Dissertations / Theses on the topic 'Computational modeling and simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Computational modeling and simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Emerson, Tonya Lynn. "Ductile fracture mechanics : modeling, experiments, and computational simulation /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textLe, Xuan Tuan. "Understanding complex systems through computational modeling and simulation." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP003.
Full textTraditional approaches are not sufficient, and sometimes impossible in dealing with complexity issues such as emergence, self-organization, evolution and adaptation of complex systems. As illustrated in this thesis by the practical work of the author in a real-life project, the spreading of infectious disease as well as interventions could be considered as difusion processes on complex networks of heterogeneous individuals in a society which is considered as a reactive system. Modeling of this system requires explicitly specifying of each individual’s behaviors and (re)actions, and transforming them into computational model which has to be flexible, reusable, and ease of coding. Statechart, typical for model-based programming, is a good solution that the thesis proposes. Bottom-up agent based simulation finds emergence episodes in what-if scenarios that change rules governing agent’s behaviors that requires agents to learn to adapt with these changes. Decision tree learning is proposed to bring more flexibility and legibility in modeling of agent’s autonomous decision making during simulation runtime. Our proposition for computational models such as agent based models are complementary to traditional ones, and in some case they are unique solutions due to legal, ethical issues
Lambeth, Melissa Jo. "Computational modeling of skeletal muscle glycogenolysis dynamics /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/8095.
Full textBarua, Himel Barua. "COMPUTATIONAL MODELING OF CHEMICAL VAPOR DEPOSITION." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1469721885.
Full textSimoni, Giulia. "Modeling Startegies for Computational Systems Biology." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/254361.
Full textWithrow, Travis P. "Computational Modeling of Atom Probe Tomography." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1525763934302517.
Full textYang, Le. "Computational Modeling and Simulation Study of Dermal Wound Healing Proliferative Phase." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/278.
Full textVenkatachalam, Sangeeta. "Modeling Infectious Disease Spread Using Global Stochastic Field Simulation." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5335/.
Full textWang, Kezhou Denney Thomas Stewart. "Numerical modeling of nasal cavities and air flow simulation." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/doctoral/WANG_KEZHOU_24.pdf.
Full textIndrakanti, Saratchandra. "A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115099/.
Full textLi, Yanjun. "COMPUTATIONAL MODELING OF IN VIVO METABOLIC PROCESSES IN SKELETAL MUSCLE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1283473428.
Full textHlady, Christopher Scott. "Nosocomial infection modeling and simulation using fine-grained healthcare data." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/4856.
Full textHübner, Katrin. "Computational lipidology." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15827.
Full textMonitoring the major lipoprotein classes, particularly low-density lipoproteins (''bad'' LDL) and high-density lipoproteins (''good'' HDL) for characterizing risk of cardiovascular disease (CVD) is well-accepted and routine in clinical practice. However, it is only one-half of the truth as lipoprotein classes comprise non-homogeneous populations of lipoprotein particles varying significantly in their composition of lipids and apolipoproteins. Various studies have shown differing metabolic behavior and contribution to CVD of individual lipoprotein sub-populations. Nevertheless, the superiority of more detailed lipoprotein fractionation is still a matter of debate because experimental separation and analysis is an elaborate, time-consuming and expensive venture and not yet worthwhile for routine measurements. The present work ''Computational Lipidology'' aims at establishing a novel modeling approach to calculate the distribution of lipoproteins (lipoprotein profile) in blood plasma being the first that settles on individual lipoprotein complexes instead of common lipoprotein classes. Essential lipoprotein constituents and processes involved in the lipoprotein metabolism are taken into account. Stochastic as well as deterministic simulations yield the distribution of lipoproteins over density based on the set of individual lipoprotein complexes in the system. The model calculations successfully reproduce lipoprotein profiles measured in healthy subjects and show main characteristics of pathological situations elicited by disorder in one of the underlying molecular processes. Moreover, the model reveals the distribution of high-resolution lipoprotein sub-fractions (hrDS) within major density classes. The results show satisfactory agreement with clinical observations which qualifies the work as a significant step towards analyzing inter-individual variability, patient-oriented diagnosis of lipid disorders and identifying new sub-fractions of potential clinical relevance.
