Academic literature on the topic 'Computational physics|Condensed matter physics|Biophysics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational physics|Condensed matter physics|Biophysics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Computational physics|Condensed matter physics|Biophysics"

1

Godwal, B. K. "Computational condensed matter physics." Bulletin of Materials Science 22, no. 5 (August 1999): 877–84. http://dx.doi.org/10.1007/bf02745548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McClintock, Peter V. E. "Experimental and Computational Techniques in Soft Condensed Matter Physics, edited by Jeffrey Olafsen." Contemporary Physics 52, no. 5 (September 2011): 486. http://dx.doi.org/10.1080/00107514.2011.580058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karney, Charles F. F. "Modern computational techniques in plasma physics." Physics of Plasmas 5, no. 5 (May 1998): 1632–35. http://dx.doi.org/10.1063/1.872831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stephen, David T., Hendrik Poulsen Nautrup, Juani Bermejo-Vega, Jens Eisert, and Robert Raussendorf. "Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter." Quantum 3 (May 20, 2019): 142. http://dx.doi.org/10.22331/q-2019-05-20-142.

Full text
Abstract:
Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected topological (SPT) order protected by subsystem symmetries and its relation to measurement-based quantum computation (MBQC). The key unifying ingredient is the concept of quantum cellular automata (QCA) which we use to define subsystem symmetries acting on rigid lower-dimensional lines or fractals on a 2D lattice. Notably, both types of symmetries are treated equivalently in our framework. We show that states within a non-trivial SPT phase protected by these symmetries are indicated by the presence of the same QCA in a tensor network representation of the state, thereby characterizing the structure of entanglement that is uniformly present throughout these phases. By also formulating schemes of MBQC based on these QCA, we are able to prove that most of the phases we construct are computationally universal phases of matter, in which every state is a resource for universal MBQC. Interestingly, our approach allows us to construct computational phases which have practical advantages over previous examples, including a computational speedup. The significance of the approach stems from constructing novel computationally universal phases of matter and showcasing the power of tensor networks and quantum information theory in classifying subsystem SPT order.
APA, Harvard, Vancouver, ISO, and other styles
5

BINDER, K. "LARGE-SCALE SIMULATIONS IN CONDENSED MATTER PHYSICS —THE NEED FOR A TERAFLOP COMPUTER." International Journal of Modern Physics C 03, no. 03 (June 1992): 565–81. http://dx.doi.org/10.1142/s0129183192000373.

Full text
Abstract:
The introduction of vector processors {“supercomputers” with a performance in the range of 109 floating point operations (1 GFLOP) per second} has had an enormous impact on computational condensed matter physics. The possibility of a substantially enhanced performance by massively parallel processors (“teraflop” machines with 1012 floating point operations per second) will allow satisfactory treatment of a large range of important scientific problems which have to a great extent thus far escaped numerical resolution. The present paper describes only a few examples (out of a long list of interesting research problems!) for which the availability of “teraflops” will allow spectacular progress, i.e., the modelling of dense macromolecular systems and metallic alloys by molecular dynamics and Monte Carlo simulations.
APA, Harvard, Vancouver, ISO, and other styles
6

Probert, Matt. "Symmetry and Condensed Matter Physics – A Computational Approach, by M. El-Batanouny and F. Wooten." Contemporary Physics 51, no. 5 (September 2010): 457–58. http://dx.doi.org/10.1080/00107510903395937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schultz, D. R., P. S. Krstic, T. Minami, M. S. Pindzola, F. J. Robicheaux, J. P. Colgan, S. D. Loch, et al. "Computational atomic physics for plasma edge modeling." Contributions to Plasma Physics 44, no. 13 (April 2004): 247–51. http://dx.doi.org/10.1002/ctpp.200410036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smit, Berend. "Computational physics in petrochemical industry." Physica Scripta T66 (January 1, 1996): 80–84. http://dx.doi.org/10.1088/0031-8949/1996/t66/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janatipour, Najmeh, Zabiollah Mahdavifar, Siamak Noorizadeh, and Fazel Shojaei. "Modifying the electronic and geometrical properties of mono/bi-layer graphite-like BC2N via alkali metal (Li, Na) adsorption and intercalation: computational approach." New Journal of Chemistry 43, no. 33 (2019): 13122–33. http://dx.doi.org/10.1039/c9nj02260k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pursky, O. I., T. V. Dubovyk, V. O. Babenko, V. F. Gamaliy, R. A. Rasulov, and R. P. Romanenko. "Computational method for studying the thermal conductivity of molecular crystals in the course of condensed matter physics." Journal of Physics: Conference Series 1840, no. 1 (March 1, 2021): 012015. http://dx.doi.org/10.1088/1742-6596/1840/1/012015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Computational physics|Condensed matter physics|Biophysics"

