.1442.
Full textNasrin, Rehena, and MA Alim. "Laminar Free and Forced magnetoconvection through an Octagonal Channel with a Heat Generating Circular Cylinder." Journal of Naval Architecture and Marine Engineering 9, no. 1 (May 26, 2012): 25–34. http://dx.doi.org/10.3329/jname.v9i1.7891.
Full textLe Minh Tuan and Ilkhomzhon S. Shukurov. "Computational fluid dynamics analysis for thermal-wind environment simulation of urban street in Hanoi city." Vestnik MGSU, no. 3 (March 2020): 368–79. http://dx.doi.org/10.22227/1997-0935.2020.3.368-379.
Full textLim, Chin Haw, Omidreza Saadatian, Kamaruzzaman Sopian, M. Yusof Sulaiman, Sohif Mat, Elias Salleh, and K. C. Ng. "Design configurations analysis of wind-induced natural ventilation tower in hot humid climate using computational fluid dynamics." International Journal of Low-Carbon Technologies 10, no. 4 (June 19, 2013): 332–46. http://dx.doi.org/10.1093/ijlct/ctt039.
Full textZheng, Chao-Rong, and Yao-Chun Zhang. "Computational Fluid Dynamics study on the performance and mechanism of suction control over a high-rise building." Structural Design of Tall and Special Buildings 21, no. 7 (October 29, 2010): 475–91. http://dx.doi.org/10.1002/tal.622.
Full textCoulthard, T. J., and M. J. Van De Wiel. "Modelling river history and evolution." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1966 (May 13, 2012): 2123–42. http://dx.doi.org/10.1098/rsta.2011.0597.
Full textAmicarelli, Andrea, Sauro Manenti, Raffaele Albano, Giordano Agate, Marco Paggi, Laura Longoni, Domenica Mirauda, et al. "SPHERA v.9.0.0: A Computational Fluid Dynamics research code, based on the Smoothed Particle Hydrodynamics mesh-less method." Computer Physics Communications 250 (May 2020): 107157. http://dx.doi.org/10.1016/j.cpc.2020.107157.
Full textFranceschi, Andrea, Benedetto Piaggio, Roberto Tonelli, Diego Villa, and Michele Viviani. "Assessment of the Manoeuvrability Characteristics of a Twin Shaft Naval Vessel Using an Open-Source CFD Code." Journal of Marine Science and Engineering 9, no. 6 (June 16, 2021): 665. http://dx.doi.org/10.3390/jmse9060665.
Full textJiang, Wenjun, Jie Wu, Guojun Wang, and Huanyang Zheng. "Forming Opinions via Trusted Friends: Time-Evolving Rating Prediction Using Fluid Dynamics." IEEE Transactions on Computers 65, no. 4 (April 1, 2016): 1211–24. http://dx.doi.org/10.1109/tc.2015.2444842.
Full text