Academic literature on the topic 'Computational physics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational physics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Computational physics"
ILIE, Marcel, Augustin Semenescu, Gabriela Liliana STROE, and Sorin BERBENTE. "NUMERICAL COMPUTATIONS OF THE CAVITY FLOWS USING THE POTENTIAL FLOW THEORY." ANNALS OF THE ACADEMY OF ROMANIAN SCIENTISTS Series on ENGINEERING SCIENCES 13, no. 2 (2021): 78–86. http://dx.doi.org/10.56082/annalsarscieng.2021.2.78.
Full textGiordano, Nicholas J., Marvin L. De Jong, Susan R. McKay, and Wolfgang Christian. "Computational Physics." Computers in Physics 11, no. 4 (1997): 351. http://dx.doi.org/10.1063/1.4822569.
Full textGustafson, Karl. "Computational Physics." Computers in Physics 5, no. 5 (1991): 457. http://dx.doi.org/10.1063/1.4823010.
Full textLandau, Rubin H., Manuel Páez, Harvey Gould, and Jan Tobochnik. "Computational Physics." American Journal of Physics 67, no. 1 (January 1999): 94–95. http://dx.doi.org/10.1119/1.19197.
Full textKoonin, Steven E., and Peter B. Kramer. "Computational Physics." Physics Today 39, no. 6 (June 1986): 88–90. http://dx.doi.org/10.1063/1.2815046.
Full textThijssen, J. M., and Alan F. Wright. "Computational Physics." Physics Today 53, no. 3 (March 2000): 76–77. http://dx.doi.org/10.1063/1.883008.
Full textBorcherds, P. H. "Computational physics." Physics Education 21, no. 4 (July 1, 1986): 238–43. http://dx.doi.org/10.1088/0031-9120/21/4/008.
Full textGiordano, Nicholas J., Tao Pang, and John M. Blondin. "Computational Physics and an Introduction to Computational Physics." Physics Today 51, no. 10 (October 1998): 84–86. http://dx.doi.org/10.1063/1.882417.
Full textHemmo, Meir, and Orly Shenker. "The Multiple-Computations Theorem and the Physics of Singling Out a Computation." Monist 105, no. 2 (March 9, 2022): 175–93. http://dx.doi.org/10.1093/monist/onab030.
Full textNardelli, Marco Buongiorno. "Computation “is” Physics!: Computational Physics: Nicholas J. Giordano and Hisao Nakanishi." Physics Teacher 44, no. 7 (October 2006): 480. http://dx.doi.org/10.1119/1.2353604.
Full textDissertations / Theses on the topic "Computational physics"
Knebe, Alexander. "Computational cosmology." Thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2010/4114/.
Full textDie Kosmologie ist heutzutage eines der spannendsten Arbeitsgebiete in der Astronomie und Astrophysik. Das vorherrschende (Urknall-)Modell in Verbindung mit den neuesten und präzisesten Beobachtungsdaten deutet darauf hin, daß wir in einem Universum leben, welches zu knapp 24% aus Dunkler Materie und zu 72% aus Dunkler Energie besteht; die sichtbare Materie macht gerade einmal 4% aus. Und auch wenn uns derzeit eindeutige bzw. direkte Beweise für die Existenz dieser beiden exotischen Bestandteile des Universums fehlen, so ist es uns dennoch möglich, die Entstehung von Galaxien, Galaxienhaufen und der großräumigen Struktur in solch einem Universum zu modellieren. Dabei bedienen sich Wissenschaftler Computersimulationen, welche die Strukturbildung in einem expandierenden Universum mittels Großrechner nachstellen; dieses Arbeitsgebiet wird Numerische Kosmologie bzw. “Computational Cosmology” bezeichnet und ist Inhalt der vorliegenden Habilitationsschrift. Nach einer kurzen Einleitung in das Themengebiet werden die Techniken zur Durchführung solcher numerischen Simulationen vorgestellt. Die Techniken zur Lösung der relevanten (Differential-)Gleichungen zur Modellierung des “Universums im Computer” unterscheiden sich dabei teilweise drastisch voneinander (Teilchen- vs. Gitterverfahren), und es werden die verfahrenstechnischen Unterschiede herausgearbeitet. Und obwohl unterschiedliche Programme auf unterschiedlichen Methoden basieren, so sind die Unterschiede in den Endergebnissen doch (glücklicherweise) vernachlässigbar gering. Wir stellen desweiteren einen komplett neuen Code – basierend auf dem Gitterverfahren – vor, welcher einen Hauptbestandteil der vorliegenden Habilitation darstellt. Im weiteren Verlauf der Arbeit werden diverse kosmologische Simulationen vorgestellt und