1

Stefferson, Michael W. "Dynamics of Crowded and Active Biological Systems." Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823834.

Full text
Abstract:

Interactions between particles and their environment can alter the dynamics of biological systems. In crowded media like the cell, interactions with obstacles can introduce anomalous subdiffusion. Active matter systems, e.g. , bacterial swarms, are nonequilibrium fluids where interparticle interactions and activity cause collective motion and dynamical phases. In this thesis, I discuss my advances in the fields of crowded media and active matter. For crowded media, I studied the effects of soft obstacles and bound mobility on tracer diffusion using a lattice Monte Carlo model. I characterized how bound motion can minimize the effects of hindered anomalous diffusion and obstacle percolation, which has implications for protein movement and interactions in cells. I extended the analysis of binding and bound motion to study the effects of transport across biofilters like the nuclear pore complex (NPC). Using a minimal model, I made predictions on the selectivity of the NPC in terms of physical parameters. Finally, I looked at active matter systems. Using dynamical density functional theory, I studied the temporal evolution of a self-propelled needle system. I mapped out a dynamical phase diagram and discuss the connection between a banding instability and microscopic interactions.

APA, Harvard, Vancouver, ISO, and other styles
2

Varner, Samuel John. "Experimental and computational techniques in carbon-13 NMR." W&M ScholarWorks, 1999. https://scholarworks.wm.edu/etd/1539623952.

Full text
Abstract:
An efficient method for calculating NMR lineshapes from anisotropic second rank tensor interactions is presented. The algorithm produces lineshapes from asymmetric tensors by summing those from symmetric tensors. This approach significantly reduces the calculation time, greatly facilitating iterative nonlinear least squares fitting of experimental spectra. This algorithm has been modified to produce partially relaxed lineshapes and spectra of partially ordered samples.;Calculations for rapidly spinning samples show that spin-lattice relaxation time ( T1Z ) anisotropy varies with the angle between the spinning axis and the external field. When the rate of molecular motion is in the extreme narrowing limit, measurement of T1Z anisotropies for two different values of the spinning angle allows the determination of two linear combinations of the three static spectral densities, J0(0), J1(0) and J2(0). Experimental results for ferrocene demonstrate the utility of these linear combinations in the investigation of molecular dynamics with natural abundance 13C NMR. For ferrocene-d 10, deuteron T1Z and quadrupolar order relaxation time ( T1Q ) anisotropies, along with the relaxation time of the 13C magic angle spinning (MAS) peak, provide sufficient information to determine the orientation dependence of all three individual spectral densities. The experimental results include the first determination of J 0(0) in a solid sample.;A variety of experimental techniques were used in an investigation of the polyimides LaRC-IA, LaRC-TPI and LaRC-SI and related model compounds. Magic angle spinning was used to acquire 13C isotropic chemical shift spectra of these materials. The spectra were assigned as completely as possible. In addition, the principal components of some shielding tensors were measured using variable angle correlation spectroscopy. of those studied, LaRC-SI is the only polymer that is soluble. However, after it is heated past its glass transition temperature, LaRC-SI becomes insoluble. Experiments were performed in an attempt to identify causes of this behavior. 1H and 13C NMR spectra of soluble and insoluble LaRC-SI are significantly different when magnetization from nuclei in rigid regions of the polymer is suppressed. Hydration studies of LaRC-SI and LaRC-IA show that absorbed water plasticizes these polymers.
APA, Harvard, Vancouver, ISO, and other styles
3

Matsuda, Takehisa. "Computational proposal for locating local defects in superconducting tapes." California State University, Long Beach, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garcia, Alberto J. "Parameter Dependence of Pair Correlations in Clean Superconducting-Magnetic Proximity Systems." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841350.

