Dissertations / Theses on the topic 'Computational physics|Computational chemistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 44 dissertations / theses for your research on the topic 'Computational physics|Computational chemistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tsai, Carol Leanne. "Heuristic Algorithms for Agnostically Identifying the Globally Stable and Competitive Metastable Morphologies of Block Copolymer Melts." Thesis, University of California, Santa Barbara, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13423067.
Full textBlock copolymers are composed of chemically distinct polymer chains that can be covalently linked in a variety of sequences and architectures. They are ubiquitous as ingredients of consumer products and also have applications in advanced plastics, drug delivery, advanced membranes, and next generation nano-lithographic patterning. The wide spectrum of possible block copolymer applications is a consequence of block copolymer self-assembly into periodic, meso-scale morphologies as a function of varying block composition and architecture in both melt and solution states, and the broad spectrum of physical properties that such mesophases afford.
Materials exploration and discovery has traditionally been pursued through an iterative process between experimental and theoretical/computational collaborations. This process is often implemented in a trial-and-error fashion, and from the computational perspective of generating phase diagrams, usually requires some existing knowledge about the competitive phases for a given system. Self-Consistent Field Theory (SCFT) simulations have proven to be both qualitatively and quantitatively accurate in the determination, or forward mapping, of block copolymer phases of a given system. However, it is possible to miss candidates. This is because SCFT simulations are highly dependent on their initial configurations, and the ability to map phase diagrams requires a priori knowledge of what the competing candidate morphologies are. The unguided search for the stable phase of a block copolymer of a given composition and architecture is a problem of global optimization. SCFT by itself is a local optimization method, so we can combine it with population-based heuristic algorithms geared at global optimization to facilitate forward mapping. In this dissertation, we discuss the development of two such methods: Genetic Algorithm + SCFT (GA-SCFT) and Particle Swarm Optimization + SCFT (PSO-SCFT). Both methods allow a population of configurations to explore the space associated with the numerous states accessible to a block copolymer of a given composition and architecture.
GA-SCFT is a real-space method in which a population of SCFT field configurations “evolves” over time. This is achieved by initializing the population randomly, allowing the configurations to relax to local basins of attraction using SCFT simulations, then selecting fit members (lower free energy structures) to recombine their fields and undergo mutations to generate a new “generation” of structures that iterate through this process. We present results from benchmark testing of this GA-SCFT technique on the canonical AB diblock copolymer melt, for which the theoretical phase diagram has long been established. The GA-SCFT algorithm successfully predicts many of the conventional mesophases from random initial conditions in large, 3-dimensional simulation cells, including hexagonally-packed cylinders, BCC-packed spheres, and lamellae, over a broad composition range and weak to moderate segregation strength. However, the GA-SCFT method is currently not effective at discovery of network phases, such as the Double-Gyroid (GYR) structure.
PSO-SCFT is a reciprocal space approach in which Fourier components of SCFT fields near the principal shell are manipulated. Effectively, PSO-SCFT facilitates the search through a space of reciprocal-space SCFT seeds which yield a variety of morphologies. Using intensive free energy as a fitness metric by which to compare these morphologies, the PSO-SCFT methodology allows us to agnostically identify low-lying competitive and stable morphologies. We present results for applying PSO-SCFT to conformationally symmetric diblock copolymers and a miktoarm star polymer, AB4, which offers a rich variety of competing sphere structures. Unlike the GA-SCFT method we previously presented, PSO-SCFT successfully predicts the double gyroid morphology in the AB-diblock. Furthermore, PSO-SCFT successfully recovers the A 15 morphology at a composition where it is expected to be stable in the miktoarm system, as well as several competitive metastable candidates, and a new sphere morphology belonging to the hexagonal space group 191, which has not been seen before in polymer systems. Thus, we believe the PSO-SCFT method provides a promising platform for screening for competitive structures in a given block copolymer system.
Sponseller, Daniel Ray. "Molecular Dynamics Study of Polymers and Atomic Clusters." Thesis, George Mason University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10685723.