San, Omer. "Multiscale Modeling and Simulation of Turbulent Geophysical Flows." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28031.
Full textPh. D.
Kuhlman, Christopher J. "High Performance Computational Social Science Modeling of Networked Populations." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51175.
Full textPh. D.
Doro, Emmanuel O. "Computational modeling of falling liquid film free surface evaporation." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44812.
Full textBrown, Jason. "Computational fluid dynamics in an equation-based, acausal modeling environment." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37247.
Full textGeiser, Kyle. "Computational modeling and simulation for projectile impact and indentation of biological tissues and polymers." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112507.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 89-95).
Understanding the elastic and viscoelastic responses of biological soft tissues and engineered polymer simulants is of great interest to predicting and preventing penetrative injuries. Detailed understanding of the mechanical processes at work could aid in the development and evaluation of protective strategies such as armor and helmets, and repair strategies including robotic surgery or needle-based drug delivery. However, due to the mechanical complexity of so-called "soft tissues," including nonlinear viscoelastic behavior, surface adhesion, material failures and shock effects, the experimental characterization of various soft tissues is challenging and individual mechanical processes are often impossible to decouple without computational models and simulations. This thesis presents two finite element models designed to provide both replicate the results of indentation and impact experiments on synthetic polymers, aimed to decouple competing mechanical characteristics of contact based deformation. The first of these models describes the indentation on polydimethylsiloxane bilayer composites, with the aim of describing the relative effects of a adhesion and viscoelastic properties on the measured deformation response. That model expands on this objective via the analysis of the effects of surface adhesion commonly associated with highly compliant polymers and tissues. The second model attempts to replicate impact of a high velocity projectile on a relatively stiff material, polyurethane urea, and on a comparatively compliant polymer, gelatin hydrogel. These models provide means to simulate, predict and characterize material response, validated by comparison with available experiments. Such validated models can be used to simulate and design new materials as tissue simulants or as protective media that predictably dissipate concentrated mechanical impact.
by Kyle Geiser.
S.M.
Iwashita, Takuya. "Computational Studies on the Dynamics of Small-Particle Suspensions using Meso-Scale Modeling." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/77956.
Full textWang, Xuguang. "Spatial Adaptive Crime Event Simulation With RA/CA/ABM Computational Laboratory." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1108526413.
Full textO'Brien, Sean. "Polyethylene wear modeling in modular total knee replacements using finite element simulation." Journal of Engineering in Medicine, 2011. http://hdl.handle.net/1993/5106.
Full textKohn, Harold D. "A Test of Abelson and Baysinger's (1984) Optimal Turnover Hypothesis in the Context of Public Organizations using Computational Simulation." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26658.
Full textPh. D.
Aussel, Amélie. "Computational modeling of healthy and epileptic hippocampal oscillations." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0202.
