Dissertations / Theses on the topic 'COMPUTER-GRAPHICS DEVICES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'COMPUTER-GRAPHICS DEVICES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pedraza, Vincent. "CATSY, computer aided teaching system : system overview, graphics and applications." Virtual Press, 1985. http://liblink.bsu.edu/uhtbin/catkey/416441.
Full textMorovič, Ján. "To develop a universal gamut mapping algorithm." Thesis, University of Derby, 1998. http://hdl.handle.net/10545/200029.
Full textBanerjee, Kutty S. "Remote Execution for 3D Graphics." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-052305-160204/.
Full textFranklin, Paula. "First aid when and where you need it, development of first aid self-care, patient education for web and mobile devices /." Online version of thesis, 2008. http://hdl.handle.net/1850/7903.
Full textPapaliakos, Vasilios. "Content repurposing of electrical diagrams for presentation in handheld devices." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FPapaliakos.pdf.
Full textThesis advisor(s): Neil C. Rowe, Gurminder Singh. Includes bibliographical references (p. 59-65). Also available online.
Wahlén, Conrad. "Global Illumination in Real-Time using Voxel Cone Tracing on Mobile Devices." Thesis, Linköpings universitet, Informationskodning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141881.
Full textLight, Brandon W. "Energy-efficient photon mapping." Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-051007-092224/.
Full textKeywords: mobile devices; photon mapping; global illumination; ray tracing; energy; mobile; computer graphics. Includes bibliographical references (leaves 66-68).
Ryan, David B. "Improving Brain-Computer Interface Performance: Giving the P300 Speller Some Color." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1328.
Full textVan, der Merwe Elmarie. "Young adults' association with Minspeak TM icons." Pretoria : [s.n.], 2000. http://upetd.up.ac.za/thesis/available/etd-06182008-123423.
Full textLohrmann, Peter J. "Energy-Efficient Interactive Ray Tracing of Static Scenes on Programmable Mobile GPUs." Digital WPI, 2007. https://digitalcommons.wpi.edu/etd-theses/60.
Full textVALERIANO, CAIO C. S. "Emprego de simulação computacional para avaliação de objetos simuladores impressos 3D para aplicação em dosimetria clínica." reponame:Repositório Institucional do IPEN, 2017. http://repositorio.ipen.br:8080/xmlui/handle/123456789/28015.
Full textMade available in DSpace on 2017-11-16T18:08:36Z (GMT). No. of bitstreams: 0
O propósito de um objeto simulador é representar a alteração do campo de radiação provocada pela absorção e espalhamento em um dado tecido ou órgão de interesse. Suas características geométricas e de composição devem estar próximos o máximo possível aos valores associados ao seu análogo natural. Estruturas anatômicas podem ser transformadas em objetos virtuais 3D por técnicas de imageamento médico (p. ex. Tomografia Computadorizada) e impressas por prototipagem rápida utilizando materiais como, por exemplo, o ácido poliláctico. Sua produção para pacientes específicos requer o preenchimento de requisitos como a acurácia geométrica com a anatomia do individuo e a equivalência ao tecido, de modo que se possa realizar medidas utilizáveis, e ser insensível aos efeitos da radiação. O objetivo desse trabalho foi avaliar o comportamento de materiais impressos 3D quando expostos a feixes de fótons diversos, com ênfase para a qualidade de radiotherapia (6 MV), visando a sua aplicação na dosimetria clínica. Para isso foram usados 30 dosímetros termoluminescentes de LiF:Mg,Ti. Foi analisada também a equivalência entre o PMMA e o PLA impresso para a resposta termoluminescente de 30 dosímetros de CaSO4:Dy. As irradiações com feixes de fótons com qualidade de radioterapia foram simuladas com o uso do sistema de planejamento Eclipse™, com o Anisotropic Analytical Algorithm e o Acuros® XB Advanced Dose Calculation algorithm. Além do uso do Eclipse™ e dos testes dosimétricos, foram realizadas simulações computacionais utilizando o código MCNP5. As simulações com o código MCNP5 foram realizadas para calcular o coeficiente de atenuação de placas impressas expostas a diversas qualidades de raios X de radiodiagnóstico e para desenvolver um modelo computacional de placas impressas 3D.
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
VENEZIANI, GLAUCO R. "Desenvolvimento de um objeto simulador "Canis Morphic" utilizando impressora 3D para aplicação em dosimetria na área de radioterapia veterinária." reponame:Repositório Institucional do IPEN, 2017. http://repositorio.ipen.br:8080/xmlui/handle/123456789/27967.