Full textThis dissertation contains investigations based on Molecular Dynamics (MD) of a variety of systems, from small atomic clusters to polymers in solution and in their condensed phases. The overall research is divided in three parts. First, I tested a new thermostat in the literature on the thermal equilibration of a small cluster of Lennard-Jones (LJ) atoms. The proposed thermostat is a Hamiltonian thermostat based on a logarithmic oscillator with the outstanding property that the mean value of its kinetic energy is constant independent of the mass and energy. I inspected several weak-coupling interaction models between the LJ cluster and the logarithmic oscillator in 3D. In all cases I show that this coupling gives rise to a kinetic motion of the cluster center of mass without transferring kinetic energy to the interatomic vibrations. This is a failure of the published thermostat because the temperature of the cluster is mainly due to vibrations in small atomic clusters This logarithmic oscillator cannot be used to thermostat any atomic or molecular system, small or large.
The second part of the dissertation is the investigation of the inherent structure of the polymer polyethylene glycol (PEG) solvated in three different solvents: water, water with 4% ethanol, and ethyl acetate. PEG with molecular weight of 2000 Da (PEG2000) is a polymer with many applications from industrial manufacturing to medicine that in bulk is a paste. However, its structure in very dilute solutions deserved a thorough study, important for the onset of aggregation with other polymer chains. I introduced a modification to the GROMOS 54A7 force field parameters for modeling PEG2000 and ethyl acetate. Both force fields are new and have now been incorporated into the database of known residues in the molecular dynamics package Gromacs. This research required numerous high performance computing MD simulations in the ARGO cluster of GMU for systems with about 100,000 solvent molecules. My findings show that PEG2000 in water acquires a ball-like structure without encapsulating solvent molecules. In addition, no hydrogen bonds were formed. In water with 4% ethanol, PEG2000 acquires also a ball-like structure but the polymer ends fluctuate folding outward and onward, although the general shape is still a compact ball-like structure.
In contrast, PEG2000 in ethyl acetate is quite elongated, as a very flexible spaghetti that forms kinks that unfold to give rise to folds and kinks in other positions along the polymer length. The behavior resembles an ideal polymer in a &thetas; solvent. A Principal Component Analysis (PCA) of the minima composing the inherent structure evidences the presence of two distinct groups of ball-like structures of PEG2000 in water and water with 4% ethanol. These groups give a definite signature to the solvated structure of PEG2000 in these two solvents. In contrast, PCA reveals several groups of avoided states for PEG2000 in ethyl acetate that disqualify the possibility of being an ideal polymer in a &thetas; solvent.
The third part of the dissertation is a work in progress, where I investigate the condensed phase of PEG2000 and study the interface between the condensed phase and the three different solvents under study. With a strategy of combining NPT MD simulations at different temperatures and pressures, PEG 2000 condensed phase displays the experimental density within a 1% discrepancy at 300 K and 1 atm. This is a very encouraging result on this ongoing project.
Thompson, Travis W. "Tuning the Photochemical Reactivity of Electrocyclic Reactions| A Non-adiabatic Molecular Dynamics Study." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10839950.
Full textWe use non-adiabatic ab initio molecular dynamics to study the influence of substituent side groups on the photoactive unit (Z)-hexa-1,3,5-triene (HT). The Time-Dependent Density Functional Theory Surface Hopping method (TDDFT-SH) is used to investigate the influence of substituted isopropyl and methyl groups on the excited state dynamics. The 1,4 and 2,5-substituted molecules are simulated: 2,5-dimethylhexa-1,3,5-triene (DMHT), 2-isopropyl-5-methyl-1,3,5-hexatriene (2,5-IMHT), 3,7-dimethylocta-1,3,5-triene (1,4-IMHT), and 2,5-diisopropyl-1,3,5-hexatriene (DIHT). We find that HT and 1,4-IMHT have the lowest ring-closing branching ratios of 5.3% and 1.0%, respectively. For the 2,5-substituted derivatives, the branching ratio increases with increasing size of the substituents, exhibiting yields of 9.78%, 19%, and 24% for DMHT, 2,5-IMHT, and DIHT, respectively. The reaction channels are shown to prefer certain conformation configurations at excitation, where the ring-closing reaction tends to originate from the gauche-Z-gauche (gZg) rotamer almost exclusively. In addition, there is a conformational dependency on absorption, gZg conformers have on average lower S1 ← S0 excitation energies that the other rotamers. Furthermore, we develop a method to calculate a predicted quantum yield that is in agreement with the wavelength-dependence observed in experiment for DMHT. In addition, the quantum yield method also predicts DIHT to have the highest CHD yield of 0.176 at 254 nm and 0.390 at 290 nm.