ausgewertet. Dabei werden zum einen die Entstehung und Entwicklung von Satellitengalaxien – den (kleinen) Begleitern von Galaxien wie unserer Milchstraße und der Andromedagalaxie – als auch Alternativen zum oben eingeführten “Standardmodell” der Kosmologie untersucht. Es stellt sich dabei heraus, daß keine der (hier vorgeschlagenen) Alternativen eine bedrohliche Konkurenz zu dem Standardmodell darstellt. Aber nichtsdestoweniger zeigen die Rechnungen, daß selbst so extreme Abänderungen wie z.B. modifizierte Newton’sche Dynamik (MOND) zu einem Universum führen können, welches dem beobachteten sehr nahe kommt. Die Ergebnisse in Bezug auf die Dynamik der Satellitengalaxien zeigen auf, daß die Untersuchung der Trümmerfelder von durch Gezeitenkräfte zerriebenen Satellitengalaxien Rückschlüsse auf Eigenschaften des ursprünglichen Satelliten zulassen. Diese Tatsache wird bei der Aufschlüsselung der Entstehungsgeschichte unserer eigenen Milchstraße von erheblichem Nutzen sein. Trotzdem deuten die hier vorgestellten Ergebnisse auch darauf hin, daß dieser Zusammenhang nicht so eindeutig ist, wie er zuvor mit Hilfe kontrollierter Einzelsimulationen von Satellitengalaxien in analytischen “Mutterpotentialen” vorhergesagt wurde: Das Zusammenspiel zwischen den Satelliten und der Muttergalaxie sowie die Einbettung der Rechnungen in einen kosmologischen Rahmen sind von entscheidender Bedeutung.
Zagordi, Osvaldo. "Statistical physics methods in computational biology." Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/3971.
Full textVakili, Mohammadjavad. "Methods in Computational Cosmology." Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10260795.
Full textState of the inhomogeneous universe and its geometry throughout cosmic history can be studied by measuring the clustering of galaxies and the gravitational lensing of distant faint galaxies. Lensing and clustering measurements from large datasets provided by modern galaxy surveys will forever shape our understanding of the how the universe expands and how the structures grow. Interpretation of these rich datasets requires careful characterization of uncertainties at different stages of data analysis: estimation of the signal, estimation of the signal uncertainties, model predictions, and connecting the model to the signal through probabilistic means. In this thesis, we attempt to address some aspects of these challenges.
The first step in cosmological weak lensing analyses is accurate estimation of the distortion of the light profiles of galaxies by large scale structure. These small distortions, known as the cosmic shear signal, are dominated by extra distortions due to telescope optics and atmosphere (in the case of ground-based imaging). This effect is captured by a kernel known as the Point Spread Function (PSF) that needs to be fully estimated and corrected for. We address two challenges a head of accurate PSF modeling for weak lensing studies. The first challenge is finding the centers of point sources that are used for empirical estimation of the PSF. We show that the approximate methods for centroiding stars in wide surveys are able to optimally saturate the information content that is retrievable from astronomical images in the presence of noise.
The fist step in weak lensing studies is estimating the shear signal by accurately measuring the shapes of galaxies. Galaxy shape measurement involves modeling the light profile of galaxies convolved with the light profile of the PSF. Detectors of many space-based telescopes such as the Hubble Space Telescope (HST) sample the PSF with low resolution. Reliable weak lensing analysis of galaxies observed by the HST camera requires knowledge of the PSF at a resolution higher than the pixel resolution of HST. This PSF is called the super-resolution PSF. In particular, we present a forward model of the point sources imaged through filters of the HST WFC3 IR channel. We show that this forward model can accurately estimate the super-resolution PSF. We also introduce a noise model that permits us to robustly analyze the HST WFC3 IR observations of the crowded fields.