Full textMade available in DSpace on 2017-11-08T16:10:07Z (GMT). No. of bitstreams: 0
O aumento na longevidade humana fez surgir uma série de doenças com a idade; em contrapartida o avanço da medicina possibilitou o diagnóstico precoce e o tratamento de várias doenças antes incuráveis. Esse cenário atual estendese também aos animais domésticos (cães e gatos - PETs) que dobraram sua expectativa de vida nas últimas décadas, fato que os humanos demoraram séculos para alcançar. Do mesmo modo que os humanos, esse aumento na longevidade dos animais veio acompanhado de doenças relacionadas com a idade, entre elas o câncer. Uma das terapias utilizadas atualmente no tratamento do câncer é a radioterapia, técnica que utiliza a radiação ionizante para destruir as células tumorais (volume-alvo) com mínimo prejuízo aos tecidos circunvizinhos sadios (órgãos de risco). Essa técnica exige a realização periódica de testes de controle de qualidade, incluindo a dosimetria com a utilização de objetos simuladores equivalentes ao tecido, de modo a verificar a dose de radiação recebida pelo paciente em tratamento e compará-la posteriormente com a dose de radiação calculada pelo sistema de planejamento. A rápida expansão do mercado de impressoras 3D abriu caminho para uma revolução na área da saúde. Atualmente os objetos simuladores por impressão 3D estão sendo usados em planejamentos de Radioterapia para a localização espacial e mapeamento das curvas de isodose, realizando, assim, um planejamento mais personalizado para cada campo de radiação, além da confecção de implantes dentais, customização de próteses e confecção de bólus. Diante do exposto esse trabalho projetou e desenvolveu um objeto simulador chamado de \"Canis Morphic\" utilizando uma impressora 3D e materiais tecido-equivalentes para a realização dos testes de controle de qualidade e otimização das doses na área de Radioterapia em animais (cães). Os resultados obtidos demonstraram-se promissores na área de criação de simuladores por impressão 3D, com materiais de baixo custo, para aplicação no controle de qualidade em Radioterapia veterinária.
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Ansari, Anees. "Direct 3D Interaction Using A 2D Locator Device." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000046.
Full textKreiner, Barrett. "Issues of implementing X windows on a non-X windows device." Virtual Press, 1991. http://liblink.bsu.edu/uhtbin/catkey/770950.
Full textDepartment of Computer Science
Ryan, Timothy Lee. "Device independent perspective volume rendering using octrees." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09122009-040251/.
Full textTimmons, Alysha Marie. "World Wide Graphics." CSUSB ScholarWorks, 2001. https://scholarworks.lib.csusb.edu/etd-project/2089.
Full textArsov, Ivica. "A framework for distributed 3D graphics applications based on compression and streaming." Phd thesis, Institut National des Télécommunications, 2011. http://tel.archives-ouvertes.fr/tel-00711805.
Full textPrescher, Denise. "Taktile Interaktion auf flächigen Brailledisplays." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215972.
Full textBlind people normally use screen readers as well as single-lined refreshable Braille displays for accessing graphical user interfaces (GUIs). These technologies allow for a non-visual perception of textual content but not for an effective handling of visual illustrations. Novel two-dimensional tactile pin-matrix devices are an appropriate solution to interactively access tactual graphics. In this way, they can enrich the interaction possibilities of blind users in dealing with graphical applications. For instance, such devices enable the exploration of spatial arrangements and also combine output of Braille, graphics and semi-graphical elements. To make the high amount of simultaneously presented information perceivable and efficiently usable for blind users, an adequate preparation of content as well as adapted navigation and orientation mechanisms must be provided. In this thesis the BrailleDis devices of Metec AG, which have a tactile output area of 120 times 60 pins, were used. The goal was to investigate to what extent large pin-matrix devices enable blind people to use graphical user interfaces effectively and efficiently. Access to the GUI itself, reading text, and dealing with graphics are the main aspects of the application area of such devices. To facilitate the operation on a two-dimensional pin-matrix device a consistent organization of the content is helpful. Therefore, a novel tactile windowing system was implemented which divides the output area into multiple disjunctive regions and supports diverse tactile information visualizations. Moreover, a taxonomy was developed to systematize the design and evaluation of tactile user interfaces. Apart from interaction that can be described by input and output as well as hand movements, the taxonomy includes user intention in terms of interactive task primitives and technical specifications of the device. Based on the taxonomy, relevant aspects of tactile interaction were identified. These aspects were examined in multiple user studies with a total of 46 blind and visually impaired participants. The following research topics were considered during the user studies: 1. the effectiveness of diverse tactile view types (output), 2. user input and exploration, and 3. the efficiency of specific interaction techniques. As a result, practical recommendations for implementing user interfaces on two-dimensional pin-matrix devices were given. These recommendations include ergonomic issues of physical devices as well as design considerations for textual and graphical content as well as orientation aids. In summary, the user studies showed that two-dimensional pin-matrix devices enable blind people an effective and efficient access to graphical user interfaces. Diverse tactile information visualizations can support users to fulfill various tasks. In general, two-dimensional interaction requires the extension of conventional exploration and input strategies of users. The provision of novel interaction techniques for supporting orientation can help to increase efficiency even more
Cuervo, Eduardo. "Enhancing Mobile Devices through Code Offload." Diss., 2012. http://hdl.handle.net/10161/5768.