Full textThe hippocampus can exhibit different oscillatory rhythms within the sleep-wake cycle, each of them being involved in cognitive processes. For example, theta-nested gamma oscillations, consisting of the coupling of theta and gamma rhythms, are produced during wakefulness and are associated with spatial navigation and working memory tasks, whereas sharp-wave-ripple complexes, consisting of fast oscillatory events occurring during low frequency waves, are produced during slow-wave sleep and quiet waking and play an important role in memory consolidation. Models exist to reproduce and explain the generation of each of these rhythms, yet the mechanisms involved in their generation and the transitions between them are not yet fully understood. This question is all the more important that altered hippocampal rhythms are involved in drug-resistant mesial temporal lobe epilepsy, a common form of epilepsy which cannot be controlled by existing pharmaceutical treatments. Some models have also been previously developed to reproduce epileptic seizures (episodes of excessive neural activity) or interictal discharges (brief peaks of synchronous activity), but these models cannot fully explain the links between neuropathological conditions of the hippocampus, physiological processes such as the sleep-wake cycle, and the resulting oscillations. In this context, the main objective of this thesis is to provide better understanding of various hippocampal oscillations, both physiological and pathological. To do so, we first design a full computational model of the healthy hippocampal formation including the entorhinal cortex, the dentate gyrus and the CA3 and CA1 regions. This model includes more than thirty thousand Hodgkin-Huxley point neurons, represented by tens of thousands differential equations to be solved numerically, as well as an estimation of the extracellular potentials (LFP) generated by the dipolar neurons as measured by a macroscopic electrode, so as to be more easily interpretable. We perform a thorough study of our model's activity based on design of experiments techniques to identify the role of each of its intrinsic parameters and the importance of input stimulation in the production coupled oscillatory outputs. We then evaluate our model in a realistic context : its activity under realistic input stimulation is compared with intracranial recordings obtained in epileptic patients. We demonstrate that our model is able to reproduce both sleep and wakefulness oscillations with temporal and frequential similarities with the clinically measured signals. We link the modification of some parameters of the model (synaptic gains and ion channel conductances) with cholinergic modulation, and show how single neuron dynamics are mostly responsible for the frequency of slow oscillations of our network, while network functional connectivity controls its fast oscillations. Finally, we detail our model further to include four pathological modifications of the hippocampus seen in mesial temporal lobe epilepsies, that is hippocampal sclerosis, mossy fiber sprouting, and impaired potassium and chloride dynamics in pyramidal neurons (which are modeled by changing the network connectivity or the parameters of individual neuron dynamics), and show how these mechanisms can interact with the previously described sleep-wake cycle and lead to pathological synchrony and rhythms such as seizures, interictal spikes and fast ripples. In conclusion, we propose in this thesis a unique model of the hippocampus regrouping many mechanisms previously described in separate works, and analyze its oscillatory activity as we vary different parameters representing either structural or functional properties of the network, as well as pathological modifications observed in epilepsy. Our results provide new insights into the mechanisms underlying the generation of various hippocampal oscillations, which could open the way to future clinical applications
Mclaughlin, Keith. "Development of Improved Models for Gas Sorption Simulation." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4916.
Full textCheng, Jingjing. "Shaken baby syndrome : simulation via computational and physical modelling." Thesis, University of Sheffield, 2008. http://etheses.whiterose.ac.uk/6116/.
Full textNoetscher, Gregory Michael. "The VHP-F Computational Phantom and its Applications for Electromagnetic Simulations." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/237.
Full textEdmonds, Christopher Michael. "Computational investigations of biopolymer translocation through nanopore devices." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50260.
Full textPetrauskas, Karolis. "Computational Modelling of Biosensors of Complex Geometry." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110701_105911-89480.
Full textBiojutikliai yra įrenginiai, skirti medžiagoms aptikti bei jų koncentracijoms matuoti. Siekiant sumažinti biojutiklių gamybos kaštus yra pasitelkiamas matematinis biojutikliuose vykstančių procesų modeliavimas. Disertacijoje nagrinėjami matematiniai ir kompiuteriniai biojutiklių modeliai, aprašantys biojutiklių, sudarytų iš kelių, skirtingas savybes turinčių dalių, veikimą. Nagrinėjami modeliai yra formuluojami vienmatėje bei dvimatėje erdvėse, aprašomi diferencialinėmis lygtimis dalinėmis išvestinėmis su netiesiniais nariais ir yra sprendžiami skaitiškai, naudojant baigtinių skirtumų metodą. Skaitiniai modeliai yra įgyvendinami kompiuterine programa. Disertacijoje pateikiamas originalus matematinis modelis biojutikliui su anglies nanovamzdelių elektrodu, nustatyti kriterijai, apibrėžiantys, kada biojutiklį su perforuota membrana galima modeliuoti vienmačiu modeliu. Darbe susisteminti elementai, naudojami biojutiklių modelių formulavimui, pagrindinį dėmesį skiriant biojutiklio struktūrinėms savybėms modeliuoti. Apibrėžta biojutiklių modelių aprašo kalba ir sukurta programinė įranga, leidžianti modeliuoti biojutiklių veikimą vienmačiais modeliais arba modeliais, formuluojamais stačiakampėje dvimatės erdvės srityje. Taikant sukurtą biojutiklių modeliavimo programinę įrangą, ištirtas biojutiklio su anglies nanovamzdelių elektrodu modelio adekvatumas ir struktūrinių bei geometrinių savybių įtaka biojutiklio elgsenai.