Then we try to address one of the theoretical uncertainties in modeling of galaxy clustering on small scales. Study of small scale clustering requires assuming a halo model. Clustering of halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies with halo occupation distribution (HOD) assume that halo mass alone is sufficient to characterize the connection between galaxies and halos. However, assembly bias could cause the modeling of galaxy clustering to face systematic effects if the expected number of galaxies in halos is correlated with other halo properties. Using high resolution N-body simulations and the clustering measurements of Sloan Digital Sky Survey (SDSS) DR7 main galaxy sample, we show that modeling of galaxy clustering can slightly improve if we allow the HOD model to depend on halo properties beyond mass.
One of the key ingredients in precise parameter inference using galaxy clustering is accurate estimation of the error covariance matrix of clustering measurements. This requires generation of many independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast and accurate method based on low-resolution N-body simulations and an empirical bias model for generating mock catalogs. We use fast particle mesh gravity solvers for generation of dark matter density field and we use Markov Chain Monti Carlo (MCMC) to estimate the bias model that connects dark matter to galaxies. We show that this approach enables the fast generation of mock catalogs that recover clustering at a percent-level accuracy down to quasi-nonlinear scales.
Cosmological datasets are interpreted by specifying likelihood functions that are often assumed to be multivariate Gaussian. Likelihood free approaches such as Approximate Bayesian Computation (ABC) can bypass this assumption by introducing a generative forward model of the data and a distance metric for quantifying the closeness of the data and the model. We present the first application of ABC in large scale structure for constraining the connections between galaxies and dark matter halos. We present an implementation of ABC equipped with Population Monte Carlo and a generative forward model of the data that incorporates sample variance and systematic uncertainties. (Abstract shortened by ProQuest.)
Wilson, John Max. "Computational Studies of Geophysical Systems." Thesis, University of California, Davis, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10979293.
Full textEarthquakes and tsunamis represent two of the most devastating natural disasters faced by humankind. Earthquakes can occur in matters of seconds, with little to no warning. The governing variables of earthquakes, namely the stress profiles of vast regions of the earth's crust, cannot be measured in a comprehensive manner. Similarly, tsunami parameters are often accurately determined only minutes before waves make landfall. We are therefore left only with statistical analyses of past events to produce hazard forecasts for these disasters. Unfortunately, the events that cause the most damage also occur infrequently, and most regions have scientific records of earthquakes going back only a century, with modern instrumentation being widely distributed only in the past few decades. The 2011 M=9 Tohoku earthquake and tsunami, which killed close to sixteen thousand people, is the perfect case study of a country heavily invested in earthquake and tsunami risk reduction, yet being unprepared for a once-in-a-millennium event.
Physics-based simulations are some of the most promising tools for learning more about these systems. These tools can be used to study many thousands of years worth of synthetic seismicity. Additionally, scaling laws present in such complex geophysical systems can provide insights into dynamics otherwise hidden from view. This dissertation represents a collection of studies using these two tools. First, the Virtual Quake earthquake simulator is introduced, along with some of my contributions to its functionality and maintenance. A method based on Omori aftershock scaling is presented for verifying the spatial distribution of synthetic earthquakes produced by long-term simulators. The use of aftershock ground motion records to improve constraints on those same aftershock models is then explored. Finally, progress in constructing a tsunami early warning system based on the coupling of Virtual Quake and the Tsunami Squares wave simulator is presented. Taken together, these studies demonstrate the versatility and strength of complexity science and computational methods in the context of hazard analysis.
Venkataram, Prashanth Sanjeev. "Computational investigations of nanophotonic systems." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92676.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 105-106).
In this thesis, I developed code in the MEEP finite-difference time domain classical electromagnetic solver to simulate the quantum phenomenon of spontaneous emission and its enhancement by a photonic crystal. The results of these simulations were favorably cross-checked with semi-analytical predictions and experimental results. This code was further extended to simulate spontaneous emission from the top half of a sphere, where the top half is a dielectric material and the bottom half is a metal, in order to determine how effective the metal is at reflecting the emission toward the top. Separately, I used the SCUFF-EM boundary element method classical electromagnetic solver to simulate absorption and scattering, together called extinction, of infrared light from nanoparticles, and used those results to optimize the nanoparticle shapes and sizes for extinction at the desired infrared wavelength.
by Prashanth Sanjeev Venkataram.