Full textAdvances in mobile hardware and operating systems have made mobile a first-class development platform. Activities such as web browsing, casual game play, media playback, and document reading are now as common on mobile devices as on full-sized desktop systems. However, developers are still constrained by the inherent resource limitations of mobile devices. Unlike desktop systems, mobile devices must sacrifice performance to accomodate smaller form factors and battery-backed operation. Opportunistic offloading of computation from a mobile device to remote server infrastructure (i.e., "code offload") offers a promising way to overcome these constraints and to expand the set of applications
(i.e., "apps") that can run on devices.
Deciding to offload requires a careful consideration of the costs and benefits of a range of possible program partitions. This cost-benefit analysis depends on external factors, such as network conditions and the resources availability, as well as internal app properties, such as component dependencies, data representations, and code complexity. Thus, benefiting from offload requires some assistance from developers, but requiring developers to adopt arcane or unnatural programming models will hinder adoption of regardless of the potential benefits.
In this dissertation we characterize two frameworks that reduce the amount of developer effort required to improve the performance of mobile apps through code offload. The first, MAUI, is designed for computationally intensive general-purpose apps such as speech
and facial recognition. The second, Kahawai, is designed for graphics-intensive apps like fast-action video games.
MAUI continuously monitors the device, network, and app, and uses its measurements to compute an energy-efficient program partition. MAUI reduces the burden on developers by taking advantage of core features of the managed code environments common to mobile
platforms: code portability, serialization, reflection, and type safety. These features allows MAUI to automatically instrument and potentially offload methods that the developer has tagged as suitable for offload. MAUI is particularly effective on applications composed by operations whose computational cost is large compared to the transfer cost of their input parameters and their output results.
Kahawai is designed for graphics-intensive apps such as console-style games and takes advantage of two features of today's mobile gaming platforms: capable mobile GPUs and reusable game engines. Even though today's mobile devices cannot duplicate the sophisticated graphical detail provided by gaming consoles and high-end desktop GPUs, devices have seen rapid improvements in their GPU processing capabilities. Kahawai leverages a device's GPU to provide collaborative rendering. Collaborative rendering relies on a mobile GPU to generate low-fidelity output, which when combined with server-side GPU output allows a mobile device to display a high-fidelity result. The benefits of collaborative rendering are substantial: mobile clients can experience high-quality graphical output using relatively little bandwidth. Fortunately, because most modern games are built on top of reusable game engines, developers only have to identify the sources of non-determinism
in the game logic to take advantage collaborative rendering.
Together, MAUI and Kahawai demonstrate that code offload can provide substantial benefits for mobile apps without overburdening app developers.
Dissertation
Pandit, Prasanna Vasant. "Cooperative Execution of Opencl Programs on Multiple Heterogeneous Devices." Thesis, 2013. http://etd.iisc.ernet.in/2005/3468.
Full textVan, der Merwe Elmarie. "Young adults' association with MinspeakTM icons." Diss., 2000. http://hdl.handle.net/2263/25610.
Full textDissertation (MA (AAC))--University of Pretoria, 2008.
Centre for Augmentative and Alternative Communication (CAAC)
unrestricted
(8797649), Syed Faaiz Hussain. "A COMPARISON OF 3D SHAPE RECOGNITION IN COMPUTER AIDED DESIGN BETWEEN VIRTUAL REALITY AND CONVENTIONAL TWO DIMENSIONAL DISPLAYS." Thesis, 2020.
Find full textThe recent development of Virtual Reality technology, researchers are looking more into changing the way Virtual Reality is used in our daily lives in order to increase our productivity. One such application is the mapping of 3D spatial graphics in Computer Aided Design engineering where practitioners have been historically working on 3D models in a two dimensional environment. Researchers in Computer Graphics have proposed Virtual Reality as a more effective medium for CAD packages. This thesis carries out a user study to test whether or not 3D VR environments are more effective in relaying information to the users as compared to two dimensional displays such as computer screens by conducting a study to determine how users navigate and interact with complex CAD objects in the two different environments. The two environments make use of stereoscopic vision and monoscopic vision in order to compare the efficiency with which volunteers are able to notice subtle differences in objects. The motivation for this study stems from the fact that CAD in VR is largely an underdeveloped topic and the result of such a study could form a baseline and advocate for further research and development in this domain. The research question being addressed is “Does CAD in a three-dimensional Virtual Reality Environment(stereoscopic) allow for better understanding of shapes of complex assemblies as compared to CAD on two-dimensional (monoscopic) computer screens?” The findings of this study suggest that rather than just the display technique the kind of movements which objects undergo also contributes to the way users perceive the objects in 3D vs 2D spaces and uncover a set of directions which would be recommended for similar studies in the future.
Price, Mark. "A Haptic Surface Robot Interface for Large-Format Touchscreen Displays." 2016. https://scholarworks.umass.edu/masters_theses_2/371.
Full textFung, Richard Hai-Ping. "Kinematic Templates: Guiding Cursor Movement in End-User Drawing Tools." Thesis, 2009. http://hdl.handle.net/10012/4606.
Full text(8803076), Jordan M. McGraw. "Implementation and Analysis of Co-Located Virtual Reality for Scientific Data Visualization." Thesis, 2020.
Find full text