Hradisky, Michal. "Turbulence Modeling of Strongly Heated Internal Pipe Flow Using Large Eddy Simulation." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/925.
Full textFors, Jonathan. "Modeling and OpenFOAM simulation of streamers in transformer oil." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80932.
Full textElektriska genomslag i högspänningstransformatorer föregås av bildandet av elektriskt ledande kanaler som kallas streamers. En god förståelse av detta fenomen är viktigt vid konstruktionen av oljebaserad elektrisk isolation. Tidigare forskning i ämnet har tagit fram en modell för fortplantningen av streamers. Denna modell har sedan lösts numeriskt av ett beräkningsverktyg baserat på finita elementmetoden. I denna uppsats undersöks konsekvenserna av att byta metod till finita volymsmetoden genom att implementera en lösare i OpenFOAM. En standardiserad nål-sfär-geometri har ställts upp och ett flertal kombinationer av oljor och spänningar har simulerats. De flesta resultaten visar god överensstämmande med tidigare forskning medan resultat som avviker har tillskrivits de goda numeriska egenskaperna hos OpenFOAM-lösaren. En ny typ av simulering har även genomförts där simulationen utökas från en tvådimensionell axisymmetrisk geometri til tre dimensioner.
Andrews, Brian. "Computational Solutions for Medical Issues in Ophthalmology." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case15275972120621.
Full textGuion, Alexandre Nicolas. "Modeling and simulation of liquid microlayer formation and evaporation in nucleate boiling using computational fluid dynamics." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112380.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 243-252).
The transport of latent heat makes boiling one of the most efficient modes of heat transfer, allowing a wide range of systems to improve their thermal performance, from microelectronic devices to nuclear power plants. In particular, Boiling Water Reactors (BWR) use boiling as the primary mode of heat transfer in the reactor core to accommodate very high heat fluxes. In Pressurized Water Reactors (PWR) subcooled flow boiling can occur in hot sub-channels. As a bubble grows outside of a surface imperfection during nucleate boiling, viscous stresses at the wall can be strong enough to impede liquid motion and trap a thin liquid layer - referred to as microlayer, underneath the growing bubble. The contribution of microlayer evaporation to overall heat transfer and bubble growth can be large, in particular in the case of water1. In practice, numerical simulations of nucleate boiling resolve the macroscopic interface of the bubble and resort to subgrid models to account for the evaporation of the microlayer at the microscopic scale. The applicability of this subgrid modeling approach relies on the capacity to initialize the microlayer shape and extension, prior to its evaporation. However, existing models of microlayer formation are either physically incomplete2 or purely empirical3. In this work, we first confirm through a sensitivity study the need for accurate modeling of microlayer formation to initialize boiling simulations and to reproduce physical boiling dynamics (a). Then, we build the first generally applicable model for microlayer formation through direct computations of the hydrodynamics of bubble growth at the wall for a wide range of conditions and fluids, including water at 0.101MPa (lab experiments) and 15.5MPa (PWR), capillary numbers Ca [is element of] [0.001; 0.1], and contact angles [theta] [is element of] [10°; 90°] (b). In addition, we modify an existing experimental pool boiling setup to measure with unprecedented accuracy initial bubble growth rates needed to predict microlayer formation (c). Lastly, we develop a numerical procedure based on hydrodynamics theories to obtain mesh-independent results in moving contact line simulations for a wide range of contact angles and viscosity ratios (d). In particular, we use direct computations of the transition to a Landau-Levich-Derjaguin film in forced dewetting to inform the onset of microlayer formation in nucleate boiling. These contributions(a) (b) (c) (d) bridge a significant gap in our understanding of how boiling works and can be modeled at the microscopic scale, which represents a first step in designing surfaces with higher heat transfer performance and in building safer and more efficient energy systems.