Full text
Abstract:

Cooper pairs are known to tunnel through a barrier between superconductors in a Josephson junction. The spin states of the pairs can be a mixture of singlet and triplet states when the barrier is an inhomogeneous magnetic material. The purpose of this thesis is to better understand the behavior of pair correlations in the ballistic regime for different magnetic configurations and varying physical parameters. We use a tight-binding Hamiltonian to describe the system and consider singlet-pair conventional superconductors. Using the Bogoliubov-Valatin transformation, we derive the Bogoliubov-de Gennes equations and numerically solve the associated eigenvalue problem. Pair correlations in the magnetic Josephson junction are obtained from the Green's function formalism for a superconductor. This formalism is applied to Josephson junctions composed of discrete and continuous magnetic materials. The differences between representing pair correlations in the time and frequency domain are discussed, as well as the advantages of describing the Gor'kov functions on a log scale rather than the commonly used linear scale, and in a rotating basis as opposed to a static basis. Furthermore, the effects of parameters such as ferromagnetic width, magnetization strength, and band filling will be investigated. Lastly, we compare results in the clean limit with known results in the diffusive regime.

APA, Harvard, Vancouver, ISO, and other styles
5

Swoger, Maxx Ryan. "Computational Investigation of Material and Dynamic Properties of Microtubules." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1532108320185937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Giomi, Luca. "Unordinary order a theoretical, computational and experimental investigation of crystalline order in curved space /." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arias, Tomas A. "New analytic and computational techniques for finite temperature condensed matter systems." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hutzel, William D. "Particle-Hole Symmetry Breaking in the Fractional Quantum Hall Effect at nu = 5/2." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841528.

Full text
Abstract:

The fractional quantum Hall effect (FQHE) in the half-filled second Landau level (filling factor ν = 5/2) offers new insights into the physics of exotic emergent quasi-particles. The FQHE is due to the collective interactions of electrons confined to two-dimensions, cooled to sub-Kelvin temperatures, and subjected to a strong perpendicular magnetic field. Under these conditions a quantum liquid forms displaying quantized plateaus in the Hall resistance and chiral edge flow. The leading candidate description for the FQHE at 5/2 is provided by the Moore-Read Pfaffian state which supports non-Abelian anyonic low-energy excitations with potential applications in fault-tolerant quantum computation schemes. The Moore-Read Pfaffian is the exact zero-energy ground state of a particular three-body Hamiltonian and explicitly breaks particle-hole symmetry. In this thesis we investigate the role of two and three body interaction terms in the Hamiltonian and the role of particle hole symmetry (PHS) breaking at ν = 5/2. We start with a PHS two body Hamiltonian (H 2) that produces an exact ground state that is nearly identical with the Moore-Read Pfaffian and construct a Hamiltonian H(α) = (1 – α)H3 + α H 2 that tunes continuously between H3 and H2. We find that the ground states, and low-energy excitations, of H2 and H3 are in one-to-one correspondence and remain adiabatically connected indicating they are part of the same universality class and describe the same physics in the thermodynamic limit. In addition, evidently three body PHS breaking interactions are not a crucial ingredient to realize the FQHE at 5/2 and the non-Abelian quasiparticle excitations.

APA, Harvard, Vancouver, ISO, and other styles
9

Lima, Filipe Camargo Dalmatti Alves. "Modelagem ab initio da interação proteína-carboidrato." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21102010-110913/.

Full text
Abstract:
A Frutalina é uma proteína tetramérica ligante de carboidratos obtida através de sementes Artocarpus incisa. Os interesses biomédicos da Frutalina estão em sua alta afnidade de ligação por carboidratos presentes em algumas células tumorais específicas. Até agora, nenhum estudo teórico computacional foi realizado para investigar as características de ligação da Frutalina. Neste trabalho, através de um estudo multidisciplinar, investigamos as propriedades de ligação e óticas da Frutalina com carboidratos. Utilizamos um modelo-corte teórico, considerando apenas o sítio ativo de ligação com o carboidrato construído com o auxílio de docking molecular e mecânica molecular clássica. As energias de ligação são obtidas através de uma abordagem quântica ab initio all electron, dentro da Teoria do Funcional da Densidade (DFT), no espaço recíproco que combina o método Projector Augmented Waves (PAW) e a dinâmica molecular de Car-Parrinello (CP). Uma metodologia Hartree-Fock (HF) semi-empírica é utilizada para obter as propriedades óticas. A investigação deste problema muito complexo pode ser dividido em seis etapas principais: a) estudamos as propriedades estruturais da proteína para avaliar a sua mobilidade e escolhemos um conjunto de dados de raios-X para descrever o sistema; b) aplicamos a técnica de docking molecular para ligar quatro carboidratos ( alfa-metil-D-galactose, beta-D-galactose, O1-metil-manose e alfa-metil-D-glucopiranose) na proteína; c) otimizamos a geometria do sistema lectina-carboidrato utilizando mecânica molecular clássica; d) criamos o modelo-corte ; e) investigamos as propriedades óticas utilizando HF; f) estudamos as propriedades eletrônicas do sistema proteína-carboidrato e calculamos energias de ligação através do cálculo DFT. O modelo aqui proposto, além de apresentar uma adequada concordância com dados experimentais, abre a possibilidade de investigar propriedades eletrônicas através de uma abordagem quântica estado da arte na área de estrutura eletrônica.
Frutalin is a tetrameric carbohydrate-binding protein obtained from breadfruit seeds. Biomedical interest on Frutalin comes from the high afinity exhibited by these molecules toward carbohydrates expressed by specific tumor cells. So far, no theoretical computational studies have been carried out to investigate the binding characteristics of frutalin, which is probably due to the large number of atoms that should be considered for in silicon calculations. We investigate the binding of frutalin and optical properties with specific carbohydrate molecules using a theoretical cutmodel considering only the carbohydrate binding site. This model has been constructed with the aid of molecular docking and classical molecular mechanics. We use the ab initio all electron reciprocal space Projector Augmented Waves (PAW) method and the Car-Parrinello scheme as embodied in the CP-PAW code to obtain the binding energies. To evaluate the optical properties, we employed the Hartree-Fock Semi-empirical ZINDO method from the Materials Studio 4.0 computational package. The investigation of this very complex problem can be divided into 6 main steps. Firstly, we study the structural properties of the protein to evaluate its mobility and we choose a x-ray data to describe reliably the system. In the second step, we performed molecular docking to link up four carbohydrates (alpha-methyl-D-galactoside, beta-D-galactoside, O1-methyl-mannose and methyl-alpha-D-glucopyranoside) in the protein. We optimize the geometry of the system lectin-carbohydrate using molecular mechanics in the third step. In the fourth step, we created the cutmodel based on the final geometries obtained in the previous step. In the fifth and sixth steps we investigate the quantum interaction of the protein with each carbohydrate. Our theoretical results are compared with available measurements in each step. The study of the interaction between the active binding site and carbohydrates allows us to demonstrate that our methodology is well suited to predict the electronic properties of the system.
APA, Harvard, Vancouver, ISO, and other styles
10

Lukashev, Pavel. "Crystal and Electronic Structure of Copper Sulfides." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1164213394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Computational physics|Condensed matter physics|Biophysics"

1

Miyashita, Seiji, Masatoshi Imada, and Hajime Takayama, eds. Computational Approaches in Condensed-Matter Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

F, Wooten, ed. Symmetry and condensed matter physics: A computational approach. New York: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Experimental and computational techniques in soft condensed matter physics. New York: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Olafsen, Jeffrey, ed. Experimental and Computational Techniques in Soft Condensed Matter Physics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511760549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

A, Zhuravlëv V., ed. Physics of dendrites: Computational experiments. Singapore: World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Monastyrsky, Michael. Topology of Gauge Fields and Condensed Matter. Boston, MA: Springer US, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jülich), IFF-Ferienkurs (37th 2006 Forschungszentrum. Computational condensed matter physics: Lecture manuscripts of the 37th Spring School of the Institute of Solid State Research. Jülich: Forschungszentrum Jülich, Institut für Festkörperforschung, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miyashita, Seiji. Computational Approaches in Condensed-Matter Physics: Proceedings of the 6th Nishinomiya-Yukawa Memorial Symposium, Nishinomiya, Japan, October 24 and 25, 1991. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Computational physics|Condensed matter physics|Biophysics"