Additionally, we study the vitamin D derivative Tachysterol (Tachy) which exhibits similar photochemical properties as HT and its derivatives. We find the reaction channels of Tachy also have a conformation dependency, where the reactive products toxisterol-D1 (2.3%), previtamin D (1.4%) and cyclobutene toxisterol (0.7%) prefer cEc, cEt, and tEc configurations at excitation, leaving the tEt completely non-reactive. The rotamers similarly have a dependence on absorption as well, where the cEc configuration has the lowest energy S 1 ← S0 excitation of the rotamers. The wavelength dependence of the rotamers should lead to selective properties of these molecules at excitation. An excitation to the red-shifted side of the maximum absorption peak will on average lead to excitations of the gZg rotamers more exclusively.
Ghosh, Raja. "Spectroscopy of Polarons in Organic Semiconductors: A New Theoretical Model." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/574625.
Full textPh.D.
The spectral line-shape of the mid-IR absorption spectrum provides valuable information about the "hole" polaron coherence length in doped and undoped conjugated polymer films. In poly(3-hexylthiophene) (P3HT) films the spectrum generally consists of a narrow, low-energy peak A (700-1000 $cm^{-1}$) followed by a much broader, higher-energy peak B (2500-5000 $cm^{-1}$). Using a theory based on the Holstein Hamiltonian for mobile holes in P3HT, the IR line-shape is successfully reproduced for several recently measured spectra recorded in doped and undoped films, confirming the association of an enhanced peak ratio (A/B) with extended polaron coherence. Emphasis is placed on the origin of components polarized along the intra- and inter-chain directions and their dependence on the spatial distribution of disorder as well as the position of the dopant relative to the $\pi$-stack. The model is further adapted to treat donor-acceptor copolymers where the local HOMO energy varies periodically from donor unit to acceptor unit. The calculated line shape for a diketopyrrolopyrrole-based copolymer agrees well with the recently measured spectrum.
Temple University--Theses
Borin, Veniamin Aleksandrovich. "A Computational Study of Diiodomethane Photoisomerization." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1477581227858711.
Full textFransson, Thomas. "Chemical bond analysis in the ten-electron series." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19554.
Full textThis thesis presents briefly the application of quantum mechanics on systems ofchemical interest, i.e., the field of quantum chemistry and computational chemistry.The molecules of the ten-electron series, hydrogen fluoride, water, ammonia,methane and neon, are taken as computational examples. Some applications ofquantum chemistry are then shown on these systems, with emphasis on the natureof the molecular bonds. Conceptual methods of chemistry and theoreticalchemistry for these systems are shown to be valid with some restrictions, as theseinterpretations does not represent physically measurable entities.The orbitals and orbital energies of neon is studied, the binding van der Waalsinteractionresulting in a Ne2 molecule is studied with a theoretical bond lengthof 3.23 °A and dissociation energy of 81.75 μEh. The equilibrium geometries ofFH, H2O, NH3 and CH4 are studied and the strength and character of the bondsinvolved evaluated using bond order, dipole moment, Mulliken population analysisand L¨owdin population analysis. The concept of electronegativity is studied in thecontext of electron transfer. Lastly, the barrier of inversion for NH3 is studied, withan obtained barrier height of 8.46 mEh and relatively constant electron transfer.
Mclaughlin, Keith. "Development of Improved Models for Gas Sorption Simulation." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4916.
Full textAeberhard, Philippe C. "Computational modelling of structure and dynamics in lightweight hydrides." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:bfaf28b1-da03-4ce9-8577-5e8c18eb05ae.
Full textTroville, Jonathan. "Multiscale Modeling of Carbon Nanotube Synthesis in a Catalytic Chemical Vapor Deposition Reactor." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495839218743389.
Full textAgrawal, Anupriya. "Computational Study of Vanadate and Bulk Metallic Glasses." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345536954.
Full textBoromand, Arman. "Computational Studies on Multi-phasic Multi-componentComplex Fluids." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1480500319335545.
Full textPatra, Abhirup. "Surface properties, adsorption, and phase transitions with a dispersion-corrected density functional." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/516784.
Full textPh.D.