by Alexandre Nicolas Guion.
Ph. D.
Vincent, Timothy John. "Computational Modeling and Simulation of Thermal-Fluid Flow and Topology Formation in Laser Metal Additive Manufacturing." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1512398718245784.
Full textKarlsson, Gunnar. "Diffusion in Poly(vinyl alcohol) and Polyethylene as Determined by Computational Simulations and Modeling." Doctoral thesis, KTH, Polymer Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3370.
Full textPoly(vinyl alcohol) and polyethylene polymer systems werebuilt in order to study their transport properties (diffusion).First a verification of the AMBER force field was conducted fora poly(vinyl alcohol) system built from a chain with 145repeating units. NPT-molecular dynamics simulations attemperatures between 400 and 527 K were performed. The resultsof the simulations were compared withpressure-volume-temperature data, solubility parameter, X-rayscattering pattern and data for the characteristic ratio. Thefractional free volume distribution was computed and thediffusion characteristics of water in the polymer werestudied.
Further another poly(vinyl alcohol) system, with 600repeating units, was used to study oxygen diffusion in dry andwet poly(vinyl alcohol). In these systems the focus was toinvestigate the oxygen paths relative to the backbone and alsothe effect of water on the diffusion coefficients. Jump mapsand correlation function between the velocity of the oxygen wascalculated. The water has a huge impact on the oxygen diffusionand the preferred paths.
A larger molecule (limonene) was studied in a polyethylenematrix consisting of 6000 anisotropic united atoms. A 100 nslong trajectory was recorded and also shortertrajectories atdifferent temperatures, which gave the temperature dependenceof the diffusion coefficients. Correlation functions for thelimonene molecule shows that it rotates and tumbles when movingthru the matrix.
The main results from the molecular dynamics simulationsshowed that diffusion of larger molecules are possible and alsothat molecular dynamics simulations can predict plasticizationeffects.
A new fast experimental method for determining diffusioncoefficients with non iso thermal thermogravimetry weredeveloped. The advantage is that the experiments only takesminutes instead of days with a small effect on theaccuracy.
Maurya, Abhilasha. "Computational simulation and analytical development of Buckling Resistant Steel Plate Shear Wall (BR-SPSW)." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34466.
Full textMaster of Science
Shi, Liming. "Computational Fluid Dynamics Simulation of Steam Reforming and Autothermal Reforming for Fuel Cell Applications." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1234712316.
Full textSarsam, Susan W. "Computational simulation technique : computational studies and molecular modelling of proteins coordinated by metal-based chemotherapeutic agents." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553144.
Full textBuzolin, Prescila Glaucia Christianini. "Modelagem em simulação computacional do cristal e superfícies do BaZr'O IND. 3' e SrZr"O IND. 3': propriedades eletrônicas e estruturais /." Bauru : [s.n.], 2010. http://hdl.handle.net/11449/100924.