1

Van Hieu, Nguyen. "Functional Integral Techniques in Condensed Matter Physics." In Computational Approaches to Novel Condensed Matter Systems, 191–233. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9791-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Powell, Ben J. "Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry." In Computational Methods for Large Systems, 309–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470930779.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laumann, C. R., R. Moessner, A. Scardicchio, and S. L. Sondhi. "Statistical Mechanics of Classical and Quantum Computational Complexity." In Modern Theories of Many-Particle Systems in Condensed Matter Physics, 295–332. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10449-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fuchs, Martin, and Philip J. Siemens. "The Nuclear-Matter Effective Interaction." In Computational Nuclear Physics 2, 55–69. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9335-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lorenzen, Winfried, Andreas Becker, and Ronald Redmer. "Progress in Warm Dense Matter and Planetary Physics." In Lecture Notes in Computational Science and Engineering, 203–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04912-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Celzard, Alain, and Vanessa Fierro. "Carbon, a Unique Model Material for Condensed Matter Physics and Engineering Science." In NATO Science for Peace and Security Series B: Physics and Biophysics, 1–26. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7478-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schneider, Barry I., Klaus R. Bartschat, Xiaoxu Guan, David Feder, and Lee A. Collins. "Time-Dependent Computational Methods for Matter Under Extreme Conditions." In Advances in Chemical Physics, 195–214. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118959602.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heine, Volker. "Computation of Electronic Structure: Its Role in the Development of Solid State Physics." In Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter, 1–5. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0899-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Díaz, Alberto A., and Leonardo Trujillo. "Complex Fluids, Soft Matter and the Jamming Transition Problem." In Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment, 211–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00191-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marín, Juan F., Juan C. Petit, Leonardo Di G. Sigalotti, and Leonardo Trujillo. "Integral Representation for Continuous Matter Fields in Granular Dynamics." In Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment, 473–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00191-3_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Computational physics|Condensed matter physics|Biophysics"

1

Irfan, Abd Rahim, M. Z. M. Zarhamdy, Saad Mohd Sazli, Muhamad Nur Amni, N. A. Shuaib, and A. Azlida. "Computational study on thermoacoustic heat engine for proposing a new method renewable technique." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radhwan, H., Z. Shayfull, M. R. Farizuan, M. S. M. Effendi, and A. R. Irfan. "Analysis particle trajectory and air flow on hopper for swiftlet feeding machine using computational fluid dynamics (CFD)." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sachdeva, Ritika, Prabhjot Kaur, V. P. Singh, and G. S. S. Saini. "Computational study of frontier orbitals, moments, chemical reactivity and thermodynamic parameters of sildenafil." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Ajith, and Vincent Mathew. "Computational study of proton acceleration from the laser irradiated metal substrate." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tiwari, Aditya, Brijesh Kumar, and Ambrish Kumar Srivastava. "Computational study on 8-quinolinolato-alkali, an electron transporting material for OLED devices." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0005773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Shivani, Vinay Shukla, Sarvesh Kumar Gupta, B. K. Pandey, and Abhishek Kumar Gupta. "Computational studies of PEO3-NaClO4 based solid polymer electrolyte for Na-ion batteries." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dewangan, Satish Kumar. "Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Surbhi, Sarvendra Kumar, and G. N. Pandey. "Experimental and computational (ab initio and DFT) analysis of vibrational spectra of 2,6-dimethyl-4-nitrophenol." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sachdeva, Ritika, Abhinav Soni, V. P. Singh, and G. S. S. Saini. "Reactivity of etoricoxib based on computational study of molecular orbitals, molecular electrostatic potential surface and Mulliken charge analysis." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Front Matter: Volume 10717." In Saratov Fall Meeting 2017: Fifth International Symposium on Optics and Biophotonics: Laser Physics and Photonics XIX; Computational Biophysics and Analysis of Biomedical Data IV, edited by Vladimir L. Derbov and Dmitry E. Postnov. SPIE, 2018. http://dx.doi.org/10.1117/12.2325795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography