Dissertations / Theses on the topic 'Computer Optimization of Parameters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Computer Optimization of Parameters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Naber, John F. "The optimization of SPICE modeling parameters utilizing the Taguchi methodology." Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/38542.
Full textPh. D.
Pethe, Shirish A. "Optimization of process parameters for reduced thickness CIGSeS thin film solar cells." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4623.
Full textID: 030423396; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references (p. 108-116).
Ph.D.
Doctorate
Department of Electrical Engineering and Computer Science
Engineering and Computer Science
Panis, Renato P. "Robust parameter optimization strategies in computer simulation experiments." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-164719/.
Full textLavesson, Niklas. "Evaluation of classifier performance and the impact of learning algorithm parameters." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4578.
Full textArgyn, Aidar. "Material And Heat Balance Calculations Of Eti-bakir Plant By Computer." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609734/index.pdf.
Full textKaul, Ashwani. "Optimization of Process Parameters for Faster Deposition of CuIn1-xGaxS2 and CuIn1-xGaxSe2-ySy Thin Film Solar Cells." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5336.
Full textPh.D.
Doctorate
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
Lee, Sang Heon. "Efficient design and optimization of robust parameter experiments." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/24328.
Full textChen, Zhaozhong. "Visual-Inertial SLAM Extrinsic Parameter Calibration Based on Bayesian Optimization." Thesis, University of Colorado at Boulder, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10789260.
Full textVI-SLAM (Visual-Inertial Simultaneous Localization and Mapping) is a popular way for robotics navigation and tracking. With the help of sensor fusion from IMU and camera, VI-SLAM can give a more accurate solution for navigation. One important problem needs to be solved in VI-SLAM is that we need to know accurate relative position between camera and IMU, we call it the extrinsic parameter. However, our measurement of the rotation and translation between IMU and camera is noisy. If the measurement is slightly o?, the result of SLAM system will be much more away from the ground truth after a long run. Optimization is necessary. This paper uses a global optimization method called Bayesian Optimization to optimize the relative pose between IMU and camera based on the sliding window residual output from VISLAM. The advantage of using Bayesian Optimization is that we can get an accurate pose estimation between IMU and camera from a large searching range. Whats more, thanks to the Gaussian Process or T process of Bayesian Optimization, we can get a result with a known uncertainty, which cannot be done by many optimization solutions.
Lakkimsetti, Praveen Kumar. "A framework for automatic optimization of MapReduce programs based on job parameter configurations." Kansas State University, 2011. http://hdl.handle.net/2097/12011.
Full textDepartment of Computing and Information Sciences
Mitchell L. Neilsen
Recently, cost-effective and timely processing of large datasets has been playing an important role in the success of many enterprises and the scientific computing community. Two promising trends ensure that applications will be able to deal with ever increasing data volumes: first, the emergence of cloud computing, which provides transparent access to a large number of processing, storage and networking resources; and second, the development of the MapReduce programming model, which provides a high-level abstraction for data-intensive computing. MapReduce has been widely used for large-scale data analysis in the Cloud [5]. The system is well recognized for its elastic scalability and fine-grained fault tolerance. However, even to run a single program in a MapReduce framework, a number of tuning parameters have to be set by users or system administrators to increase the efficiency of the program. Users often run into performance problems because they are unaware of how to set these parameters, or because they don't even know that these parameters exist. With MapReduce being a relatively new technology, it is not easy to find qualified administrators [4]. The major objective of this project is to provide a framework that optimizes MapReduce programs that run on large datasets. This is done by executing the MapReduce program on a part of the dataset using stored parameter combinations and setting the program with the most efficient combination and this modified program can be executed over the different datasets. We know that many MapReduce programs are used over and over again in applications like daily weather analysis, log analysis, daily report generation etc. So, once the parameter combination is set, it can be used on a number of data sets efficiently. This feature can go a long way towards improving the productivity of users who lack the skills to optimize programs themselves due to lack of familiarity with MapReduce or with the data being processed.
Gembler, Felix [Verfasser]. "Parameter Optimization for Brain-Computer Interfaces based on Visual Evoked Potentials / Felix Gembler." Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1222672227/34.
Full textSanders, Samantha Corinne. "Informing the use of Hyper-Parameter Optimization Through Meta-Learning." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6392.
Full textBusuioc, Dan. "Circuit Model Parameter Extraction and Optimization for Microwave Filters." Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/804.
Full textEngström, Messén Matilda, and Elvira Moser. "Pre-planning of Individualized Ankle Implants Based on Computed Tomography - Automated Segmentation and Optimization of Acquisition Parameters." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297674.
Full textFotledens komplexa anatomi ger upphov till en ideal balans mellan rörlighetoch stabilitet, vilket i sin tur möjliggör gång. Fotledens anatomi förändras när en skada uppstår, vilket kan påverka rörligheten och stabiliteten samt orsaka intensiv smärta. En skada i talusbenets ledbrosk eller i det subkondrala benet på talusdomen benämns som en Osteochondral Lesion of the Talus(OLT). En metod att behandla OLTs är att ersätta den del brosk eller bensom är skadat med ett implantat. Episurf Medical utvecklar och producerar individanpassade implantat (Episealers) och tillhörande nödvändiga kirurgiska instrument genom att, bland annat, skapa en motsvarande 3D-modell av fotleden (talus-, tibia- och fibula-benen) baserat på en skanning med antingen magnetisk resonanstomografi (MRI) eller datortomografi (CT). I dagsläget kan de 3D-modeller som baseras på MRI-skanningar skapas automatiskt, medan de 3D-modeller som baseras på CT-skanningar måste skapas manuellt - det senare ofta tidskrävande. I detta examensarbete har ett U-net-baserat Convolutional Neuralt Nätverk (CNN) tränats för att automatiskt kunna segmentera 3D-modeller av fotleder baserat på CT-bilder. Vidare har de speciferade parametrarna i Episurfs CT-protokoll för fotleden som skickas ut till klinikerna utvärderats, detta för att optimera bildkvaliteten på de CT-bilder som används för implantatspositionering och design. Det tränade nätverkets prestanda utvärderades med hjälp av Dicekoefficienten (DC) med en fem-delad korsvalidering. Nätverket åstadkom engenomsnittlig DC på 0.978±0.009 för talusbenet, 0.779±0.174 för tibiabenet, och 0.938±0.091 för fibulabenet. Värdena för talus och fibula var adekvata och jämförbara med resultaten presenterade i tidigare forskning. På grund av bakgrundsartefakter i bilderna blev den DC som nätverket åstadkom för sin segmentering av tibiabenet lägre än tidigiare forskningsresultat. För att korrigera för bakgrundsartefakterna kommer ett brusreduceringsfilter implementeras
Granados, Murillo Adrian. "A genetic algorithm for network transport protocol parameter optimization." [Pensacola, Fla.] : University of West Florida, 2009. http://purl.fcla.edu/fcla/etd/WFE0000176.
Full textSubmitted to the Dept. of Computer Science. Title from title page of source document. Document formatted into pages; contains 66 pages. Includes bibliographical references.
Chakradhar, Vineel A. "Evaluating parameter optimization in locality-sensitive hashing for high-dimensional physiological waveforms." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120650.
Full textCataloged from PDF version of thesis. "The pagination listed in the Table of Contents does not correlate with actual page numbering"--Disclaimer Notice page.
Includes bibliographical references (pages 71-72).
We develop and evaluate a theoretical architecture to inform parameter choice for locality-sensitive hashing methods used towards identifying similarity in physiological waveform time-series data. The goal is to achieve increased probability of successful patient outcomes in emergency rooms by tackling the problem of efficient information retrieval within massive, high-dimensional medical datasets. To solve this problem, we explore the relationship between a number of data inputs and elements of locality-sensitive hashing schemes in order to drive optimal choice of parameters throughout the pipeline from raw data to locality-sensitive hashing output. We achieve significant increases in retrieval times while generally maintaining the prediction accuracy achieved by naive retrieval methodologies.
by Vineel A. Chakradhar.
M. Eng.
Jonah, Olutola. "Optimization of Wireless Power Transfer via Magnetic Resonance in Different Media." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/876.
Full textReiling, Anthony J. "Convolutional Neural Network Optimization Using Genetic Algorithms." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1512662981172387.