Understanding the “incomprehensible” world of materials is the biggest challenge to the materials science community. To access the properties of the materials and to utilize them for positive changes in the world are of great interest. Often scientists use approximate theories to get legitimate answers to the problems. Density functional theory (DFT) has emerged as one of the successful and powerful predictive methods in this regard. The accuracy of DFT relies on the approximate form of the exchange-correlation (EXC) functional. The most complicated form of this functional can be as accurate as more complicated and computationally robust method like Quantum Monte Carlo (QMC), Random Phase Approximation (RPA). Two newest meta-GGAs, SCAN and SCAN+rVV10 are among those functionals. Instantaneous charge fluctuation between any two objects gives rise to the van der Waals (vdW) interactions (often termed as dispersion interactions). It is a purely correlation effect of the interacting electrons and thus non-local in nature. Despite its small magnitude it plays a very important role in many systems such as weakly bound rare-gas dimers, molecular crystals, and molecule-surface interaction. The traditional semi-local functionals can not describe the non-local of vdW interactions; only short- and intermediate-range of the vdW are accounted for in these functionals. In this thesis we investigate the effect of the weak vdW interactions in surface properties, rare-gas dimers and how it can be captured seamlessly within the semi-local density functional approximation. We have used summed-up vdW series within the spherical-shell approximation to develop a new vdW correction to the meta-GGA-MS2 functional. This method has been utilized to calculate binding energy and equilibrium binding distance of different homo- and hetero-dimers and we found that this method systematically improves the MGGA-MS2 results with a very good agreement with the experimental data. The binding energy curves are plotted using this MGGA-MS2, MGGA-MS2-vdW and two other popular vdW-corrected functionals PBE-D2, vdW-DF2. From these plots it is clear that our summed-up vdW series captures the long-range part of the binding energy curve via C6, C8, and, C10 coefficients. The clean metallic surface properties such as surface energy, work functions are important and often play a crucial role in many catalytic reactions. The weak dispersion interactions present between the surfaces has significant effect on these properties. We used LDA, PBE, PBSEsol, SCAN and SCAN+rVV10 to compute the clean metallic surface properties. The SCAN+rVV10 seamlessly captures different ranges of the vdW interactions at the surface and predicts very accurate values of surface energy ( ) , and work function (𝞥) and inter-layer relaxations (𝞭%). Our conclusion is adding non-local vdW correction to a good semi-local density functional such as SCAN is necessary in order to predict the weak attractive vdW forces at the metallic surface. The SCAN+rVV10 has also been employed to study the hydrogen evolution reaction (HER) on 1T-MoS2. We have chosen as a descriptor differential Gibbs free energy (𝚫 GH ) to understand the underlying mechanism of this catalytic reaction. Density functional theory calculations agree with the experimental findings. In the case of layered materials like 1T-MoS2, vdW interactions play an important role in hydrogen binding, that SCAN+rVV10 calculation was able to describe precisely. We have also used SCAN and SCAN+rVV10 functionals to understand bonding of CO on (111) metal surfaces, where many approximations to DFT fail to predict correct adsorption site and adsorption energy. In this case SCAN and SCAN+rVV10 do not show systematic improvements compared to LDA or PBE, rather, both SCAN and SCAN+rVV10 overbind CO more compared to PBE but less compared to the LDA. This overbinding of CO is associated with the incorrect charge transfer from metal to molecule and presumably comes from the density-driven self-interaction error of the functionals. In this thesis we assessed different semi-local functionals to investigate molecule surface systems of 𝞹-conjugated molecules (thiophene, pyridine) adsorbed on Cu(111), Cu(110), Cu(100) surfaces. We find the binding mechanism of these molecules on the metallic surface is mediated by short and intermediate range vdW interactions. Calculated values of binding energies and adsorbed geometries imply that this kind of adsorption falls in the weak chemisorption regime. Structural phase transitions due to applied pressure are very important in materials science. However, pressure induced structural phase transition in early lanthanide elements such as Ce are considered as abnormal first order phase transition. The Ce 𝝰-to-𝝲 isostructural phase transition is one of them. The volume collapse and change of magnetic properties associated with this transition are mediated by the localized f-electron. Semi-local density functionals like LDA, GGA delocalize this f-electron due to the inherent self-interaction error (SIE) of these functionals. We have tested the SCAN functional for this particular problem, and, it was found that the spin-orbit coupling calculations with SCAN not only predicts the correct magnetic ordering of the two phases, but also gives a correct minima for the high-pressure 𝝰-Ce phase and a shoulder for the low-pressure 𝝲-Ce phase.
Temple University--Theses
Ekström, Ulf. "Time-dependent molecular properties in the optical and x-ray regions." Doctoral thesis, Linköpings universitet, Beräkningsfysik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10125.
Full textSilva, Fernando da. "Estudo teórico de propriedades eletrônicas e da solvatação de carbonatos orgânicos em meio aquoso." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-15052012-155412/.
Full textIn this work, a combination of quantum mechanics, Monte Carlo simulations and thermodynamic perturbation theory was used to study the solvation of ethylene carbonate (EC) and propylene carbonate (PC) in water. The liquid structures was generated by NVT Monte Carlo simulation using standard procedures for the Metropolis sampling technique. The auto-correlation function of the energy was used to analyse the statistical correlation between the configurations (carbonates + hydrogen bonds sorrounded by 350 water molcules treated as point charges) were smpled from the simulations and dipole moment calculations, at the MP2/ aug-cc-pvDZ, were performed. On average, 1,4 hydrogen bonds were formed between water and the solutes (EC or PC). An average dipole momento of 9,9 ± 0,2 D was obtained for EC-water and 10,6 ± 0,2 D for PC-water. Finally, Monte Carlo simulations in the NPT ensemble combined with free energy pertubation technique were used to determine solvation free energies, and the results were Gsolv = -15,1 ± 0,8 kcal/mol for EC in water and Gsolv = -15,3 ± 1,2 kcal/mol for PC in water. The analysis of these results leads to the conclusion that EC and PC are equally stable in aqueous solution, i.e, the methylation hás no effect on the solvation of PC and no influence on the hydrogen bond formation.
Zheng, Lixin. "Properties of Liquid Water and Solvated Ions Based on First Principles Calculations." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/527565.
Full textPh.D.
Water is of essential importance for life on earth, yet the physics concerning its various anomalous properties has not been fully illuminated. This thesis is dedicated to the understanding of liquid water from aspects of microscopic structures, dynamics, electronic structures, X-ray absorption spectra, and proton transfer mechanism. This thesis use the computational simulation techniques including density functional theory (DFT), ab initio molecular dynamics (AIMD), and theoretical models for X-ray absorption spectra (XAS) to investigate the dynamics and electronic structures of liquid water system. The topics investigated in this thesis include a comprehensive evaluation on the simulation of liquid water using the newly developed SCAN meta-GGA functional, a systematic modeling of the liquid-water XAS using advanced ab initio approaches, and an explanation for a long-puzzling question that why hydronium diffuses faster than hydroxide in liquid water. Overall, significant contributions have been made to the understanding of liquid water and ionic solutions in the microscopic level through the aid of ab initio computational modeling.
Temple University--Theses
Olivares-Amaya, Roberto. "Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10184.
Full textOjaghlou, Neda. "Adhesion at Solid/Liquid Interfaces." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6079.
Full textPerdomo, Alejandro. "Designing and Probing Open Quantum Systems: Quantum Annealing, Excitonic Energy Transfer, and Nonlinear Fluorescence Spectroscopy." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10290.
Full textZhang, Wenhua. "First Principles Studies on Chemical and Electronic Structures of Adsorbates." Doctoral thesis, KTH, Teoretisk kemi (stängd 20110512), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10215.
Full textQC 20100819
Fransson, Thomas. "X-ray absorption spectroscopy by means of Lanczos-chain driven damped coupled cluster response theory." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72460.
Full textMithen, James Patrick. "Molecular dynamics simulations of the equilibrium dynamics of non-ideal plasmas." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:3bae84f9-530d-43da-ad7e-bb9a1784cd1d.
Full textMatek, Christian C. A. "Statistical mechanics of nucleic acids under mechanical stress." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ce44cf50-2001-4f54-8e57-d1757f709fd6.
Full textWright, Christopher James. "Theoretical studies of underscreened Kondo physics in quantum dots." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:62207edb-af3a-4340-a6f2-5264b1374a41.
Full textWilliamson, Alexander James. "Methods, rules and limits of successful self-assembly." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:9eb549f9-3372-4a38-9370-a9b0e58ca26b.
Full textTekin, Emine Deniz. "Investigation Of Biologically Important Small Molecules: Quantum Chemical And Molecular Dynamics Calculations." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612343/index.pdf.
Full textBoskovic, Desanka. "Electronic properties of organic semiconductors and low-dimensional materials." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/456582.
Full textOrganic semiconductors became very interesting group of materials because of their good charge-transport properties and massive technological applications. Among all of them, rubrene gained grate interest because it is an organic semiconductor with the highest carrier mobility, which can reach 40cm2=V s for holes. Here we give a full firstprinciples description of the electronic properties and electron-phonon coupling (including Holstein and Peierls type of couplings) for the prototypical rubrene crystals. Thereby, a recipe for circumventing the issue of inaccuracies with low-frequency phonons is presented. Low dimensional compounds are known for having anisotropic physical properties and because of their low dimensionality, metallic properties and occurrence of structural modulations, these compounds are often discussed as possible Fermi surface driven CDW materials. However, the real origin of the CDWs in these materials has never been clarified. Thus we have decided to examine if some instability of the Fermi surface is at the origin of structural modulations in these compounds by studying the electronic structure and calculating the Lindhard response function for several low-dimensional materials.
Derry, Philip. "Quasiparticle interference in strongly correlated electronic systems." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:f487c821-dbbb-4ebe-8b05-c13807379c2c.
Full textToulouse, Julien. "Développements méthodologiques en chimie quantique : méthodes de Monte Carlo quantique et théorie de la fonctionnelle de la densité." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00851489.
Full textThomine, Olivier. "Développement de méthodes multi-échelles pour la simulation numérique des écoulements réactifs diphasiques." Phd thesis, Université de Rouen, 2011. http://tel.archives-ouvertes.fr/tel-00683632.
Full textLópez, Ríos Pablo. "Backflow and pairing wave function for quantum Monte Carlo methods." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/288882.
Full textPerkins, Thomas Edward James. "The effects of electronic quenching on the collision dynamics of OH(A) with Kr and Xe." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:5998e249-35ff-4d05-9c13-9b65d59b11d9.
Full textHenriksson, Johan. "Molecular Quadratic Response Properties with Inclusion of Relativity." Doctoral thesis, Linköping : Department of Physics, Chemistry and Biology, Linköping University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11035.
Full textHarrison, Ryan M. "Molecular biophysics of strong DNA bending and the RecQ DNA helicase." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f02fc167-b705-4275-a413-21d13b5d94c3.
Full textKraszewski, Sebastian. "Compréhension des mécanismes d'interaction entre des nanotubes de carbone et une membrane biologique : effets toxiques et vecteurs de médicaments potentiels." Phd thesis, Université de Franche-Comté, 2010. http://tel.archives-ouvertes.fr/tel-00642770.
Full textMilligan, Ryan Timothy. "DUAL MODE SCRAMJET: A COMPUTATIONAL INVESTIGATION ON COMBUSTOR DESIGN AND OPERATION." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1251725076.
Full textCioce, Christian R. "Computational Investigations of Potential Energy Function Development for Metal-Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5666.
Full textJayatilaka, Nayana Kumudini. "X-Irradiation of DNA Components in the Solid State: Experimental and Computational Studies of Stabilized Radicals in Guanine Derivatives." unrestricted, 2006. http://etd.gsu.edu/theses/available/etd-04072006-112029/.
Full textTitle from title screen. William H. Nelson, committee chair; Thomas L. Netzel , A.G. Unil Perera, Brian D. Thoms, Gary Hastings, committee members. Electronic text (243 p. : ill. (some col.)) : digital, PDF file. Description based on contents viewed Aug. 16, 2007. Includes bibliographical references.
"AB INITIO STUDY OF THE HYDRONIUM RADICAL. PART II. CLUES OF A DEGENERATE." 1996. http://yvette.ensta.fr/~muguet.
Full text"The Investigation of the Electronic Properties of Si Based Heterojucntions: a First Principle Study of a-Si:H/c-Si and GaP/Si Heterojunctions." Doctoral diss., 2019. http://hdl.handle.net/2286/R.I.53591.
Full textDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2019
"Computational Design of Compositionally Complex 3D and 2D Semiconductors." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.62929.
Full textDissertation/Thesis
Doctoral Dissertation Materials Science and Engineering 2020
"On the Origin of the Living State." Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.50446.
Full textDissertation/Thesis
Doctoral Dissertation Physics 2018
(6630413), Aashutosh Mistry. "Mesoscale Interactions in Porous Electrodes." Thesis, 2019.
Find full textMadsen, Jonathan R. "Monte Carlo Electromagnetic Cross Section Production Method for Low Energy Charged Particle Transport Through Single Molecules." Thesis, 2013. http://hdl.handle.net/1969.1/151357.
Full textSetyawan, Wahyu. "Computational Study of Low-friction Quasicrystalline Coatings via Simulations of Thin Film Growth of Hydrocarbons and Rare Gases." Diss., 2008. http://hdl.handle.net/10161/592.
Full text