Academic literature on the topic 'Comsol Multiphysics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Comsol Multiphysics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Comsol Multiphysics"

1

Palchikovskiy, Vadim, and Sergei Beloborodov. "On the Correct Generation of a Single Sound Mode in a Duct with Flow in COMSOL Multiphysics." E3S Web of Conferences 446 (2023): 01003. http://dx.doi.org/10.1051/e3sconf/202344601003.

Full text
Abstract:
The paper considers the statement of a single-mode sound generation in a duct with flow in the COMSOL Multiphysics finite element analysis software. Verification of the COMSOL Multiphysics solution is based on a comparison with the analytical solution of a single-mode propagation in an annular duct with uniform flow. The verified statement of a single-mode generation in COMSOL Multiphysics is then used to predict the noise of a JT15D turbofan engine in the far field. The results of computations are compared with JT15D static test data and known numerical simulation results.
APA, Harvard, Vancouver, ISO, and other styles
2

SUKUVIHAR, Sanal, and Masanori HASHIGUCHI. "J031024 Multiphysics simulation of nano actuator with COMSOL Multiphysics." Proceedings of Mechanical Engineering Congress, Japan 2011 (2011): _J031024–1—_J031024–5. http://dx.doi.org/10.1299/jsmemecj.2011._j031024-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Мелконов, Г. Л., and І. В. Мелконова. "Oсобливості моделювання механічних процесів за допомогою методу скінченних елементів в програмному середовищі COMSOL Multiphysics." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 4(260) (March 10, 2020): 50–54. http://dx.doi.org/10.33216/1998-7927-2020-260-4-50-54.

Full text
Abstract:
У статті наводиться огляд проблем, що зустрічаються при моделюванні механічних процесів. Так само проведено аналіз застосування модуля «Механіка конструкцій» в програмному середовищі COMSOL Multiphysics для вирішення механічних завдань на прикладі моделі яка представляє собою тонкий металевий лист, який вдавлюється в штамп за допомогою пуансона. При прокаті листового металу явище деформації – є важливим етапом в технологічному процесі. Тому в роботі показана можливість застосування моделювання механічних процесів, як можливість проводити експериментальні дослідження за допомогою COMSOL Multiphysics. Також в роботі поведено аналіз літературних джерел, в яких розглядається питання моделювання механічних і фізичних процесів не тільки в програмному середовищі COMSOL Multiphysics., але і в інших програмних продуктах.
APA, Harvard, Vancouver, ISO, and other styles
4

Adam, Tijjani, and U. Hashim. "COMSOL Multiphysics Simulation in Biomedical Engineering." Advanced Materials Research 832 (November 2013): 511–16. http://dx.doi.org/10.4028/www.scientific.net/amr.832.511.

Full text
Abstract:
In the past two decades, COMSOL Multiphysics Software Package have emerged as a powerful tool for simulation, particularly in Nanotechnology and most importantly in biomedical application and various application involving fluid and solid interactions. Compared with conventional component or system design, distinctive advantages of using COMSOL software for design include easy assessing to the significant parameters in various levels of design, higher throughput, process monitoring with lower cost and less time consuming [1,. This review aims to summarize the recent advancements in various approaches in major types of micro fluidic systems simulations, design application of various COMSOL models especially in biomedical applications. The state-of-the-art of past and current approaches of fluid manipulation as well as solid structure design fabrication was also elaborated. Future trends of using COMSOL in nanotechnology, especially in biomedical engineering perspective.
APA, Harvard, Vancouver, ISO, and other styles
5

Sirotkin, Vyacheslav V., Dmitriy A. Pigalev, Ivan V. Bol'shikh, and Semyon S. Chernyaev. "Application of specialized software for calculation of magnetic field in the turns of switched reluctance motors stator windings." Modern Transportation Systems and Technologies 8, no. 4 (December 24, 2022): 58–73. http://dx.doi.org/10.17816/transsyst20228458-73.

Full text
Abstract:
Background: The article describes the process of occurrence of additional losses in the extreme turns of the copper stator windings, based on physical laws. The causes of the skin effect in the stator windings of a switched reluctance motor (SRM) are presented, an assessment of the skin effect influence degree on additional losses in the SRM of medium and high power. 2D-model of the SRM sector in COMSOL Multiphysics software package is created to specify distribution of magnetic field in the SRM stator windings and to quantify the amount of additional losses. А comparison of the magnetic field distribution of the SRM configuration 12/8 obtained in the FEMM program and the SRM magnetic field distribution built in COMSOL Multiphysics software package is presented to assess the reliability of the results. Aim: Calculation of the magnetic field distribution in the turns of the stator winding by building a phased 2D-model of the SRM sector (pole division) in COMSOL Multiphysics software package to quantify the amount of additional losses caused by eddy currents in the windings. Methods: COMSOL Multiphysics software package is used to build 2D-sector of the SRM. To obtain results on the distribution of electromagnetic fields within the simulated area, finite element methods (FEM) are used to estimate income adjustments, the results are compared with calculations in the FEMM program. Results: The patterns of the magnetic field distribution of the SRM obtained in COMSOL Multiphysics software package and in FEMM program confirm the presence of a skin-effect in the extreme turns of the stator winding. It can reduce the energy efficiency of the SRM and cause local overheating of the winding turns. As a result of the simulation, the picture of the magnetic field distribution of the SRM obtained in the FEMM program is similar to the picture of the magnetic field distribution of the SRM obtained in COMSOL Multiphysics software package. Ratio error of the values of the magnetic induction of different parts of the SRM is 37 %. It is acceptable and it indicates the correctness of computer modeling in COMSOL Multiphysics software package. Conclusion: The patterns of the magnetic field distribution SRM in COMSOL Multiphysics software package and in the FEMM program confirm the presence of the skin-effect in the extreme turns of the stator winding, which will allow further research in the field of determining the numerical values of additional losses using 2D-model, and proceed from 2D-model to 3D-model of the SRM.
APA, Harvard, Vancouver, ISO, and other styles
6

Sumit, Rahul Shukla, and A. K. Sinha. "Finite element method coupled with TLBO for shape control optimization of piezoelectric bimorph in COMSOL Multiphysics." SIMULATION 97, no. 9 (July 6, 2021): 635–44. http://dx.doi.org/10.1177/00375497211025640.

Full text
Abstract:
Finite element methods (FEMs) are more advantageous for analyzing complex geometry and structures than analytical methods. Local search optimization techniques are suitable for the unimodal problem because final result depends on the starting point. On the other hand, to optimize the parameters of multi-minima/maxima problems, global optimization-based FEM is used. Unfortunately, global optimization solvers are not present in, COMSOL Multiphysics, a versatile tool for solving varieties of problems using FEM. Teaching–learning-based optimization (TLBO) is a global optimization technique and does not require any algorithm-specific parameter. In this paper, FEM is coupled with TLBO algorithms in COMSOL Multiphysics for solving the global optimization problem. The TLBO algorithm is implemented in COMSOL Multiphysics using the JAVA application programming interface and tested with the standard benchmark functions. The solutions of the standard benchmark problem in COMSOL Multiphysics are in close agreement with the results presented in literature. Furthermore, the optimization procedure thus established is used for the optimization of actuator voltage for piezoelectric bimorphs to achieve the desired shapes. The FEM-based TLBO method is compared with two optimization methods present in COMSOL Multiphysics for a shape control problem; (i) method of moving asymptotes (MMA) and (ii) Bound Optimization BY Quadratic Approximation (BOBYQA). The root mean square error shows that the FEM-based TLBO algorithm converges to a global minimum and gives the same result (19.3 nm) at multiple runs, whereas MMA and BOBYQA trapped in local minimum and gave different results for different starting points.
APA, Harvard, Vancouver, ISO, and other styles
7

VERKHOTUROVA, IRINA VLADIMIROVNA. "SIMULATION OF BODY FLOW WITH A SEPARATED LIQUID FLOW IN A COMSOL MULTIPHYSICS ENVIRONMENT." Messenger AmSU, no. 93 (2021): 34–37. http://dx.doi.org/10.22250/jasu.93.7.