S.B.
Thompson, Travis W. "Tuning the Photochemical Reactivity of Electrocyclic Reactions| A Non-adiabatic Molecular Dynamics Study." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10839950.
Full textWe use non-adiabatic ab initio molecular dynamics to study the influence of substituent side groups on the photoactive unit (Z)-hexa-1,3,5-triene (HT). The Time-Dependent Density Functional Theory Surface Hopping method (TDDFT-SH) is used to investigate the influence of substituted isopropyl and methyl groups on the excited state dynamics. The 1,4 and 2,5-substituted molecules are simulated: 2,5-dimethylhexa-1,3,5-triene (DMHT), 2-isopropyl-5-methyl-1,3,5-hexatriene (2,5-IMHT), 3,7-dimethylocta-1,3,5-triene (1,4-IMHT), and 2,5-diisopropyl-1,3,5-hexatriene (DIHT). We find that HT and 1,4-IMHT have the lowest ring-closing branching ratios of 5.3% and 1.0%, respectively. For the 2,5-substituted derivatives, the branching ratio increases with increasing size of the substituents, exhibiting yields of 9.78%, 19%, and 24% for DMHT, 2,5-IMHT, and DIHT, respectively. The reaction channels are shown to prefer certain conformation configurations at excitation, where the ring-closing reaction tends to originate from the gauche-Z-gauche (gZg) rotamer almost exclusively. In addition, there is a conformational dependency on absorption, gZg conformers have on average lower S1 ← S0 excitation energies that the other rotamers. Furthermore, we develop a method to calculate a predicted quantum yield that is in agreement with the wavelength-dependence observed in experiment for DMHT. In addition, the quantum yield method also predicts DIHT to have the highest CHD yield of 0.176 at 254 nm and 0.390 at 290 nm.
Additionally, we study the vitamin D derivative Tachysterol (Tachy) which exhibits similar photochemical properties as HT and its derivatives. We find the reaction channels of Tachy also have a conformation dependency, where the reactive products toxisterol-D1 (2.3%), previtamin D (1.4%) and cyclobutene toxisterol (0.7%) prefer cEc, cEt, and tEc configurations at excitation, leaving the tEt completely non-reactive. The rotamers similarly have a dependence on absorption as well, where the cEc configuration has the lowest energy S 1 ← S0 excitation of the rotamers. The wavelength dependence of the rotamers should lead to selective properties of these molecules at excitation. An excitation to the red-shifted side of the maximum absorption peak will on average lead to excitations of the gZg rotamers more exclusively.
Darmawan, Andrew. "Quantum computational phases of matter." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11640.
Full textAllehabi, Saleh. "Computational Spectroscopy of C-Like Mg VII." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2018. http://digitalcommons.auctr.edu/cauetds/153.
Full textFlint, Christopher Robert. "Computational Methods of Lattice Boltzmann Mhd." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1530192360.
Full textShi, Hao. "Computational Studies of Strongly Correlated Quantum Matter." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1499450059.
Full textBooks on the topic "Computational physics"
Vesely, Franz J. Computational Physics. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6.
Full textHoffmann, Karl Heinz, and Michael Schreiber, eds. Computational Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-85238-1.
Full textScherer, Philipp O. J. Computational Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13990-1.
Full textVesely, Franz J. Computational Physics. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1329-2.
Full textScherer, Philipp O. J. Computational Physics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7.
Full textScherer, Philipp O. J. Computational Physics. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00401-3.
Full textErnesto, Hasbun Javier, and DeVries Paul L. 1948-, eds. Computational physics. 2nd ed. Sudbury, Mass: Jones and Bartlett Publishers, 2011.
Find full textThijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.
Find full textThijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.
Find full textHisao, Nakanishi, ed. Computational physics. 2nd ed. Upper Saddle River, NJ: Pearson/Prentice Hall, 2006.
Find full textBook chapters on the topic "Computational physics"
Graziani, Frank R. "Computational Plasma Physics." In Encyclopedia of Applied and Computational Mathematics, 278–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_585.
Full textSingh, M. Shubhakanta. "Computational Physics– Application in Physical Systems." In Programming with Python, 259–306. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003453307-12.
Full textFinster, Felix. "Computational Tools." In Fundamental Theories of Physics, 81–207. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42067-7_2.
Full textDas, Tapan Kumar. "Computational Techniques." In Theoretical and Mathematical Physics, 141–56. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2361-0_10.
Full textVesely, Franz J. "Finite Differences." In Computational Physics, 7–22. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_1.
Full textVesely, Franz J. "Linear Algebra." In Computational Physics, 23–49. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_2.
Full textVesely, Franz J. "Stochastics." In Computational Physics, 51–92. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_3.
Full textVesely, Franz J. "Ordinary Differential Equations." In Computational Physics, 97–135. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_4.
Full textVesely, Franz J. "Partial Differential Equations." In Computational Physics, 137–70. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_5.
Full textVesely, Franz J. "Simulation and Statistical Mechanics." In Computational Physics, 175–206. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2307-6_6.
Full textConference papers on the topic "Computational physics"
Fredly, Karl Henrik, Tor Ole B. Odden, and Benjamin M. Zwickl. "How Computational Physics Students Improve their Computational Literacy." In 2024 Physics Education Research Conference, 138–43. American Association of Physics Teachers, 2024. http://dx.doi.org/10.1119/perc.2024.pr.fredly.
Full textGardner, Henry J., and Craig M. Savage. "Computational Physics." In Ninth Physics Summer School. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814530002.
Full textPotvin, J. "Computational Physics." In 2nd IMACS Conference on Computational Physics. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814534420.
Full textTenner, Armin. "Computational Physics." In CP90 Europhysics Conference. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539494.
Full textGarrido, Pedro L., and Joaquín Marro. "Computational Physics." In II Granada Lectures. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814536691.
Full textAiken, John M., Marcos D. Caballero, Scott S. Douglas, John B. Burk, Erin M. Scanlon, Brian D. Thoms, and Michael F. Schatz. "Understanding student computational thinking with computational modeling." In 2012 PHYSICS EDUCATION RESEARCH CONFERENCE. AIP, 2013. http://dx.doi.org/10.1063/1.4789648.
Full textLin, H. Q. "Computational Many-Body Physics and Parallel Computation in Hong Kong." In Proceedings of the Third Joint Meeting of Chinese Physicists Worldwide. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776785_0021.
Full textBottcher, C., M. R. Strayer, and J. B. McGrory. "Computational Atomic and Nuclear Physics." In Summer School on Computational Atomic and Nuclear Physic. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540773.
Full textNur, A. "Computational Rock Physics for Shales." In EAGE Shale Workshop 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145375.
Full textBocaneala, Florin. "A computational model for physics learning." In 2003 PHYSICS EDUCATION RESEARCH CONFERENCE: 2003 Physics Education Conference. AIP, 2004. http://dx.doi.org/10.1063/1.1807268.
Full textReports on the topic "Computational physics"
Fung, Jimmy. Computational Physics Overview. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1873320.
Full textScarlett, Harry Alan. Nuclear Weapons Computational Physics. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1630832.
Full textRhodes, Charles K. Advanced Computational Physics Instrumentation. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada391009.
Full textNadiga, Balasubramanya, and Robert Lowrie. Physics Informed Neural Networks as Computational Physics Emulators. Office of Scientific and Technical Information (OSTI), June 2023. http://dx.doi.org/10.2172/1985825.
Full textLasinski, B., D. Larson, D. Hewett, A. Langdon, and C. Still. Computational Methods for Collisional Plasma Physics. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15009790.
Full textAndrews, Madison, Daniel Israel, and Joel Kulesza. List of 2021 Computational Physics Workshop Projects. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1734704.
Full textJimmy, Fung. Computational Physics at Los Alamos National Laboratory. Office of Scientific and Technical Information (OSTI), June 2024. http://dx.doi.org/10.2172/2372660.
Full textSchumacher, Shane. Hybrid Particle Method for Computational Shock Physics. Office of Scientific and Technical Information (OSTI), June 2023. http://dx.doi.org/10.2172/2432274.
Full textHewett, D. W. Simulation models for computational plasma physics: Concluding report. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10142303.
Full textRehn, Daniel Adam. Equation of state (EOS) for computational multi-physics. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1529525.
Full text