Full textBanca: Aguinaldo Robinson de Souza
Banca: João Batista Lopes Martins
Banca: Sergio Ricardo de Lazaro
Banca: Carlton Anthony Taft
O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp
Resumo: O crescente avanço tecnológico na área computacional permite o aprimoramento em diferentes campos de pesquisa, tal como a Química Teórica e Computacional capaz de aprimorar e prever novas propriedades em materiais com grandes aplicações tecnológicas, tais como catalisadores, células solares, memórias de computador, entre outros. Em particular, materiais que apresentam tais aplicações são as perovskitas, de fórmula geral AB 'IND. 3'. O objetivo desta tese é aplicar a Química Teórica e Computacional, a fim de proporcionar uma melhor compreensão das propriedades físicas, químicas e estruturais das perovskitas BaZr'O IND. 3' (BZ) e SrZr"O IND. 3' (SZ). As simulações computacionais foram desenvolvidas com o programa CRYSTALO3, aplicando-se a teoria do funcional de densidade (DFT) com os funcionais híbridos B3LYP e B3PW para investigar as propriedades eletrônicas e estruturais do bulk e das superfícies: (001) com as possíveis terminações Zr'O IND. 2' e AO (onde A = Ba ou Sr) e (110) com as possíveis terminações, ZrO, A e O. Também foram feitos cálculos para entender o conceito de ordem-desordem local, responsável por propriedades como a fotoluminescência (FL) à temperatura ambiente.
Abstract: The increasing technological advances in the computer to the improvement on different fields of research, such as Computacional and Theoretical Chemistry able to improve and provide new properties in materials with high technology applicatons such as catalysts, solar cells, computer memory, among others. In particular, materials that have such applications are the perovskitas of general formula AB 'IND. 3'. The objective of this thesis is to apply the Theoretical and Computational Chemistry, to provide a better understanding of the physical, chemical and structural properties of perovskites BaZr'O IND. 3' (BZ) e SrZr"O IND. 3' (SZ). Computational simulations were conducted with the program CRYSTAL0, applying the theory of density functional (DFT) with hybrid functional B3LYP and B3PW to investigate the structural and electronic properties of bulk and surfaces: (001) with the possible terminations Zr'O IND. 2' and AO (where A = Ba or Sr) and (110) with the possible terminations, ZrO, A and. Calculations were also made to understand the concept of local order-disorder, responsible for properties such as photoluminescence (PL) at room temperature.
Doutor
Liacouras, Peter C. "Computational Modeling to Predict Mechanical Function of Joints: Validations and Applications of Lower Leg Simulations." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1437.
Full textBiswas, Souvik. "Direct numerical simulation and two-fluid modeling of multi-phase bubbly flows." Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-050307-224407/.
Full textKeywords: Multiphase flow; Two-fluid modeling; Direct numerical simulation; Two fluid modeling. Includes bibliographical references (leaves 116-119).
Damián, Ares Gonzalo. "Integrative computational modeling & in-vivo characterization of residual deformations in hemodynamics." Laboratório Nacional de Computação Científica, 2016. https://tede.lncc.br/handle/tede/230.
Full textApproved for entry into archive by Maria Cristina (library@lncc.br) on 2016-07-28T15:01:19Z (GMT) No. of bitstreams: 1 ThesisGAresFrente.pdf: 14194206 bytes, checksum: 2e35ae71aaffd676ba8015d68298aca6 (MD5)
Made available in DSpace on 2016-07-28T15:01:31Z (GMT). No. of bitstreams: 1 ThesisGAresFrente.pdf: 14194206 bytes, checksum: 2e35ae71aaffd676ba8015d68298aca6 (MD5) Previous issue date: 2016-04-11
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
This thesis is concerned with two major problems arising in the modeling of the cardiovascular system. The first topic consists in a comprehensive approach for the simulation of arterial blood flow and its effect on the stress state of the arterial wall, and the second topic is concerned with the in-vivo characterization of residual deformations in arterial wall tissues, based on data provided by medical images. Specifically, regarding the first topic, an original modeling framework is proposed for the treatment of hemodynamic problems with increased realism, featuring a combination of several modeling techniques in order to account for i) the fact that the initial (image-based) geometry corresponds to a configuration which is at equilibrium with an internal pressure acting over the lumen, and with tethering forces located at the artificial (axial) boundaries delimiting the arterial region of interest; ii) the fluid-structure interaction problem; iii) the complex constitutive behavior of the arterial wall; iv) the influence of surrounding tissues; v) the interaction of the vessel with the rest of the cardiovascular system; and iv) the influence of residual stresses. In order to tackle the issues described above, the preload mechanical problem is solved in a first stage, finding the zero-load material configuration which is employed to define suitable constitutive equations. This is performed by finding the solution for the mechanical equilibrium of the given image configuration considering the vessel at this state to be loaded by an internal baseline pressure and an axial traction (caused by tethering forces) at the artificial boundaries. It is worthwhile to mention that this axial traction is such that a previously defined pre-stretch level is considered on the equilibrium image configuration. Once the reference configuration is obtained, the complete 3D fluid-structure interaction simulation is carried out, coupled with a dimensionally reduced 1D model of the rest of the cardiovascular system. Strong coupling via fixed-point iterations is achieved for the fluid-structure interaction, while the dimensionally heterogeneous coupling is achieved through a Broyden method. Regarding the constitutive modeling, a fiber-reinforced hyperelastic constitutive law is considered. Furthermore, through the analysis of several numerical examples, the sensitivity with respect to the existence of the preload stresses is assessed to quantify the importance of this issue. These results indicate that the stress state of the arterial wall is strongly influenced by the existence of preload. Therefore, the consideration of such preload state is mandatory for the prediction of stresses in arterial tissue. For the second topic, a conceptual framework is presented for the in-vivo estimation of residual deformations and stresses. As a given data, a set of known configurations for an arterial segment is considered, which can potentially be obtained from medical imaging techniques. The mechanical equilibrium equations corresponding to such configurations are introduced through a variational approach, highlighting the role of the residual deformations and associated stresses. In this context, a cost functional is proposed to measure the imbalance of the mechanical setting arising from the consideration of inconsistent residual deformations, based on the generalized residuals of the associated variational equations. Then, the characterization of residual deformations becomes an optimization problem, focused on the minimization of this cost functional. For this purpose, a simple gradient descent method and an interior-point algorithm for constrained optimization are explored in this work. The proposed methodology is tested using three numerical examples based on manufactured solutions, a simple clamped bar, a thick-walled cylinder and a three-layered aorta artery. The obtained results are promising and suggest that the present method (or variants based on the present ideas), when coupled with adequate image acquisition techniques, could successfully lead to the in-vivo identification of residual deformations.
Esta tese aborda dois problemas de relevância na modelagem do sistema cardiovascular humano. O primeiro tema consiste no desenvolvimento de um enfoque abrangente para a simulação do escoamento sanguíneo e sua interação com a parede arterial, e o segundo tópico é a caracterização in-vivo de tensões e deformações residuais na parede arterial baseada em dados fornecidos por imagens médicas. De maneira específica, em relação ao primeiro tópico, um marco de modelagem é proposto para o tratamento de problemas hemodinâmicos com um alto grau de realismo, apresentando uma combinação de diferentes técnicas de modelagem para levar em conta i) o fato que as geometrias iniciais obtidas a partir de imagens médicas são correspondentes a um sistema de carregamentos não nulos, definido pela existência da pressão interna no lumen e de tensões axiais localizadas nos contornos artificiais do segmento arterial; ii) o problema de interação fluido-estrutura; iii) o complexo comportamento constitutivo da parede arterial; iv) a interação do segmento de interesse com o resto do sistema cardiovascular; e v) a influência dos tecidos circundantes; e vi) a existência de tensões residuais. Para a abordagem das questões descritas acima, o problema mecânico de precarregamento é resolvido em uma primeira etapa, encontrando a configuração material de carregamento nulo onde as equações constitutivas são usualmente definidas. Isto é realizado encontrando a solução do problema de equilíbrio mecânico da estrutura arterial dada, considerando que o vaso está submetido a um nível de pressão de base e uma tração axial nos contornos artificiais. Vale a pena ressaltar que esta tração axial é correspondente a um nível de pre-estiramento previamente definido. Uma vez que a configuração de referência é obtida, a simulação fluido-estrutura 3D é realizada, acoplada com um modelo dimensionalmente reduzido do resto do sistema cardiovascular. Um acoplamento forte através de iterações de ponto fixo é empregado para representar a interação fluido-estrutura, equanto o acoplamento entre modelos dimensionalmente heterogêneos é conseguido usando um método tipo Broyden. Em relação à modelagem constitutiva, um modelo hyperelástico reforçado com fibras é considerado. Além disso, através da análise de vários exemplos numéricos, a sensibilidade com relação à existência de precarregamentos é quantificada para remarcar a relevância desta questão. Tais resultados indicam que o estado de tensão da parede arterial é fortemente influenciado pela existência de precarregamentos. Assim sendo, levar em consideração esse estado de precarga é fundamental para a predição de tensões no tecido arterial. Em relação ao segundo tópico, um marco conceptual é apresentado para estimação de tensões e deformações residuais. Consideramos que os dados são um conjunto de configurações de um segmento arterial, as quais poderiam ser obtidas a partir do uso de técnicas de adquisição e , processamento e segmentação de imagens. Utilizando um enfoque variacional, são apresentadas as equações de equilíbrio mecânico para as configurações conhecidas, acentuando o papel desempenhado pelas deformações residuais. Neste contexto, apresenta-se um funcional custo que mede o desbalance mecânico que é originado se um campo de deformações residuais inconsistente é admitido. Este funcional custo está baseado no resíduo generalizado das equações variacionais previamente mencionadas. Como consequência, o problema de estimação de deformações residuais é transformado em um problema de otimização, no qual se procura minimizar o funcional custo proposto. Com este objetivo, neste trabalho de tese são considerados dois métodos, um método de gradiente e um algoritmo de ponto interior para problemas que apresentam restrições. A metodologia proposta é testada em três exemplos numéricos baseados em soluções manufaturadas: um barra engastada, um cilindro de parede grossa, e uma artéria aorta composta por três camadas. Os resultados obtidos são promissores e sugerem que o método apresentado (ou variantes baseadas nas ideias aqui mostradas) junto com técnicas adequadas para a adquisição de imagens podem conduzir à identificação in-vivo de deformações residuais.
Saunders, Michael G. "Electrodynamical Modeling for Light Transport Simulation." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/honors/373.
Full textKitchovitch, Stephan. "Computational modelling and analysis of seasonal influenza transmission and evolution." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610402.
Full textDressler, Sven. "Simulation of Fibre Pull-out Using a Graphics Processing Unit Accelerated Discrete Element Model." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/75931.
Full textDissertation (MEng)--University of Pretoria, 2020.
Mechanical and Aeronautical Engineering
MEng
Unrestricted
Munoz, Diego Jose. "Modeling and Simulation of Circumstellar Disks with the Next Generation of Hydrodynamic Solvers." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11151.
Full textAstronomy
Cameron, David Stuart. "Modelling affect regulation dynamics (MARDy) : a computational simulation of affect change." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/3255/.
Full textZappone, Marco. "Computational Fluodynamics Modeling (CFD) of horizontal propane jet fires." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textCaulfield, Thomas R. "Structural basis for the fidelity of translation modeling the accommodation pathway /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22553.
Full textCommittee Chair: Harvey, Stephen C; Committee Member: Hud, Nicholas V; Committee Member: Oyelere, Adegboyega; Committee Member: Wartell, Roger.
Busaryev, Oleksiy. "On Computing and Tracking Geometrical and Topological Features." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354679582.
Full textLu, Jiaqing. "Numerical Modeling and Computation of Radio Frequency Devices." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543457620064355.
Full text