Full textYin, Emmy, and Klas Wijk. "Bayesian Parameter Tuning of the Ant Colony Optimization Algorithm : Applied to the Asymmetric Traveling Salesman Problem." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302801.
Full textBra val av parametrar är avgörande för hur väl meta-heuristiker lyckas approximera problemen de tillämpas på. Detta kan emellertid vara svårt eftersom det inte finns några generella riktlinjer för hur de ska väljas. Det gör att parametrar ofta ställs in manuellt, vilket inte alltid är genomförbart och dessutom kan leda till resultat långt från det optimala. Att ställa in hyperparametrar är dock ett välutforskat problem inom maskininlärning. Denna studie undersöker därför möjligheten att använda algoritmer från maskininlärningsområdet för att ställa in parametrarna på meta-heurstiker. Vi använde Bayesiansk optimering, en modern optimeringsmetod för optimering av okända underliggande funktioner, på meta-heuristiken myrkolonioptimering. Bayesiansk optimering med förvärvsfunktionerna förväntad förbättring, sannolikhet för förbättring och undre förtroendegräns, samt alla tre kombinerade med softmax, utvärderades och jämfördes med slumpmässig sökning som en optimeringsmetod. Myrkolonioptimering vars parametrar ställts in med de olika metoderna tillämpades på fyra instanser av det asymmetriska handlesresandeproblemet. Resultaten visade på att Bayesiansk optimering leder till bättre approximeringar, som kräver signifikant färre iterationer att hitta jämfört med slumpmässig sökning. Detta indikerar att Bayesiansk optimering är att föredra framför slumpmässig sökning, och öppnar för fortsatt forskning av Bayesiansk optimering av metaheuristiker.
DiMascio, Michelle Augustine. "Convolutional Neural Network Optimization for Homography Estimation." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1544214038882564.
Full textHogan, Erik A. "An efficient method for the optimization of viscoplastic constitutive model constants." Honors in the Major Thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1274.
Full textBachelors
Engineering and Computer Science
Aerospace Engineering
Morcos, Karim M. "Genetic network parameter estimation using single and multi-objective particle swarm optimization." Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/9207.
Full textDepartment of Electrical and Computer Engineering
Sanjoy Das
Stephen M. Welch
Multi-objective optimization problems deal with finding a set of candidate optimal solutions to be presented to the decision maker. In industry, this could be the problem of finding alternative car designs given the usually conflicting objectives of performance, safety, environmental friendliness, ease of maintenance, price among others. Despite the significance of this problem, most of the non-evolutionary algorithms which are widely used cannot find a set of diverse and nearly optimal solutions due to the huge size of the search space. At the same time, the solution set produced by most of the currently used evolutionary algorithms lacks diversity. The present study investigates a new optimization method to solve multi-objective problems based on the widely used swarm-intelligence approach, Particle Swarm Optimization (PSO). Compared to other approaches, the proposed algorithm converges relatively fast while maintaining a diverse set of solutions. The investigated algorithm, Partially Informed Fuzzy-Dominance (PIFD) based PSO uses a dynamic network topology and fuzzy dominance to guide the swarm of dominated solutions. The proposed algorithm in this study has been tested on four benchmark problems and other real-world applications to ensure proper functionality and assess overall performance. The multi-objective gene regulatory network (GRN) problem entails the minimization of the coefficient of variation of modified photothermal units (MPTUs) across multiple sites along with the total sum of similarity background between ecotypes. The results throughout the current research study show that the investigated algorithm attains outstanding performance regarding optimization aspects, and exhibits rapid convergence and diversity.
Lundberg, Martin. "Automatic parameter tuning in localization algorithms." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158132.
Full textBergkvist, Markus, and Tobias Olandersson. "Machine learning in simulated RoboCup." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3827.
Full textCunningham, James. "Efficient, Parameter-Free Online Clustering." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1606762403895603.
Full textAribi, Noureddine. "Contribution à l'élicitation des paramètres en optimisation multicritère." Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01065629.
Full textNilsson, Mikael. "Parameter Tuning Experiments of Population-based Algorithms." Thesis, Mittuniversitetet, Institutionen för informationsteknologi och medier, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-13836.
Full textTaylor, Graham. "Reinforcement Learning for Parameter Control of Image-Based Applications." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/832.
Full textMarkgren, Hanna. "Fatigue analysis - system parameters optimization." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151755.
Full textSamek, Michal. "Optimization of Aircraft Tracker Parameters." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234937.
Full textJohansson, Christopher. "Optimization of wall parameters using CFD." Thesis, KTH, Aerodynamik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159875.
Full textJain, Ruchi V. "Optimization of energy parameters in buildings." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40445.
Full textIncludes bibliographical references (p. 34).
When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The conscious design of building parameters could decrease or completely eliminate the need for Heating, Ventilation and Air Conditioning systems, and thus, optimizing building parameters could help conserve a great amount of energy. This work focuses on two buildings - a passive solar house and an apartment in Beijing. The Beijing apartment is used to study natural ventilation in a space. Both buildings are modeled using EnergyPlus, and analyzed using VBA in Excel. The Genetic Algorithm Optimization Toolbox (GAOT) is used to optimize the parameters for the solar house. The program was run for 150 generations, with there being 20 individuals in each population. The optimized parameters for the solar house resulted in a mean internal temperature of 20.1 C, 7 C lower than that for randomly chosen parameters. The extreme temperatures in both cases were also markedly different, with the optimized parameters providing a more comfortable atmosphere in the house.
(cont.) The apartment parameters were not optimized due to the inherent difficulty in quantifying an objective function. Through the simulation however, it was determined that each window has mass inflow and outflow occurring at the same time. In order to check that mass was conserved through the flow of air in and out of the apartment, the net flow in or out through each window had to be considered. This comparison did show the conservation of mass, which provided confidence in the EnergyPlus model used.
by Ruchi V. Jain.
S.B.
Weitzel, T. Timothy. "Optimization of sweet sorghum processing parameters." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/80180.
Full textMaster of Science
Titova, Polina. "Optimization of statistical parameters of Eberhard inequality." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-39641.
Full textGustavsson, Jonas. "Automated Performance Optimization of GSM/EDGE Network Parameters." Thesis, Linköping University, Linköping University, Communication Systems, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52565.
Full textThe GSM network technology has been developed and improved during several years which have led to an increased complexity. The complexity results in more network parameters and together with different scenarios and situations they form a complex set of configurations. The definition of the network parameters is generally a manual process using static values during test execution. This practice can be costly, difficult and laborious and as the network complexity continues to increase, this problem will continue to grow.This thesis presents an implementation of an automated performance optimization algorithm that utilizes genetic algorithms for optimizing the network parameters. The implementation has been used for proving that the concept of automated optimization is working and most of the work has been carried out in order to use it in practice. The implementation has been applied to the Link Quality Control algorithm and the Improved ACK/NACK feature, which is an apart of GSM EDGE Evolution.
GSM-nätsteknologin har utvecklats och förbättrats under lång tid, vilket har lett till en ökad komplexitet. Denna ökade komplexitet har resulterat i fler nätverksparameterar, tillstånd och standarder. Tillsammans utgör de en komplex uppsättning av olika konfigurationer. Dessa nätverksparameterar har hittills huvudsakligen bestämts med hjälp av en manuell optimeringsprocess. Detta tillvägagångssätt är både dyrt, svårt och tidskrävande och allt eftersom komplexiteten av GSM-näten ökar kommer problemet att bli större.Detta examensarbete presenterar en implementering av en algoritm för automatiserad optimering av prestanda som huvudsakligen använder sig av genetiska algoritmer för att optimera värdet av nätverksparametrarna. Implementeringen har använts för att påvisa att konceptet med en automatiserad optimering fungerar och det mesta av arbetet har utförts för att kunna använda detta i praktiken. Implementeringen har tillämpats på Link Quality Control-algoritmen och Improved ACK/NACK-funktionaliteten, vilket är en del av GSM EDGE Evolution.
Fu, Stefan Xueyan. "Finding Optimal Jetting Waveform Parameters with Bayesian Optimization." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231374.
Full textJet printing är en metod för att applicera lodpasta eller andra elektroniska material på kretskort inom ytmontering inom elektronikproduktion. Lodpastan skjuts ut på kretskorten med hjälp av en pistong som drivs av piezoelektrisk enhet. Kvaliteten på det jettade resultatet kan påverkas av en mängd faktorer, till exempel vågformen av signalen som används för att aktivera piezoenheten. I teorin är vilken vågform som helst möjlig, men i praktiken används en vågform som definieras av sju parametrar. Att hitta optimala värden på dessa parametrar är ett optimeringsproblem som inte kan lösas med metoder baserade på derivata, då optimeringens målfunktion är en s.k. svart låda (black-box function) som bara är tillgänglig via brusiga och tidskrävande evalueringar. Den nuvarande metoden för optimering av parametrarna är en modifierad gridsökning för de två viktigaste parametrarna där de kvarvarande fem parametrarna är fixerade. Bayesiansk optimering är en heuristisk modell-baserad sökmetod för dataeffektiv optimering av brusiga funktioner för vilka derivator inte kan beräknas. En implementation av Bayesiansk optimering anpassades för optimering av vågformsparametrar och användes för att optimera en mängd kombinationer av parametrarna. Alla resultaten gav liknande värden för de två kända parametrarna, med skillnader inom osäkerheten från mätbrus. Resultaten för de övriga fem parametrarna var motstridiga, men en närmare granskning av hyperparametrar för modellen visade att detta berodde på att de fem parametrarna bara har en minimal påverkan på det jettade resultatet. Därför kan de motstridiga resultaten förklaras helt som skillnader på grund av mätbrus. Baserat på resultaten verkar Bayesiansk optimering vara en passande och effektiv metod för optimering av vågformsparametrar. Slutligen föreslås några möjligheter för vidare utveckling av metoden.
Van, Eeden Madel. "Determining appropriate parameters for optimization of biocontrol success." Thesis, University of Pretoria, 2013. http://hdl.handle.net/2263/30784.
Full textThesis (PhD)--University of Pretoria, 2013.
Microbiology and Plant Pathology
Unrestricted
Andersson, Axel. "Optimized Tuning of Parameters for HVDC Dynamic Performance Studies." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-193702.
Full textEren, Tuna. "Real-time-optimization Of Drilling Parameters During Drilling Operations." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611558/index.pdf.
Full textMonder, Dayadeep S. "Real-Time Optimization of gasoline blending with uncertain parameters." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ60472.pdf.
Full textPowell, B. Michael. "Surface finish optimization by modification of milling cutter parameters." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62268.pdf.
Full textNyström, Birgitha. "Natural fiber composites : optimization of microstructure and processing parameters /." Luleå : Luleå tekniska universitet/Tillämpad fysik, maskin- och materialteknik/Polymerteknik, 2007. http://epubl.ltu.se/1402-1757/2007/31/.
Full textTulloss, Jr Robert Stuart. "Optimization of Geometric Parameters for a Deployable Space Structure." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104873.
Full textMaster of Science
Spacecraft are launched into space using launch vehicles. There is limited room inside the launch vehicle for the spacecraft, but the spacecraft often needs large components like solar panels, antennas, and booms to complete the mission. These components must be designed in a way that allows them to be stowed in a smaller space. This can be accomplished by designing a system that can change the configuration of the component once the spacecraft is in orbit. This is referred to as a deployable structure, and the objective of this research is to create an optimization method for designing this type of structure. This is challenging because both the stowed and deployed configurations must be considered during the optimization. HEEDS, a commercial optimization software, and ABAQUS, a commercial structural analysis software, are used to evaluate and optimize the structure in a single simulation. The optimization objectives, design variables, and constraints are chosen to fit the mission requirements of the structure. The structure examined in this research is a composite tube with a compressible cross-section wrapped around a cylinder. As the tube is wrapped, it flattens, reducing the bending stiffness so the tube can be wrapped without damaging the material. The variables controlling cross-section shape and the thickness of the composite material layers will be altered during the optimization. The maximum strain energy stored in the wrapped tube, the volume of the tube, and the minimum weight of the tube are the objectives for the optimization. The strain energy is maximized to get the stiffest possible tube when it is unwrapped to ensure there is enough stored energy to facilitate the full deployment and to satisfy the minimum natural frequency constraint. The weight and volume of the tube are minimized because reducing weight and volume is important for any spacecraft structure. Constraints are placed on the design variables and objectives and the Hashin damage criteria are used to ensure wrapping does not cause material failure. The Hashin damage criteria use the strength of the material and the stresses on the material to determine if it is likely to fail. Three optimization runs with different starting points are completed for both the SHERPA and genetic algorithm optimization methods. The results are compared to determine which optimization method performs best and how the different starting points affect the final results. After the optimized design is found, the full wrapping and deployment simulation is completed to analyze the behavior of the optimized design.
Boggess, Chadwick D. "Optimization of Growth Parameters for Algal Regrowth Potential Experiments." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1234.
Full textGolovidov, Oleg. "Variable-Complexity Approximations for Aerodynamic Parameters in Hsct Optimization." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36789.
Full textMaster of Science
Chen, Chien-Chan, and 陳建成. "The Parameters Optimization for Milling Operations via Computer Experiment." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/qejm24.
Full text逢甲大學
工業工程學所
91
It is known that cutting time and tool life affects the cost and quality of a manufactured product. Most of the literatures on cutting time or tool life problems have focused on developing exact methods to minimize the manufacturing cost, or maximize the quality value. The inherent assumptions under these approaches are that the cutting time and the tool life equations are known before a problem being analyzed. However, most of time these equations are unknown during the early stage of process planning. In addition, previous works mainly consider the cutting time and tool life aspects as a separate issue for problem formulation. That usually can not ensure the found cutting parameter values are the truly optimal values. With the recent development in CAM (Computer-Aided Manufacturing) software, manufacturing engineers can proceed with the process planning problems, without knowing functional relationship between process input and process output in advance. In this study, the simulation is employed using CATIA V5R8 software to obtain the simulated outputs. The simulated outputs are analyzed by Response Surface Methodology (RSM) to have cutting time and tool life equations. Then, these two equations are placed in one cost function simultaneously which should be minimized in presented problem. Finally, with this function as an objective in problem formulation, the optimal cutting parameter values of milling operations can be found by optimization technique such as mathematical programming easily.
Wang, Yi-Chi, and 王逸琦. "The Ergonomic Parameters Optimization for Product Design via Computer Musculoskeletal Modeling." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/80492275225005472187.
Full text逢甲大學
工業工程與系統管理學系
104
This research is to determine the optimum parameter values for an ergonomic product designs via computer musculoskeletal modeling and multi-objective optimization. The muscle activities measured from AnyBody (AB) Modeling System for multiple muscle applications are used to develop the functional relationships and build ANOVA via the statistical method, such as Response Surface Methodology (RSM). These functional relationships are considered as objective functions which will be further formulated as a compromise multi-objective optimization problem. A bike-frame design problem in designing the length of stem, head tube, fork, top tube, seat post, seat tube, and pedal crank is chosen as an example to demonstrate the proposed method. Because the combination of computer musculoskeletal modeling, statistical method, and optimization technique are realized in proposed approach, the ergonomic product designs for safety and health can be achieved in the stage of product design.
Yu, Hsiu-Ling, and 游繡綾. "Parameter optimization for heat conduction structure in industrial computer." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/9mur28.
Full text國立臺北科技大學
製造科技研究所
106
In dedicated embedded computers, the operating temperature range from low to very high temperatures to fulfil special requirements. This trend makes an electronic device generate more heat. Heat dissipation appears to be a vital factor. This research applies a multi-heat pipe structure concept to design the thermal module in a limited space. The design makes the cooling medium have more freedom on mobility, and improves the heat pipe thermal dissipation. The Taguchi method was used to investigate the optimal design parameters of heat conduction structure. The four control factors selected are heat dissipation module main structure, CPU heat conduction material, wedge lock heat conduction material, and the back cover material. The quality objective considered is the thermal resistance of the wedge lock calculated from the experimental data. Take the Smaller the Better (STB) to be the quality evaluation method. In this case study, experimental results show the best parameter combination is heat dissipation module main structure is Aluminium with pipe no soldering、CPU heat conduction material is thermal grease、wedge lock doesn’t need the heat conduction material and back cover material is galvanized steel. . In comparison with the existing heat dissipation module, the CPU-to-environment total thermal resistance from 2.215°C/W down to 1.49°C/W. Reduction rate is around 67%.
Liao, Yu-Pei, and 廖渝珮. "Robust parameter and tolerance design for maximized NB CPU life via computer experiment and statistical optimization." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/62300934769723670950.
Full text"Parameter optimization and learning for 3D object reconstruction from line drawings." 2010. http://library.cuhk.edu.hk/record=b5894303.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (p. 61).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- 3D Reconstruction from 2D Line Drawings and its Applications --- p.1
Chapter 1.2 --- Algorithmic Development of 3D Reconstruction from 2D Line Drawings --- p.3
Chapter 1.2.1 --- Line Labeling and Realization Problem --- p.4
Chapter 1.2.2 --- 3D Reconstruction from Multiple Line Drawings --- p.5
Chapter 1.2.3 --- 3D Reconstruction from a Single Line Drawing --- p.6
Chapter 1.3 --- Research Problems and Our Contributions --- p.12
Chapter 2 --- Adaptive Parameter Setting --- p.15
Chapter 2.1 --- Regularities in Optimization-Based 3D Reconstruction --- p.15
Chapter 2.1.1 --- Face Planarity --- p.18
Chapter 2.1.2 --- Line Parallelism --- p.19
Chapter 2.1.3 --- Line Verticality --- p.19
Chapter 2.1.4 --- Isometry --- p.19
Chapter 2.1.5 --- Corner Orthogonality --- p.20
Chapter 2.1.6 --- Skewed Facial Orthogonality --- p.21
Chapter 2.1.7 --- Skewed Facial Symmetry --- p.22
Chapter 2.1.8 --- Line Orthogonality --- p.24
Chapter 2.1.9 --- Minimum Standard Deviation of Angles --- p.24
Chapter 2.1.10 --- Face Perpendicularity --- p.24
Chapter 2.1.11 --- Line Collinearity --- p.25
Chapter 2.1.12 --- Whole Symmetry --- p.25
Chapter 2.2 --- Adaptive Parameter Setting in the Objective Function --- p.26
Chapter 2.2.1 --- Hill-Climbing Optimization Technique --- p.28
Chapter 2.2.2 --- Adaptive Weight Setting and its Explanations --- p.29
Chapter 3 --- Parameter Learning --- p.33
Chapter 3.1 --- Construction of A Large 3D Object Database --- p.33
Chapter 3.2 --- Training Dataset Generation --- p.34
Chapter 3.3 --- Parameter Learning Framework --- p.37
Chapter 3.3.1 --- Evolutionary Algorithms --- p.38
Chapter 3.3.2 --- Reconstruction Error Calculation --- p.39
Chapter 3.3.3 --- Parameter Learning Algorithm --- p.41
Chapter 4 --- Experimental Results --- p.45
Chapter 4.1 --- Adaptive Parameter Setting --- p.45
Chapter 4.1.1 --- Use Manually-Set Weights --- p.45
Chapter 4.1.2 --- Learn the Best Weights with Different Strategies --- p.48
Chapter 4.2 --- Evolutionary-Algorithm-Based Parameter Learning --- p.49
Chapter 5 --- Conclusions and Future Work --- p.53
Bibliography --- p.55
Lundgren, Martin. "Optimizing a Water Simulation based on Wavefront Parameter Optimization." Thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14788.
Full textDICE, ett svenskt spelföretag, ville ha en mer realistisk vattensimulering. Det flesta storskalna vattensimuleringar som används i spel idag är baserade på havsvattensimuleringstekniker. Dessa tekniker fungerar inte lika bra i andra scenarier, som t.ex. kustlinjer. För att kunna få en mer realistisk simulation, skapades en ny simulation baserad på vattensimuleringstekniken Wavefront Parameter Interpolation. Denna simuleringsteknik involverar en lång förprocess som ger havsvattensimuleringar möjligheten att interagera med terräng. Denna uppsats handlar om att optimera den nuvarande implementationen av DICEs vattensimulering. Målet är att få bättre grafikprestanda under körtid. Efter att olika optimiseringar hade implementerats, blev programmet 4-6x gånger snabbare. Prestandan utvärderades på spelkonsolen PlayStation 4.