Academic literature on the topic 'Computer vision Human mechanics Principal components analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Computer vision Human mechanics Principal components analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Computer vision Human mechanics Principal components analysis"

1

Watada, Junzo, Le Yu, Munenori Shibata, and Marzuki Khalid. "An Affective Approach to Developing Marketing Strategies of Mineral Water." Journal of Advanced Computational Intelligence and Intelligent Informatics 16, no. 4 (June 20, 2012): 514–20. http://dx.doi.org/10.20965/jaciii.2012.p0514.

Full text
Abstract:
This study is concerned with the development of marketing strategies for mineral water based on consumers’ taste preferences, by analyzing the taste components of mineral water. In this study, we used a twodimensional analysis to classify taste data. We conducted a correlation analysis to identify the characteristics of taste data. We applied a combination of principal component analysis and self-organizing map to classify mineral water tastes. Based on this evaluation, we identified some marketing strategies in the conclusion. According to this study, the taste of mineral water is not determined by the origin and is not influenced by the hardness of the water.
APA, Harvard, Vancouver, ISO, and other styles
2

Fatkhannudin, Muhammad Noor, and Adhi Prahara. "Gender Classification using Fisherface and Support Vector Machine on Face Image." Signal and Image Processing Letters 1, no. 1 (March 31, 2019): 32–40. http://dx.doi.org/10.31763/simple.v1i1.147.

Full text
Abstract:
Computer vision technology has been widely used in many applications and devices that involves biometric recognition. One of them is gender classification which has notable challenges when dealing with unique facial characteristics of human races. Not to mention the challenges from various poses of face and the lighting conditions. To perform gender classification, we resize and convert the face image into grayscale then extract its features using Fisherface. The features are reduced into 100 components using Principal Component Analysis (PCA) then classified into male and female category using linear Support Vector Machine (SVM). The test that conducted on 1014 face images from various human races resulted in 86% of accuracy using standard k-NN classifier while our proposed method shows better result with 88% of accuracy.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Lei, Fei Xie, Jing Zhao, Shibin Shen, Weiran Guang, and Rongjian Lu. "Human Emotion Recognition Based on Face and Facial Expression Detection Using Deep Belief Network Under Complicated Backgrounds." International Journal of Pattern Recognition and Artificial Intelligence 34, no. 14 (May 23, 2020): 2056010. http://dx.doi.org/10.1142/s0218001420560108.

Full text
Abstract:
The human emotion recognition based on facial expression has a significant meaning in the application of intelligent man–machine interaction. However, the human face images vary largely in real environments due to the complex backgrounds and luminance. To solve this problem, this paper proposes a robust face detection method based on skin color enhancement model and a facial expression recognition algorithm with block principal component analysis (PCA). First, the luminance range of human face image is broadened and the contrast ratio of skin color is strengthened by the homomorphic filter. Second, the skin color enhancement model is established using YCbCr color space components to locate the face area. Third, the feature based on differential horizontal integral projection is extracted from the face. Finally, the block PCA with deep neural network is used to accomplish the facial expression recognition. The experimental results indicate that in the case of weaker illumination and more complicated backgrounds, both the face detection and facial expression recognition can be achieved effectively by the proposed algorithm, meanwhile the mean recognition rate obtained by the facial expression recognition method is improved by 2.7% comparing with the traditional Local Binary Patterns (LBPs) method.
APA, Harvard, Vancouver, ISO, and other styles
4

Mi, Jian, and Yasutake Takahashi. "Humanoid Robot Motion Modeling Based on Time-Series Data Using Kernel PCA and Gaussian Process Dynamical Models." Journal of Advanced Computational Intelligence and Intelligent Informatics 22, no. 6 (October 20, 2018): 965–77. http://dx.doi.org/10.20965/jaciii.2018.p0965.

Full text
Abstract:
In this article, contrary to popular studies on human motion learning, we focus on addressing the problem of humanoid robot motions directly. Performances of different kernel functions with principal components analysis (PCA) in Gaussian process dynamical models (GPDM) are investigated to build efficient humanoid robot motion models. A novel kernel-PCA-GPDM method is proposed for building different types of humanoid robot motion models. Compared with the standard-PCA-GPDM and auto-encoder-GPDM methods, our proposed method is more efficient in humanoid robot motion modeling. In this work, three types of NAO robot motion models are studied: walk-model, lateral-walk model, and wave-hand model, where motion data are collected from an Aldebaran NAO robot using magnetic rotary encoder sensors. Using kernel-PCA-GPDM method, the motion data are first projected from the high 23-dimension observation space to a 3-dimension low latent space. Then, three types of humanoid robot motion models are learned in the 3D latent space. Compared with other kernel-PCA-GPDM or auto-encoder-GPDM methods, our proposed novel kernel-PCA-GPDM method performs efficiently in motion learning. Finally, we realize humanoid robot motion representation to verify the motion models that we build. The experimental results show that our proposed kernel-PCA-GPDM method builds efficient and smooth motion models.
APA, Harvard, Vancouver, ISO, and other styles
5

Witmer, Bob G., Christian J. Jerome, and Michael J. Singer. "The Factor Structure of the Presence Questionnaire." Presence: Teleoperators and Virtual Environments 14, no. 3 (June 2005): 298–312. http://dx.doi.org/10.1162/105474605323384654.

Full text
Abstract:
Constructing a valid measure of presence and discovering the factors that contribute to presence have been much sought after goals of presence researchers and at times have generated controversy among them. This paper describes the results of principal-components analyses of Presence Questionnaire (PQ) data from 325 participants following exposure to immersive virtual environments. The analyses suggest that a 4-factor model provides the best fit to our data. The factors are Involvement, Adaptation/Immersion, Sensory Fidelity, and Interface Quality. Except for the Adaptation/Immersion factor, these factors corresponded to those identified in a cluster analysis of data from an earlier version of the questionnaire. The existence of an Adaptation/Immersion factor leads us to postulate that immersion is greater for those individuals who rapidly and easily adapt to the virtual environment. The magnitudes of the correlations among the factors indicate moderately strong relationships among the 4 factors. Within these relationships, Sensory Fidelity items seem to be more closely related to Involvement, whereas Interface Quality items appear to be more closely related to Adaptation/Immersion, even though there is a moderately strong relationship between the Involvement and Adaptation/Immersion factors.
APA, Harvard, Vancouver, ISO, and other styles
6

Rudas, Imre J. "Intelligent Engineering Systems." Journal of Advanced Computational Intelligence and Intelligent Informatics 4, no. 4 (July 20, 2000): 237–39. http://dx.doi.org/10.20965/jaciii.2000.p0237.

Full text
Abstract:
The "information revolution" of our time affects our entire generation. While a vision of the "Information Society," with its financial, legal, business, privacy, and other aspects has emerged in the past few years, the "traditional scene" of information technology, that is, industrial automation, maintained its significance as a field of unceasing development. Since the old-fashioned concept of "Hard Automation" applicable only to industrial processes of fixed, repetitive nature and manufacturing large batches of the same product1)was thrust to the background by keen market competition, the key element of this development remained the improvement of "Machine Intelligence". In spite of the fact that L. A. Zadeh already introduced the concept of "Machine Intelligence Quotient" in 1996 to measure machine intelligence2) , this term remained more or less of a mysterious meaning best explicable on the basis of practical needs. The weak point of hard automation is that the system configuration and operations are fixed and cannot be changed without incurring considerable cost and downtime. Mainly it can be used in applications that call for fast and accurate operation in large batch production. Whenever a variety of products must be manufactured in small batches and consequently the work-cells of a production line should be quickly reconfigured to accommodate a change in products, hard automation becomes inefficient and fails due to economic reasons. In these cases, new, more flexible way of automation, so-called "Soft Automation," are expedient and suitable. The most important "ingredient" of soft automation is its adaptive ability for efficiently coping with changing, unexpected or previously unknown conditions, and working with a high degree of uncertainty and imprecision since in practice increasing precision can be very costly. This adaptation must be realized without or within limited human interference: this is one essential component of machine intelligence. Another important factor is that engineering practice often must deal with complex systems of multiple variable and multiple parameter models almost always with strong nonlinear coupling. Conventional analysis-based approaches for describing and predicting the behavior of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of "modeling accuracy," they try to describe all structural details of the real physical system to be modeled. This significantly increases the intricacy of the model and may result in huge computational burden without considerably improving precision. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction is, the more work must be invested for obtaining it. Another important component of machine intelligence is a kind of "structural uniformity" giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to that of the ready-to-wear industry, whose products can later be slightly modified in contrast to the custom-tailors' made-to-measure creations aiming at maximum accuracy from the beginning. Machines carry out these later corrections automatically. This "learning ability" is another key element of machine intelligence. To realize the above philosophy in a mathematically correct way, L. A. Zadeh separated Hard Computing from Soft Computing. This revelation immediately resulted in distinguishing between two essential complementary branches of machine intelligence: Hard Computing based Artificial Intelligence and Soft Computing based Computational Intelligence. In the last decades, it became generally known that fuzzy logic, artificial neural networks, and probabilistic reasoning based Soft Computing is a fruitful orientation in designing intelligent systems. Moreover, it became generally accepted that soft computing rather than hard computing should be viewed as the foundation of real machine intelligence via exploiting the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, low solution cost and better rapport with reality. Further research in the past decade confirmed the view that typical components of present soft computing such as fuzzy logic, neurocomputing, evolutionary computation and probabilistic reasoning are complementary and best results can be obtained by their combined application. These complementary branches of Machine Intelligence, Artificial Intelligence and Computational Intelligence, serve as the basis of Intelligent Engineering Systems. The huge number of scientific results published in journals and conference proceedings worldwide substantiates this statement. Three years ago, a new series of conferences in this direction was initiated and launched with the support of several organizations including the IEEE Industrial Electronics Society and IEEE Hungary Section in technical cooperation with IEEE Robotics & Automation Society. The first event of the series hosted by Bdnki Dondt Polytechnic, Budapest, Hungary, was called "19997 IEEE International Conference on Intelligent Engineering Systems " (INES'97). The Technical University of Vienna, Austria hosted the next event of the series in 1998, followed by INES'99 held by the Technical University of Kosice, Slovakia. The present special issue consists of the extended and revised version of the most interesting papers selected out of the presentations of this conference. The papers exemplify recent development trends of intelligent engineering systems. The first paper pertains to the wider class of neural network applications. It is an interesting report of applying a special Adaptive Resonance Theory network for identifying objects in multispectral images. It is called "Extended Gaussian ARTMAP". The authors conclude that this network is especially advantageous for classification of large, low dimensional data sets. The second paper's subject belongs to the realm of fuzzy systems. It reports successful application of fundamental similarity relations in diagnostic systems. As an example failure detection of rolling-mill transmission is considered. The next paper represents the AI-branch of machine intelligence. The paper is a report on an EU-funded project focusing on the storage of knowledge in a corporate organizational memory used for storing and retrieving knowledge chunks for it. The flexible structure of the system makes it possible to adopt it to different SMEs via using company-specific conceptual terms rather than traditional keywords. The fourth selected paper's contribution is to the field of knowledge discovery. For this purpose in the first step, cluster analysis is done. The method is found to be helpful whenever little or no information on the characteristics of a given data set is available. The next paper approaches scheduling problems by the application of the multiagent system. It is concluded that due to the great number of interactions between components, MAS seems to be well suited for manufacturing scheduling problems. The sixth selected paper's topic is emerging intelligent technologies in computer-aided engineering. It discusses key issues of CAD/CAM technology of our days. The conclusion is that further development of CAD/CAM methods probably will serve companies on the competitive edge. The seventh paper of the selection is a report on seeking a special tradeoff between classical analytical modeling and traditional soft computing. It nonconventionally integrates uniform structures obtained from Lagrangian Classical Mechanics with other simple elements of machine intelligence such as saturated sigmoid transition functions borrowed from neural nets, and fuzzy rules with classical PID/ST, and a simplified version of regression analysis. It is concluded that these different components can successfully cooperate in adaptive robot control. The last paper focuses on the complexity problem of fuzzy and neural network approaches. A fuzzy rule base, be it generated from expert operators or by some learning or identification schemes, may contain redundant, weakly contributing, or outright inconsistent components. Moreover, in pursuit of good approximation, one may be tempted to overly assign the number of antecedent sets, thereby resulting in large fuzzy rule bases and much problems in computation time and storage space. Engineers using neural networks have to face the same complexity problem with the number of neurons and layers. A fuzzy rule base and neural network design, hence, have two important objectives. One is to achieve a good approximation. The other is to reduce the complexity. The main difficulty is that these two objectives are contradictory. A formal approach to extracting the more pertinent elements of a given rule set or neurons is, hence, highly desirable. The last paper is an attempt in this direction. References 1)C. W. De Silva. Automation Intelligence. Engineering Application of Artificial Intelligence. Vol. 7. No. 5. 471-477 (1994). 2)L. A. Zadeh. Fuzzy Logic, Neural Networks and Soft Computing. NATO Advanced Studies Institute on Soft Computing and Its Application. Antalya, Turkey. (1996). 3)L. A. Zadeh. Berkeley Initiative in Soft Computing. IEEE Industrial Electronics Society Newsletter. 41, (3), 8-10 (1994).
APA, Harvard, Vancouver, ISO, and other styles
7

Agbolade, Olalekan, Azree Nazri, Razali Yaakob, Abdul Azim Ghani, and Yoke Kqueen Cheah. "3-Dimensional facial expression recognition in human using multi-points warping." BMC Bioinformatics 20, no. 1 (December 2019). http://dx.doi.org/10.1186/s12859-019-3153-2.

Full text
Abstract:
Abstract Background Expression in H-sapiens plays a remarkable role when it comes to social communication. The identification of this expression by human beings is relatively easy and accurate. However, achieving the same result in 3D by machine remains a challenge in computer vision. This is due to the current challenges facing facial data acquisition in 3D; such as lack of homology and complex mathematical analysis for facial point digitization. This study proposes facial expression recognition in human with the application of Multi-points Warping for 3D facial landmark by building a template mesh as a reference object. This template mesh is thereby applied to each of the target mesh on Stirling/ESRC and Bosphorus datasets. The semi-landmarks are allowed to slide along tangents to the curves and surfaces until the bending energy between a template and a target form is minimal and localization error is assessed using Procrustes ANOVA. By using Principal Component Analysis (PCA) for feature selection, classification is done using Linear Discriminant Analysis (LDA). Result The localization error is validated on the two datasets with superior performance over the state-of-the-art methods and variation in the expression is visualized using Principal Components (PCs). The deformations show various expression regions in the faces. The results indicate that Sad expression has the lowest recognition accuracy on both datasets. The classifier achieved a recognition accuracy of 99.58 and 99.32% on Stirling/ESRC and Bosphorus, respectively. Conclusion The results demonstrate that the method is robust and in agreement with the state-of-the-art results.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Computer vision Human mechanics Principal components analysis"

1

Gao, Hui. "Extracting key features for analysis and recognition in computer vision." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141770523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arachchige, Somi Ruwan Budhagoda. "Face recognition in low resolution video sequences using super resolution /." Online version of thesis, 2008. http://hdl.handle.net/1850/7770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography