Academic literature on the topic 'Computational Systems Biology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computational Systems Biology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Computational Systems Biology"

1

Miller, David J. Ghosh Avijit. "New methods in computational systems biology /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Simoni, Giulia. "Modeling Startegies for Computational Systems Biology." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/254361.

Full text
Abstract:
Mathematical models and their associated computer simulations are nowadays widely used in several research fields, such as natural sciences, engineering, as well as social sciences. In the context of systems biology, they provide a rigorous way to investigate how complex regulatory pathways are connected and how the disruption of these processes may contribute to the develop- ment of a disease, ultimately investigating the suitability of specific molecules as novel therapeutic targets. In the last decade, the launching of the precision medicine initiative has motivated the necessity to define innovative computational techniques that could be used for customizing therapies. In this context, the combination of mathematical models and computer strategies is an essential tool for biologists, which can analyze complex system pathways, as well as for the pharmaceutical industry, which is involved in promoting programs for drug discovery. In this dissertation, we explore different modeling techniques that are used for the simulation and the analysis of complex biological systems. We analyze the state of the art for simulation algorithms both in the stochastic and in the deterministic frameworks. The same dichotomy has been studied in the context of sensitivity analysis, identifying the main pros and cons of the two approaches. Moreover, we studied the quantitative system pharmacology (QSP) modeling approach that elucidates the mechanism of action of a drug on the biological processes underlying a disease. Specifically, we present the definition, calibration and validation of a QSP model describing Gaucher disease type 1 (GD1), one of the most common lysosome storage rare disorders. All of these techniques are finally combined to define a novel computational pipeline for patient stratification. Our approach uses modeling techniques, such as model simulations, sensitivity analysis and QSP modeling, in combination with experimental data to identify the key mechanisms responsible for the stratification. The pipeline has been applied to three test cases in different biological contexts: a whole-body model of dyslipidemia, the QSP model of GD1 and a QSP model of cardiac electrophysiology. In these test cases, the pipeline proved to be accurate and robust, allowing the interpretation of the mechanistic differences underlying the phenotype classification.
APA, Harvard, Vancouver, ISO, and other styles
3

Simoni, Giulia. "Modeling Startegies for Computational Systems Biology." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/254361.

Full text
Abstract:
Mathematical models and their associated computer simulations are nowadays widely used in several research fields, such as natural sciences, engineering, as well as social sciences. In the context of systems biology, they provide a rigorous way to investigate how complex regulatory pathways are connected and how the disruption of these processes may contribute to the develop- ment of a disease, ultimately investigating the suitability of specific molecules as novel therapeutic targets. In the last decade, the launching of the precision medicine initiative has motivated the necessity to define innovative computational techniques that could be used for customizing therapies. In this context, the combination of mathematical models and computer strategies is an essential tool for biologists, which can analyze complex system pathways, as well as for the pharmaceutical industry, which is involved in promoting programs for drug discovery. In this dissertation, we explore different modeling techniques that are used for the simulation and the analysis of complex biological systems. We analyze the state of the art for simulation algorithms both in the stochastic and in the deterministic frameworks. The same dichotomy has been studied in the context of sensitivity analysis, identifying the main pros and cons of the two approaches. Moreover, we studied the quantitative system pharmacology (QSP) modeling approach that elucidates the mechanism of action of a drug on the biological processes underlying a disease. Specifically, we present the definition, calibration and validation of a QSP model describing Gaucher disease type 1 (GD1), one of the most common lysosome storage rare disorders. All of these techniques are finally combined to define a novel computational pipeline for patient stratification. Our approach uses modeling techniques, such as model simulations, sensitivity analysis and QSP modeling, in combination with experimental data to identify the key mechanisms responsible for the stratification. The pipeline has been applied to three test cases in different biological contexts: a whole-body model of dyslipidemia, the QSP model of GD1 and a QSP model of cardiac electrophysiology. In these test cases, the pipeline proved to be accurate and robust, allowing the interpretation of the mechanistic differences underlying the phenotype classification.
APA, Harvard, Vancouver, ISO, and other styles
4

BARDINI, ROBERTA. "A diversity-aware computational framework for systems biology." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2752792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cong, Yang, and 丛阳. "Optimization models and computational methods for systems biology." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47752841.

Full text
Abstract:
Systems biology is a comprehensive quantitative analysis of the manner in which all the components of a biological system interact functionally along with time. Mathematical modeling and computational methods are indispensable in such kind of studies, especially for interpreting and predicting the complex interactions among all the components so as to obtain some desirable system properties. System dynamics, system robustness and control method are three crucial properties in systems biology. In this thesis, the above properties are studied in four different biological systems. The outbreak and spread of infectious diseases have been questioned and studied for years. The spread mechanism and prediction about the disease could enable scientists to evaluate isolation plans to have significant effects on a particular epidemic. A differential equation model is proposed to study the dynamics of HIV spread in a network of prisons. In prisons, screening and quarantining are both efficient control manners. An optimization model is proposed to study optimal strategies for the control of HIV spread in a prison system. A primordium (plural: primordia) is an organ or tissue in its earliest recognizable stage of development. Primordial development in plants is critical to the proper positioning and development of plant organs. An optimization model and two control mechanisms are proposed to study the dynamics and robustness of primordial systems. Probabilistic Boolean Networks (PBNs) are mathematical models for studying the switching behavior in genetic regulatory networks. An algorithm is proposed to identify singleton and small attractors in PBNs which correspond to cell types and cell states. The captured problem is NP-hard in general. Our algorithm is theoretically and computationally demonstrated to be much more efficient than the naive algorithm that examines all the possible states. The goal of studying the long-term behavior of a genetic regulatory network is to study the control strategies such that the system can obtain desired properties. A control method is proposed to study multiple external interventions meanwhile minimizing the control cost. Robustness is a paramount property for living organisms. The impact degree is a measure of robustness of a metabolic system against the deletion of single or multiple reaction(s). An algorithm is proposed to study the impact degree in Escherichia coli metabolic system. Moreover, approximation method based on Branching process is proposed for estimating the impact degree of metabolic networks. The effectiveness of our method is assured by testing with real-world Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Homo Sapiens metabolic systems.<br>published_or_final_version<br>Mathematics<br>Doctoral<br>Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
6

Ding, Jiarui. "Computational methods for systems biology data of cancer." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58164.

Full text
Abstract:
High-throughput genome sequencing and other techniques provide a cost-effective way to study cancer biology and seek precision treatment options. In this dissertation I address three challenges in cancer systems biology research: 1) predicting somatic mutations, 2) interpreting mutation functions, and 3) stratifying patients into biologically meaningful groups. Somatic single nucleotide variants are frequent therapeutically actionable mutations in cancer, e.g., the ‘hotspot’ mutations in known cancer driver genes such as EGFR, KRAS, and BRAF. However, only a small proportion of cancer patients harbour these known driver mutations. Therefore, there is a great need to systematically profile a cancer genome to identify all the somatic single nucleotide variants. I develop methods to discover these somatic mutations from cancer genomic sequencing data, taking into account the noise in high-throughput sequencing data and valuable validated genuine somatic mutations and non-somatic mutations. Of the somatic alterations acquired for each cancer patient, only a few mutations ‘drive’ the initialization and progression of cancer. To better understand the evolution of cancer, as well as to apply precision treatments, we need to assess the functions of these mutations to pinpoint the driver mutations. I address this challenge by predicting the mutations correlated with gene expression dysregulation. The method is based on hierarchical Bayes modelling of the influence of mutations on gene expression, and can predict the mutations that impact gene expression in individual patients. Although probably no two cancer genomes share exactly the same set of somatic mutations because of the stochastic nature of acquired mutations across the three billion base pairs, some cancer patients share common driver mutations or disrupted pathways. These patients may have similar prognoses and potentially benefit from the same kind of treatment options. I develop an efficient clustering algorithm to cluster high-throughput and high-dimensional bio- logical datasets, with the potential to put cancer patients into biologically meaningful groups for treatment selection.<br>Science, Faculty of<br>Computer Science, Department of<br>Graduate
APA, Harvard, Vancouver, ISO, and other styles
7

Uys, Lafras. "Computational systems biology of sucrose accumulation in sugarcane." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Camacho, Diogo Mayo. "In silico cell biology and biochemistry: a systems biology approach." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27960.

Full text
Abstract:
In the post-"omic" era the analysis of high-throughput data is regarded as one of the major challenges faced by researchers. One focus of this data analysis is uncovering biological network topologies and dynamics. It is believed that this kind of research will allow the development of new mathematical models of biological systems as well as aid in the improvement of already existing ones. The work that is presented in this dissertation addresses the problem of the analysis of highly complex data sets with the aim of developing a methodology that will enable the reconstruction of a biological network from time series data through an iterative process. The first part of this dissertation relates to the analysis of existing methodologies that aim at inferring network structures from experimental data. This spans the use of statistical tools such as correlations analysis (presented in Chapter 2) to more complex mathematical frameworks (presented in Chapter 3). A novel methodology that focuses on the inference of biological networks from time series data by least squares fitting will then be introduced. Using a set of carefully designed inference rules one can gain important information about the system which can aid in the inference process. The application of the method to a data set from the response of the yeast Saccharomyces cerevisiae to cumene hydroperoxide is explored in Chapter 5. The results show that this method can be used to generate a coarse-level mathematical model of the biological system at hand. Possible developments of this method are discussed in Chapter 6.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Small, Benjamin Gavin. "The chemical and computational biology of inflammation." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/the-chemical-and-computational-biology-of-inflammation(4de5c19c-e377-4783-acfb-ad168ad35d46).html.

Full text
Abstract:
Non-communicable diseases (NCD) such as cancer, heart disease and cerebrovascular injury are dependent on or aggravated by inflammation. Their prevention and treatment is arguably one of the greatest challenges to medicine in the 21st century. The pleiotropic, proinflammatory cytokine; interleukin-l beta (IL-l~) is a primary, causative messenger of inflammation. Lipopolysaccharide (LPS) induction ofIL-l~ expression via toll-like receptor 4 (TLR4) in myeloid cells is a robust experimental model of inflammation and is driven in large part via p38-MAPK and NF-KB signaling networks. The control of signaling networks involved in IL-l~ expression is distributed and highly complex, so to perturb intracellular networks effectively it is often necessary to modulate several steps simultaneously. However, the number of possible permutations for intervention leads to a combinatorial explosion in the experiments that would have to be performed in a complete analysis. We used a multi-objective evolutionary algorithm (EA) to optimise reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-l ~ expression. The EA converged on excellent solutions within 11 generations during which we studied just 550 combinations out of the potential search space of - 9 billion. The top five reagents with the greatest contribution to combinatorial effects throughout the EA were then optimised pair- wise with respect to their concentrations, using an adaptive, dose matrix search protocol. A p38a MAPK inhibitor (30 ± 10% inhibition alone) with either an inhibitor of IKB kinase (12 ± 9 % inhibition alone) or a chelator of poorly liganded iron (19 ± 8 % inhibition alone) yielded synergistic inhibition (59 ± 5 % and 59 ± 4 % respectively, n=7, p≥O.04 for both combinations, tested by one way ANOVA with Tukey's multiple test correction) of macrophage IL-l~ expression. Utilising the above data, in conjunction with the literature, an LPS-directed transcriptional map of IL-l ~ expression was constructed. Transcription factors (TF) targeted by the signaling networks coalesce at precise nucleotide binding elements within the IL-l~ regulatory DNA. Constitutive binding of PU.l and C/EBr-~ TF's are obligate for IL-l~ expression. The findings in this thesis suggest that PU.l and C/EBP-~ TF's form scaffolds facilitating dynamic control exerted by other TF's, as exemplified by c-Jun. Similarly, evidence is emerging that epigenetic factors, such as the hetero-euchromatin balance, are also important in the relative transcriptional efficacy in different cell types. Evolutionary searches provide a powerful and general approach to the discovery of novel combinations of pharmacological agents with potentially greater therapeutic indices than those of single drugs. Similarly, construction of signaling network maps aid the elucidation of pharmacological mechanism and are mandatory precursors to the development of dynamic models. The symbiosis of both approaches has provided further insight into the mechanisms responsible for IL-lβ expression, and reported here provide a - platform for further developments in understanding NCD's dependent on or aggravated by inflammation.
APA, Harvard, Vancouver, ISO, and other styles
10

Castillo, Andrea R. (Andrea Redwing). "Assessing computational methods and science policy in systems biology." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/51655.

Full text
Abstract:
Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2009.<br>Includes bibliographical references (p. 109-112).<br>In this thesis, I discuss the development of systems biology and issues in the progression of this science discipline. Traditional molecular biology has been driven by reductionism with the belief that breaking down a biological system into the fundamental biomolecular components will elucidate such phenomena. We have reached limitations with this approach due to the complex and dynamical nature of life and our inability to intuit biological behavior from a modular perspective [37]. Mathematical modeling has been integral to current system biology endeavors since detailed analysis would be invasive if performed on humans experimentally or in clinical trials [17]. The interspecies commonalities in systemic properties and molecular mechanisms suggests that certain behaviors transcend specie differentiation and therefore easily lend to generalizing from simpler organisms to more complex organisms such as humans [7, 17]. Current methodologies in mathematical modeling and analysis have been diverse and numerous, with no standardization to progress the discipline in a collaborative manner. Without collaboration during this formative period, successful development and application of systems biology for societal welfare may be at risk. Furthermore, such collaboration has to be standardized in a fundamental approach to discover generic principles, in the manner of preceding long-standing science disciplines. This study effectively implements and analyzes a mathematical model of a three-protein biochemical network, the Synechococcus elongatus circadian clock.<br>(cont.) I use mass action theory expressed in kronecker products to exploit the ability to apply numerical methods-including sensitivity analysis via boundary value formulation (BVP) and trapiezoidal integration rule-and experimental techniques-including partial reaction fitting and enzyme-driven activations-when mathematically modeling large-scale biochemical networks. Amidst other applicable methodologies, my approach is grounded in the law of mass action because it is based in experimental data and biomolecular mechanistic properties, yet provides predictive power in the complete delineation of the biological system dynamics for all future time points. The results of my research demonstrate the holistic approach that mass action method-ologies have in determining emergent properties of biological systems. I further stress the necessity to enforce collaboration and standardization in future policymaking, with reconsiderations on current stakeholder incentive to redirect academia and industry focus from new molecular entities to interests in holistic understanding of the complexities and dynamics of life entities. Such redirection away from reductionism could further progress basic and applied scientific research to embetter our circumstances through new treatments and preventive measures for health, and development of new strains and disease control in agriculture and ecology [13].<br>by Andrea R. Castillo.<br>S.M.in Technology and Policy
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography