Academic literature on the topic 'Comsol Multiphysics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Comsol Multiphysics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Comsol Multiphysics"
Palchikovskiy, Vadim, and Sergei Beloborodov. "On the Correct Generation of a Single Sound Mode in a Duct with Flow in COMSOL Multiphysics." E3S Web of Conferences 446 (2023): 01003. http://dx.doi.org/10.1051/e3sconf/202344601003.
Full textSUKUVIHAR, Sanal, and Masanori HASHIGUCHI. "J031024 Multiphysics simulation of nano actuator with COMSOL Multiphysics." Proceedings of Mechanical Engineering Congress, Japan 2011 (2011): _J031024–1—_J031024–5. http://dx.doi.org/10.1299/jsmemecj.2011._j031024-1.
Full textМелконов, Г. Л., and І. В. Мелконова. "Oсобливості моделювання механічних процесів за допомогою методу скінченних елементів в програмному середовищі COMSOL Multiphysics." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 4(260) (March 10, 2020): 50–54. http://dx.doi.org/10.33216/1998-7927-2020-260-4-50-54.
Full textAdam, Tijjani, and U. Hashim. "COMSOL Multiphysics Simulation in Biomedical Engineering." Advanced Materials Research 832 (November 2013): 511–16. http://dx.doi.org/10.4028/www.scientific.net/amr.832.511.
Full textSirotkin, Vyacheslav V., Dmitriy A. Pigalev, Ivan V. Bol'shikh, and Semyon S. Chernyaev. "Application of specialized software for calculation of magnetic field in the turns of switched reluctance motors stator windings." Modern Transportation Systems and Technologies 8, no. 4 (December 24, 2022): 58–73. http://dx.doi.org/10.17816/transsyst20228458-73.
Full textSumit, Rahul Shukla, and A. K. Sinha. "Finite element method coupled with TLBO for shape control optimization of piezoelectric bimorph in COMSOL Multiphysics." SIMULATION 97, no. 9 (July 6, 2021): 635–44. http://dx.doi.org/10.1177/00375497211025640.
Full textVERKHOTUROVA, IRINA VLADIMIROVNA. "SIMULATION OF BODY FLOW WITH A SEPARATED LIQUID FLOW IN A COMSOL MULTIPHYSICS ENVIRONMENT." Messenger AmSU, no. 93 (2021): 34–37. http://dx.doi.org/10.22250/jasu.93.7.
Full textIbrokhimov, Abdulfatto, Khikmatilla Djumaev, Bakhtigul Artikova, and Farkhod Abdukadirov. "Numerical study of particle motion in a two-dimensional channel with complex geometry." BIO Web of Conferences 84 (2024): 05037. http://dx.doi.org/10.1051/bioconf/20248405037.
Full textM ziou, Nassima, Hani Benguesmia, and Hilal Rahali. "Modeling Electric Field and Potential Distribution of an Model of Insulator in Two Dimensions by the Finite Element Method." International Journal of Energetica 3, no. 1 (June 30, 2018): 01. http://dx.doi.org/10.47238/ijeca.v3i1.58.
Full textSu, Rui, Yiming Zhang, Dong Zhang, and Junxia Gao. "Simulation Analysis Based on COMSOL Helicopter Time-domain Aeromagnetic Method." Journal of Physics: Conference Series 2636, no. 1 (November 1, 2023): 012033. http://dx.doi.org/10.1088/1742-6596/2636/1/012033.
Full textDissertations / Theses on the topic "Comsol Multiphysics"
Лісовець, С. М. "Використання COMSOL Multiphysics для моделювання роботи акустичного тракту." Thesis, MDPC Publishing, 2021. https://er.knutd.edu.ua/handle/123456789/17353.
Full textHöhn, Tomáš. "Modelování kmitočtově selektivních povrchů v programu COMSOL Multiphysics." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217463.
Full textWilow, Viktor. "Electromagnetical model of an induction motor in COMSOL Multiphysics." Thesis, KTH, Elektrisk energiomvandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160703.
Full textAnsys, Flux eller COMSOL är exempel på datorprogram som kan användas för att studera magnetiskt brus, orsakad av magnetiska krafter i luftgapet, i induktionsmotorer. Projektgruppen ville använda COMSOL i det här examensarbetet. För att kunna utföra studien måste den elektromagnetiska domänen kopplas till den mekaniska domänen. Luftgapskrafterna, beräknade i den elektromagnetiska modellen genom att använda modulen för roterande maskiner, kan exporteras till modulen Acoustic-Solid Interaction för att möjliggöra den vibro-akustiska analysen. En elektromagnetisk modell av en induktionsmotor är utvecklad i två dimensioner i finita elementmetoden-baserade programvaran COMSOL Multiphysics i det här examensarbetet. Simuleringsresultat från frekvensdomänen jämförs med resultat som uppnås med datorprogramvaran FEMM. Simuleringsresultat för fas-induktansen, fördelningen av flödestätheten och momentet jämförs. Det simulerade momentet i COMSOL valideras med momentet som härleds utifrån induktionsmotorns motsvarande ekvivalenta schema. En tidsberoende motor-simulering genomförs vid 4.7% slip, matad med 1A (topp-värde). Det erhållna momentet är 0.33Nm. Samma värde erhålls i frekvensstudien i COMSOL. Värdet är 0.003Nm högre i FEMM. De beräknade luftgapskrafterna vid 4.7% slip kan användas för att göra en vibroakustisk studie i COMSOL.
Chen, Jie. "Modelling of Laser Welding of Aluminium using COMSOL Multiphysics." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284448.
Full textDenna avhandling presenterar en modelleringsmetod för lasersvetsningsprocessen av aluminiumlegering ur termomekanisk synvinkel för att utvärdera förekomsten av het sprickbildning baserat på simuleringsresultat och relevanta kriterier. Modellen skapades stegvis i COMSOL Multiphysics, med början med den termiska modellen där värmeledning av fast och flytande fas beräknades. Sedan skapades CFD-modellen genom att involvera drivkrafterna för flytande rörelse i svetsbassängen, dvs. naturlig konvektion och Marangoni-effekt. Slutligen laddades temperaturprofilen beräknad av CFD-modellen in i den mekaniska modellen för beräkning av termisk stress och töjning. De mekaniska resultaten krävdes i kriterier för att mäta känsligheten för het sprickbildning. De viktigaste resultaten inkluderar att Marangoni-effekten spelar en dominerande roll när det gäller att generera vätskeflödet och konvektivt värmeflöde i svetsbassängen, vilket förbättrar värmeavledningen och sänker temperaturen i arbetsstycket. Däremot är sådan temperaturreduktion orsakad av luftkonvektion, strålning och naturlig konvektion försumbar. Svetsbanan längre från den fastspända sidan upplever mindre tvärgående restspänning, men det föreslår inte nödvändigtvis högre känslighet för hetsprickning enligt de tillämpade kriterierna. Man kan dra slutsatsen utifrån aktuella resultat att dessa första modeller av lasersvetsningsprocesser fungerar tillfredsställande. Det finns fortfarande ett arbete att göra för att få full mognad för denna modell på grund av dess begränsning och vissa antaganden för enkelhetens skull.
Lövgren, Patrick. "Simulering av ett värmesystem i COMSOL Multiphysics : Pipe Flow Module." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-13212.
Full textHedkvist, Adam, and Henrik Ahrman. "Simulation of helium flow through ion guide with COMSOL multiphysics." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296242.
Full textJúnior, Marco Antônio Vasiliev da Silva. "Estudo experimental e modelagem matemática da secagem convectiva de fatias de gel de amido-alginato." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/74/74133/tde-22102018-164651/.
Full textBiopolymers, such as starch and alginate, can be used in the formulation of gels with high water retention. The convective drying can be applied to gel moisture removing. Drying parameters (temperature, air velocity and equilibrium moisture) should be monitored in view of producing a dry solid without degradation of active compounds. The mathematical modeling by the finite element method in COMSOL Multiphysics has been used to simulate drying profiles, with reduced experimental runs. This work aimed at developing of analytical and numerical models to predict the moisture and size of slices of gels containing cornstarch and calcium alginate, during convective drying. The coupling between mass transfer and shrinkage of slices during drying was simulated and the effective mass diffusivity was obtained by non-linear adjustment to the experimental data. Three models have been used as case studies obtained the effective mass diffusivity. Drying of gels containing 60% water and 5.4% gelatinized cornstarch (GC90 samples) as well fitted by the analytical solution of Fick\'s second law (R2 = 0.997-0.998). Drying of gels containing 60% water and 5.4% native starch (RC90 samples) as explained by Fick\'s analytical model while inclusion of the shrinkage term (R2 = 0.992). The numerical model developed in COMSOL Multiphysics adequately described the drying of gels formulated with 86% water and 34% of starch, gelatinized or non-gelatinized, (GC50 and RC90 samples), giving a R2 of 0.983-0.992. The shrinkage was estimated by the molar flux of water, while the geometry shrinkage was simulated by the Arbitrary Lagrangian-Eulerian (ALE) method. The inclusion of the shrinkage modified the drying rate profiles and a pseudo-constant rate period was observed. The model developed in this work can be applied to drying studies of gels, food and other materials that have a high shrinkage ratio.
Vicario, Gaia. "Analisi acustica di una finestra forata: modellazione numerica mediante COMSOL multiphysics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textЛісовець, С. М. "Застосування COMSOL Multiphysics 5.6 при здійсненні неруйнівного акустичного контролю текстильних матеріалів." Thesis, Херсонський національний технічний універсітет, 2021. https://er.knutd.edu.ua/handle/123456789/17835.
Full textErlandsson, Simon. "Evaluation, adaption and implementations of Perfectly Matched Layers in COMSOL Multiphysics." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280757.
Full textPerfectly matched layer (PML) är en metod som ofta används för vågabsorbering vid randen för problem med partiella differentialekvationer (PDE). I det här examensarbetet presenteras metoder som förenklar användingen av PMLer i COMSOL Multiphysics. Studien kollar på PMLer baserade på komplex-koordinatsträckning med fokus på Helmholtz ekvation och finita elementmetoden (FEM). För att en PML ska fungera måste den sättas upp på rätt sätt med parametrar anpassade efter det givna problemet. Att göra detta är inte alltid enkelt. Teori presenteras och experiment på PMLer görs. Flera metoder för optimisering och adaption av PMLer presenteras. I nuläget kräver appliceringen av PMLer i COMSOL Multiphysics att användaren sätter upp en geometri, ett beräkningsnät och väljer den komplexa koordinatsträckningen. Genom att använda COMSOLs implementation av extra dimensioner är det möjligt att applicera PMLer som randvilkor. I en sådan implementation kan geometri och beräkningsnät skötas av mjukvaran vilket underlättar för användaren.
Books on the topic "Comsol Multiphysics"
Pryor, Roger W. Multiphysics modeling using COMSOL: A first principles approach. Boston: Jones and Bartlett Publishers, 2010.
Find full textPryor, Roger W. Multiphysics modeling using COMSOL: A first principle approach. Boston: Jones and Bartlett Publishers, 2010.
Find full textPryor, Roger W. Multiphysics modeling using COMSOL: A first principles approach. Sudbury, Mass: Jones and Bartlett Publishers, 2011.
Find full textPryor, Roger W. Multiphysics modeling using COMSOL: A first principles approach. Boston: Jones and Bartlett Publishers, 2010.
Find full textMayboudi, Layla S. Comsol Multiphysics Geometry: Creation and Import. Mercury Learning & Information, 2018.
Find full textPryor, Roger W. Multiphysics Modeling Using COMSOL 5 and MATLAB. Mercury Learning & Information, 2021.
Find full textPryor, Roger W. Multiphysics Modeling Using COMSOL 5 and MATLAB. Mercury Learning & Information, 2021.
Find full textGeometry Creation and Import with COMSOL Multiphysics. de Gruyter GmbH, Walter, 2019.
Find full textMultiphysics Modeling Using COMSOL 5 and MATLAB. Mercury Learning & Information, 2021.
Find full textGeometry Creation and Import with COMSOL Multiphysics. de Gruyter GmbH, Walter, 2019.
Find full textBook chapters on the topic "Comsol Multiphysics"
Gupta, Shivani, and Apurbba Kumar Sharma. "COMSOL Multiphysics." In Innovative Development in Micromanufacturing Processes, 401–11. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364948-18.
Full textRies, Christian Benjamin. "ComsolGrid: COMSOL Multiphysics und BOINC." In Xpert.press, 315–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23383-8_14.
Full textDevi, Rama, Yogendra Kumar Upadhyaya, S. Manasa, Abhinav, and Ashutosh Tripathi. "Efficient Solar Cell Using COMSOL Multiphysics." In Lecture Notes in Electrical Engineering, 89–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7216-6_8.
Full textKhelfi, S., B. Helifa, I. K. Lefkaier, and L. Hachani. "Simulation of Electromagnetic Systems by COMSOL Multiphysics." In Lecture Notes in Networks and Systems, 585–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37207-1_62.
Full textChaurasia, Ashish S. "Fluid Flow." In Computational Fluid Dynamics and Comsol Multiphysics, 143–98. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-4.
Full textChaurasia, Ashish S. "Optimization." In Computational Fluid Dynamics and Comsol Multiphysics, 257–316. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-6.
Full textChaurasia, Ashish S. "Chemical Reactors." In Computational Fluid Dynamics and Comsol Multiphysics, 5–48. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-2.
Full textChaurasia, Ashish S. "Introduction." In Computational Fluid Dynamics and Comsol Multiphysics, 1–3. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-1.
Full textChaurasia, Ashish S. "Transport Processes." In Computational Fluid Dynamics and Comsol Multiphysics, 49–142. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-3.
Full textChaurasia, Ashish S. "Heat and Mass Transfer Processes in 2D and 3D." In Computational Fluid Dynamics and Comsol Multiphysics, 199–256. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-5.
Full textConference papers on the topic "Comsol Multiphysics"
Kocman, Stanislav, Pavel Pecinka, and Tomas Hruby. "Induction motor modeling using COMSOL multiphysics." In 2016 17th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2016. http://dx.doi.org/10.1109/epe.2016.7521727.
Full textPaz-Garcia, Juan Manuel, Maria Villen-Guzman, Maria Del Mar Cerrillo-Gonzalez, Jose Miguel Rodriguez-Maroto, Carlos Vereda-Alonso, and Cesar Gomez-Lahoz. "TEACHING CHEMICAL ENGINEERING USING COMSOL MULTIPHYSICS." In 13th International Technology, Education and Development Conference. IATED, 2019. http://dx.doi.org/10.21125/inted.2019.2205.
Full textWezranovski, Lukas, Zdenek Urban, Lubomir Ivanek, and Yahia Zakaria. "Patch antenna optimization in COMSOL multiphysics." In 2016 ELEKTRO. IEEE, 2016. http://dx.doi.org/10.1109/elektro.2016.7512045.
Full textKASHANINIA, ALIREZA, and MAZIAR NOROUZI. "MICROCANTILEVER CHEMICAL SENSORS IN COMSOL MULTIPHYSICS AREA." In Proceedings of the International Conference on ICMEE 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814289795_0003.
Full textKHRYSTOSLAVENKO, Olga, and Raimondas GRUBLIAUSKAS. "SIMULATION OF ROOM ACOUSTICS USING COMSOL MULTIPHYSICS." In Conference for Junior Researchers „Science – Future of Lithuania“. VGTU Technika, 2017. http://dx.doi.org/10.3846/aainz.2017.06.
Full textCarasi, Beatrice. "SIMULATING HEAT TRANSFER PHENOMENA WITH COMSOL MULTIPHYSICS." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.620.
Full textCarasi, Beatrice. "SIMULATING HEAT TRANSFER PHENOMENA WITH COMSOL MULTIPHYSICS." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.cht-7.620.
Full textWallmark, O., and K. Bitsi. "Iron-Loss Computation Using Matlab and Comsol Multiphysics." In 2020 International Conference on Electrical Machines (ICEM). IEEE, 2020. http://dx.doi.org/10.1109/icem49940.2020.9270824.
Full textThomas, Sadiq, Hassan Muazu, Tahir Aja Zarma, and Ahmadu Galadima. "Finite element analysis of EMAT using comsol multiphysics." In 2017 13th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2017. http://dx.doi.org/10.1109/icecco.2017.8333338.
Full textLeite*, Maria de Fátima Lopes, and Victor Cezar Tocantins. "Modelagem tridimensional do método MCSEM usando COMSOL Multiphysics." In 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-039.
Full textReports on the topic "Comsol Multiphysics"
Kesterson, M. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1014373.
Full textKesterson, M. R. COMSOL Multiphysics Model for HLW Canister Filling. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1250756.
Full textKesterson, M. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING, REVISION 1. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024868.
Full textPrimm, Trent, Arthur Ruggles, and James D. Freels. Evaluation of HFIR LEU Fuel Using the COMSOL Multiphysics Platform. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/950435.
Full textFreels, James D., Isaac T. Bodey, Rao V. Arimilli, Franklin G. Curtis, Kivanc Ekici, and Prashant K. Jain. Preliminary Multiphysics Analyses of HFIR LEU Fuel Conversion using COMSOL. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1017315.
Full textHoward, Trevor, and Prashant Jain. A Verification and Validation Approach for COMSOL Multiphysics to Support High Flux Isotope Reactor (HFIR). Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1808379.
Full textVeit, Martin, and Hicham Johra. A comparative study of BSim and COMSOL Multiphysics for steady-state and dynamic simulation of transmission loss. Department of the Built Environment, Aalborg University, 2023. http://dx.doi.org/10.54337/aau518779357.
Full textBeveridge, Lucas, and Richard R. Schultz. Calculation of Helium Coolant Behavior in A Single Cooling Channel in MHTGR Reflector Region During Pressurized Conduction Cooldown Scenario Using the COMSOL Multiphysics Code. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475446.
Full text