Full text
Abstract:
The article presents the results of using the COMSOL Multiphysics environment to perform one of the laboratory works of the Aerodynamics module of the Hydrogas and Aerodynamics discipline. In the COMSOL Multiphysics environment, it is proposed to simulate the process of a laminar flow of a viscous incompressible fluid around bodies of various geometric shapes, which allows you to visually visualize the boundary layer, its separation from the surface of the streamlined body.
APA, Harvard, Vancouver, ISO, and other styles
8

Ibrokhimov, Abdulfatto, Khikmatilla Djumaev, Bakhtigul Artikova, and Farkhod Abdukadirov. "Numerical study of particle motion in a two-dimensional channel with complex geometry." BIO Web of Conferences 84 (2024): 05037. http://dx.doi.org/10.1051/bioconf/20248405037.

Full text
Abstract:
The article presents a study of the SST turbulence model in the Comsol Multiphysics software package for the problem of a two-dimensional channel with complex geometry. In this work, the finite element method is used for the numerical implementation of the turbulence equations. The implementation of the Comsol Multiphysics 6.1 software package showed good convergence, stability and high accuracy of the SST turbulence model.
APA, Harvard, Vancouver, ISO, and other styles
9

M ziou, Nassima, Hani Benguesmia, and Hilal Rahali. "Modeling Electric Field and Potential Distribution of an Model of Insulator in Two Dimensions by the Finite Element Method." International Journal of Energetica 3, no. 1 (June 30, 2018): 01. http://dx.doi.org/10.47238/ijeca.v3i1.58.

Full text
Abstract:
The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement.
APA, Harvard, Vancouver, ISO, and other styles
10

Su, Rui, Yiming Zhang, Dong Zhang, and Junxia Gao. "Simulation Analysis Based on COMSOL Helicopter Time-domain Aeromagnetic Method." Journal of Physics: Conference Series 2636, no. 1 (November 1, 2023): 012033. http://dx.doi.org/10.1088/1742-6596/2636/1/012033.

Full text
Abstract:
Abstract This paper takes the time-domain aeromagnetic system as the research object and uses the finite element software COMSOL Multiphysics 6.0 to establish the three-dimensional system model. By comparing the COMSOL Multiphysics forward simulation solution with the one-dimensional numerical solution, it verifies that the COMSOL software meets the simulation accuracy requirements of the three-dimensional time-domain aeromagnetic method, and focuses on the analysis of the transient response at different flight altitudes is also analyzed. Based on the analysis of this paper, a set of aeromagnetic parameters with high detection capability is determined for engineering practice, and a test of the system is completed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Comsol Multiphysics"

1

Лісовець, С. М. "Використання COMSOL Multiphysics для моделювання роботи акустичного тракту." Thesis, MDPC Publishing, 2021. https://er.knutd.edu.ua/handle/123456789/17353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Höhn, Tomáš. "Modelování kmitočtově selektivních povrchů v programu COMSOL Multiphysics." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217463.

Full text
Abstract:
Metoda konečných prvků implementovaná v programu COMSOL Multiphysics je využívána k analýze tzv. free-standing kmitočtově selektivních povrchů ve 3D. Tyto modely jsou následně doplněny o periodické okrajové podmínky. Dále jsou free-standing povrchy doplněny o vrstvy dielektrika a je zkoumán jejich vliv na modul činitele odrazu. V analytické části jsou vyhodnoceny vlivy počtu elementů diskretizační mřížky na přesnost výsledku a délku výpočtů. Výsledky jsou srovnávány vzhledem k výsledkům uvedeným v literatuře [5]. V závěrečné části práce je vysvětlen postup při generování m-file pro obdélníkový element a použití globálního optimalizačního algoritmu PSO, který automaticky upravuje rozměry vodivého motivu tak, aby bylo dosaženo průběhu modulu činitele odrazu podle požadovaného průběhu.
APA, Harvard, Vancouver, ISO, and other styles
3

Wilow, Viktor. "Electromagnetical model of an induction motor in COMSOL Multiphysics." Thesis, KTH, Elektrisk energiomvandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160703.

Full text
Abstract:
Ansys, Flux or COMSOL are examples of software-tools that can be used to study magnetic noise, caused by magnetic forces in the air-gap, in induction motors. The project team wanted to use COMSOL in this thesis. The electromagnetical domain needs to be coupled to the mechanical domain to complete the study. The air-gap forces, calculated in the electromagnetical model using the Rotating Machinery module, can be exported to the Acoustic-Solid Interaction module in COMSOL to enable the vibro-acoustic analysis. An electromagnetical model of an induction motor is developed in two-dimensions in the finite element method based software-tool COMSOL Multiphysics in this thesis. Simulation results obtained in the frequency domain are compared with results achieved in the software-tool FEMM. Simulation results of the phase inductance, distribution of the flux density and the torque are compared. The simulated torque in COMSOL is validated with the torque derived based on an equivalent lumped model of the induction motor. A time-dependent simulation of the motor is made at 4.7% slip and 1A (peak) supply. The obtained torque is 0.33Nm. The same value is achieved in the frequency study in COMSOL. The corresponding value is 0.003Nm higher in FEMM. The evaluated air-gap forces at 4.7% slip can be used for studying vibro-acoustics in COMSOL.
Ansys, Flux eller COMSOL är exempel på datorprogram som kan användas för att studera magnetiskt brus, orsakad av magnetiska krafter i luftgapet, i induktionsmotorer. Projektgruppen ville använda COMSOL i det här examensarbetet. För att kunna utföra studien måste den elektromagnetiska domänen kopplas till den mekaniska domänen. Luftgapskrafterna, beräknade i den elektromagnetiska modellen genom att använda modulen för roterande maskiner, kan exporteras till modulen Acoustic-Solid Interaction för att möjliggöra den vibro-akustiska analysen. En elektromagnetisk modell av en induktionsmotor är utvecklad i två dimensioner i finita elementmetoden-baserade programvaran COMSOL Multiphysics i det här examensarbetet. Simuleringsresultat från frekvensdomänen jämförs med resultat som uppnås med datorprogramvaran FEMM. Simuleringsresultat för fas-induktansen, fördelningen av flödestätheten och momentet jämförs. Det simulerade momentet i COMSOL valideras med momentet som härleds utifrån induktionsmotorns motsvarande ekvivalenta schema. En tidsberoende motor-simulering genomförs vid 4.7% slip, matad med 1A (topp-värde). Det erhållna momentet är 0.33Nm. Samma värde erhålls i frekvensstudien i COMSOL. Värdet är 0.003Nm högre i FEMM. De beräknade luftgapskrafterna vid 4.7% slip kan användas för att göra en vibroakustisk studie i COMSOL.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Jie. "Modelling of Laser Welding of Aluminium using COMSOL Multiphysics." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284448.

Full text
Abstract:
This thesis presents a modelling approach of laser welding process of aluminium alloy from the thermo-mechanical point of view to evaluate the occurrence of hot cracking based on simulation results and relevant criteria. The model was created stepwise in COMSOL Multiphysics, starting with the thermal model where heat conduction of solid and liquid phase was computed. Then the CFD model was created by involving the driving forces of liquid motion in the weld pool, i.e. natural convection and Marangoni effect. Lastly, the temperature profile calculated by the CFD model was loaded into the mechanical model for computation of thermal stress and strain. The mechanical results were required in  criteria for measuring the  susceptibility of hot cracking. The main findings include that Marangoni effect plays a dominant role in generating the fluid flow and convective heat flux in the weld pool, thus enhancing the heat dissipation and lowering temperature in the workpiece. By contrast, such temperature reduction caused by the air convection, radiation and natural convection is negligible. The welding track further from the clamped side experiences smaller transversal residual stress, but it does not necessarily suggest higher susceptibility to hot cracking according to the applied criteria. It can be concluded judging from current results that these first models of laser welding process work satisfactorily. There is still a work to do to obtain the full maturity of this model due to its limitation and some assumptions made for simplicity.
Denna avhandling presenterar en modelleringsmetod för lasersvetsningsprocessen av aluminiumlegering ur termomekanisk synvinkel för att utvärdera förekomsten av het sprickbildning baserat på simuleringsresultat och relevanta kriterier. Modellen skapades stegvis i COMSOL Multiphysics, med början med den termiska modellen där värmeledning av fast och flytande fas beräknades. Sedan skapades CFD-modellen genom att involvera drivkrafterna för flytande rörelse i svetsbassängen, dvs. naturlig konvektion och Marangoni-effekt. Slutligen laddades temperaturprofilen beräknad av CFD-modellen in i den mekaniska modellen för beräkning av termisk stress och töjning. De mekaniska resultaten krävdes i kriterier för att mäta känsligheten för het sprickbildning. De viktigaste resultaten inkluderar att Marangoni-effekten spelar en dominerande roll när det gäller att generera vätskeflödet och konvektivt värmeflöde i svetsbassängen, vilket förbättrar värmeavledningen och sänker temperaturen i arbetsstycket. Däremot är sådan temperaturreduktion orsakad av luftkonvektion, strålning och naturlig konvektion försumbar. Svetsbanan längre från den fastspända sidan upplever mindre tvärgående restspänning, men det föreslår inte nödvändigtvis högre känslighet för hetsprickning enligt de tillämpade kriterierna. Man kan dra slutsatsen utifrån aktuella resultat att dessa första modeller av lasersvetsningsprocesser fungerar tillfredsställande. Det finns fortfarande ett arbete att göra för att få full mognad för denna modell på grund av dess begränsning och vissa antaganden för enkelhetens skull.
APA, Harvard, Vancouver, ISO, and other styles
5

Lövgren, Patrick. "Simulering av ett värmesystem i COMSOL Multiphysics : Pipe Flow Module." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-13212.

Full text
Abstract:
Syftet med detta arbete är att simulera ett värmesystem i COMSOL Multiphysics, Pipe Flow Module, Non-Isothermal Pipe Flow som innehåller ekvationer och randvillkor för att modellera inkompressibel strömning och värmeöverföring i rör. Data om processen och dess komponenter har samlats in från industrin där arbetet är utfört och i vissa fall modifierats för att bättre beskrivas i programmet. Utifrån insamlad data har en modell byggts upp och två simuleringar har gjorts. En stationär för starten av systemet, den har sedan legat till grund för en dynamisk som simulerar förloppet från start till normaldrift. Tiden det tar för det aktuella fallet att nå drifttemperatur är 16 timmar. En felströmning upptäcktes samt att en av pumparna inte kommer att klara en start från 20 °C.
APA, Harvard, Vancouver, ISO, and other styles
6

Hedkvist, Adam, and Henrik Ahrman. "Simulation of helium flow through ion guide with COMSOL multiphysics." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296242.

Full text
Abstract:
The program COMSOL Multiphysics was used to simulate a flow of helium gas transporting ionized fission products out of an ion guide. Two important parameters to study from the simulation was the evacuation time and velocity of the ions. The mean evacuation time was shown to be 0.1173s, and the velocity of a single particle peaked at 2500m/s, 1000-1500m/s being more common.
APA, Harvard, Vancouver, ISO, and other styles
7

Júnior, Marco Antônio Vasiliev da Silva. "Estudo experimental e modelagem matemática da secagem convectiva de fatias de gel de amido-alginato." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/74/74133/tde-22102018-164651/.

Full text
Abstract:
Os biopolímeros comestíveis, tais como amido e alginato, podem ser utilizados na formulação de géis com elevada capacidade de retenção de água. A secagem convectiva pode ser utilizada para a remoção da umidade em géis. Os parâmetros da secagem (temperatura, velocidade do ar e umidade de equilíbrio) necessitam ser monitorados para a produção de um sólido seco e sem degradação de compostos ativos. A modelagem matemática da secagem pelo método numérico de elementos finitos em COMSOL Multiphysics tem sido utilizada para simular a secagem, usando um número reduzido de ensaios experimentais. Este trabalho teve como objetivo o desenvolvimento de modelos analíticos e numéricos para predizer a umidade e tamanho de fatias de géis de amido de milho e alginato de cálcio durante a secagem convectiva. O acoplamento entre a transferência de massa e encolhimento das fatias durante a secagem foi simulado e a difusividade mássica efetiva foi obtida pelo ajuste não linear aos dados experimentais. Três modelos foram utilizados como estudos de caso: A secagem de géis contendo 60% de água e 5.4% de amido gelatinizados (GC90), foram descritas pela solução analítica da segunda lei de Fick (R2 = 0.997-0.998); A secagem de géis contendo 60% de água e 5.4% de amido nativo (RC90), foram mais bem explicadas pelo modelo analítico com inclusão do termo de encolhimento (R2 = 0.992); O modelo numérico desenvolvido em COMSOL Multiphysics descreveu adequadamente a secagem de géis formulados com 86% de água e 34% amido gelatinizado e não-gelatinizado (GC50 e RC90), dando um R2 de 0.983-0.992. O encolhimento foi estimado a partir do fluxo molar de água, enquanto a deformação da geometria foi simulada pelo método arbitrário Lagrangian-Eulerian (ALE). A inclusão do termo de encolhimento modificou o perfil de taxa de secagem e o período de pseudo-taxa constante foi observado. O modelo desenvolvido neste trabalho pode ser aplicado em estudos de secagem de géis, alimentos e outros materiais que apresentam elevada razão de encolhimento.
Biopolymers, such as starch and alginate, can be used in the formulation of gels with high water retention. The convective drying can be applied to gel moisture removing. Drying parameters (temperature, air velocity and equilibrium moisture) should be monitored in view of producing a dry solid without degradation of active compounds. The mathematical modeling by the finite element method in COMSOL Multiphysics has been used to simulate drying profiles, with reduced experimental runs. This work aimed at developing of analytical and numerical models to predict the moisture and size of slices of gels containing cornstarch and calcium alginate, during convective drying. The coupling between mass transfer and shrinkage of slices during drying was simulated and the effective mass diffusivity was obtained by non-linear adjustment to the experimental data. Three models have been used as case studies obtained the effective mass diffusivity. Drying of gels containing 60% water and 5.4% gelatinized cornstarch (GC90 samples) as well fitted by the analytical solution of Fick\'s second law (R2 = 0.997-0.998). Drying of gels containing 60% water and 5.4% native starch (RC90 samples) as explained by Fick\'s analytical model while inclusion of the shrinkage term (R2 = 0.992). The numerical model developed in COMSOL Multiphysics adequately described the drying of gels formulated with 86% water and 34% of starch, gelatinized or non-gelatinized, (GC50 and RC90 samples), giving a R2 of 0.983-0.992. The shrinkage was estimated by the molar flux of water, while the geometry shrinkage was simulated by the Arbitrary Lagrangian-Eulerian (ALE) method. The inclusion of the shrinkage modified the drying rate profiles and a pseudo-constant rate period was observed. The model developed in this work can be applied to drying studies of gels, food and other materials that have a high shrinkage ratio.
APA, Harvard, Vancouver, ISO, and other styles
8

Vicario, Gaia. "Analisi acustica di una finestra forata: modellazione numerica mediante COMSOL multiphysics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Find full text
Abstract:
“Immaginate di potervi rilassare a casa in una giornata d’estate tenendo le finestre aperte per lasciare passare la brezza ma senza essere disturbati dai rumori della città, oggi è possibile”. Quello che voglio fare attraverso questa tesi è di studiare la fattibilità per la realizzazione di una finestra che permetta il passaggio dell’aria ma non dei rumori. L’idea di questa particolare finestra silenziosa mi è stata fornita dallo studio fatto dal professor Sang-Hoon Kim del Mokpo National University maritime e dal professor Seong-Hyun Lee del Korea Institute of Machinery and Materials in Corea del Sud. Essi hanno utilizzato i metamateriali acustici per risolvere il problema dell’inquinamento sonoro in città. Queste finestre hanno il vantaggio di tenere i rumori fuori dalla nostra abitazione ma permettere il passaggio dell’aria attraverso dei fori aventi dimensioni e posizioni adeguate da garantire questo particolare fenomeno. I principi su cui si basano queste finestre sono: la diffrazione e i risonatori di Helmholtz, che analizzeremo nel dettaglio nei capitoli 1 e 2 di questa tesi. Dopo aver analizzato i due principi attraverso simulazione fatte mediante il programma COMSOL multiphysics, sono passata all’analisi della finestra vera e propria: ovvero alla realizzazione delle dimensioni adeguate dei risonatori di Helmholtz utilizzati, alle dimensioni dei rispettivi fori d’ingresso e alla combinazione di questi risonatori per ricavare la miglior finestra silenziosa, che trattenesse al suo esterno il maggior numero di dB.
APA, Harvard, Vancouver, ISO, and other styles
9

Лісовець, С. М. "Застосування COMSOL Multiphysics 5.6 при здійсненні неруйнівного акустичного контролю текстильних матеріалів." Thesis, Херсонський національний технічний універсітет, 2021. https://er.knutd.edu.ua/handle/123456789/17835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Erlandsson, Simon. "Evaluation, adaption and implementations of Perfectly Matched Layers in COMSOL Multiphysics." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280757.

Full text
Abstract:
Perfectly matched layer (PML) is a commonly used method of absorbing waves at a computational boundary for partial differential equation (PDE) problems. In this thesis, methods for improving the usability of implementations in Comsol Multiphysics is addressed. The study looks at complex coordinate stretching PMLs in the context of Helmholtz equation using the finite element method (FEM). For a PML to work it has to be set up properly with parameters that takes into account the properties of the problem. It is not always straight forward. Some theory behind PMLs is presented and experimentation on PML properties performed. Methods for PML optimization and adaption is presented. Currently, the way PMLs is applied in COMSOL Multiphysics requires the user to perform many tasks; setting up a geometry, meshing and choosing a suitable complex coordinate stretching. Using a so-called extra-dimension implementation it is possible to attach PMLs as boundary conditions in COMSOL Multiphysics. This simplifies for the user since the geometry and mesh is handled by the software.
Perfectly matched layer (PML) är en metod som ofta används för vågabsorbering vid randen för problem med partiella differentialekvationer (PDE). I det här examensarbetet presenteras metoder som förenklar användingen av PMLer i COMSOL Multiphysics. Studien kollar på PMLer baserade på komplex-koordinatsträckning med fokus på Helmholtz ekvation och finita elementmetoden (FEM). För att en PML ska fungera måste den sättas upp på rätt sätt med parametrar anpassade efter det givna problemet. Att göra detta är inte alltid enkelt. Teori presenteras och experiment på PMLer görs. Flera metoder för optimisering och adaption av PMLer presenteras. I nuläget kräver appliceringen av PMLer i COMSOL Multiphysics att användaren sätter upp en geometri, ett beräkningsnät och väljer den komplexa koordinatsträckningen. Genom att använda COMSOLs implementation av extra dimensioner är det möjligt att applicera PMLer som randvilkor. I en sådan implementation kan geometri och beräkningsnät skötas av mjukvaran vilket underlättar för användaren.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Comsol Multiphysics"

1

Pryor, Roger W. Multiphysics modeling using COMSOL: A first principles approach. Boston: Jones and Bartlett Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pryor, Roger W. Multiphysics modeling using COMSOL: A first principle approach. Boston: Jones and Bartlett Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pryor, Roger W. Multiphysics modeling using COMSOL: A first principles approach. Sudbury, Mass: Jones and Bartlett Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pryor, Roger W. Multiphysics modeling using COMSOL: A first principles approach. Boston: Jones and Bartlett Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mayboudi, Layla S. Comsol Multiphysics Geometry: Creation and Import. Mercury Learning & Information, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pryor, Roger W. Multiphysics Modeling Using COMSOL 5 and MATLAB. Mercury Learning & Information, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pryor, Roger W. Multiphysics Modeling Using COMSOL 5 and MATLAB. Mercury Learning & Information, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Geometry Creation and Import with COMSOL Multiphysics. de Gruyter GmbH, Walter, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Multiphysics Modeling Using COMSOL 5 and MATLAB. Mercury Learning & Information, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Geometry Creation and Import with COMSOL Multiphysics. de Gruyter GmbH, Walter, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Comsol Multiphysics"

1

Gupta, Shivani, and Apurbba Kumar Sharma. "COMSOL Multiphysics." In Innovative Development in Micromanufacturing Processes, 401–11. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364948-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ries, Christian Benjamin. "ComsolGrid: COMSOL Multiphysics und BOINC." In Xpert.press, 315–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23383-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Devi, Rama, Yogendra Kumar Upadhyaya, S. Manasa, Abhinav, and Ashutosh Tripathi. "Efficient Solar Cell Using COMSOL Multiphysics." In Lecture Notes in Electrical Engineering, 89–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7216-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khelfi, S., B. Helifa, I. K. Lefkaier, and L. Hachani. "Simulation of Electromagnetic Systems by COMSOL Multiphysics." In Lecture Notes in Networks and Systems, 585–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37207-1_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chaurasia, Ashish S. "Fluid Flow." In Computational Fluid Dynamics and Comsol Multiphysics, 143–98. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chaurasia, Ashish S. "Optimization." In Computational Fluid Dynamics and Comsol Multiphysics, 257–316. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chaurasia, Ashish S. "Chemical Reactors." In Computational Fluid Dynamics and Comsol Multiphysics, 5–48. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaurasia, Ashish S. "Introduction." In Computational Fluid Dynamics and Comsol Multiphysics, 1–3. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chaurasia, Ashish S. "Transport Processes." In Computational Fluid Dynamics and Comsol Multiphysics, 49–142. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chaurasia, Ashish S. "Heat and Mass Transfer Processes in 2D and 3D." In Computational Fluid Dynamics and Comsol Multiphysics, 199–256. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180500-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Comsol Multiphysics"

1

Kocman, Stanislav, Pavel Pecinka, and Tomas Hruby. "Induction motor modeling using COMSOL multiphysics." In 2016 17th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2016. http://dx.doi.org/10.1109/epe.2016.7521727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paz-Garcia, Juan Manuel, Maria Villen-Guzman, Maria Del Mar Cerrillo-Gonzalez, Jose Miguel Rodriguez-Maroto, Carlos Vereda-Alonso, and Cesar Gomez-Lahoz. "TEACHING CHEMICAL ENGINEERING USING COMSOL MULTIPHYSICS." In 13th International Technology, Education and Development Conference. IATED, 2019. http://dx.doi.org/10.21125/inted.2019.2205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wezranovski, Lukas, Zdenek Urban, Lubomir Ivanek, and Yahia Zakaria. "Patch antenna optimization in COMSOL multiphysics." In 2016 ELEKTRO. IEEE, 2016. http://dx.doi.org/10.1109/elektro.2016.7512045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KASHANINIA, ALIREZA, and MAZIAR NOROUZI. "MICROCANTILEVER CHEMICAL SENSORS IN COMSOL MULTIPHYSICS AREA." In Proceedings of the International Conference on ICMEE 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814289795_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KHRYSTOSLAVENKO, Olga, and Raimondas GRUBLIAUSKAS. "SIMULATION OF ROOM ACOUSTICS USING COMSOL MULTIPHYSICS." In Conference for Junior Researchers „Science – Future of Lithuania“. VGTU Technika, 2017. http://dx.doi.org/10.3846/aainz.2017.06.

Full text
Abstract:
The modeling programs provide a wide range of possibilities for simulating acoustic systems. This paper describes programs used in acoustics for various purposes, such as Sound PLAN, AFMG SoundFlow, WinFLAG, Comsol multiphysics, ANSYS, Roomsim. For the purposes of the current research, the acoustic simulation of the room was carried out. Physical parameters as impedance, sound hard boundary and normal velocity were considered. The sound pressure level in rooms was investigated. Possibilities of using Comsol Multiphysics in the research of acoustics were investigated. Results of the current research show high-frequency eigenmodes located in the corners of the room and in the center of the room. Sound pressure level increased from low to medium frequency and then decreased with frequency drifts. At the frequency of 5000 Hz, minimum sound pressure is observed, which is associated with the decrease in the wavelength co-occurring with the decrease in frequency.
APA, Harvard, Vancouver, ISO, and other styles
6

Carasi, Beatrice. "SIMULATING HEAT TRANSFER PHENOMENA WITH COMSOL MULTIPHYSICS." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carasi, Beatrice. "SIMULATING HEAT TRANSFER PHENOMENA WITH COMSOL MULTIPHYSICS." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.cht-7.620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wallmark, O., and K. Bitsi. "Iron-Loss Computation Using Matlab and Comsol Multiphysics." In 2020 International Conference on Electrical Machines (ICEM). IEEE, 2020. http://dx.doi.org/10.1109/icem49940.2020.9270824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thomas, Sadiq, Hassan Muazu, Tahir Aja Zarma, and Ahmadu Galadima. "Finite element analysis of EMAT using comsol multiphysics." In 2017 13th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2017. http://dx.doi.org/10.1109/icecco.2017.8333338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leite*, Maria de Fátima Lopes, and Victor Cezar Tocantins. "Modelagem tridimensional do método MCSEM usando COMSOL Multiphysics." In 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-039.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Comsol Multiphysics"

1

Kesterson, M. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1014373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kesterson, M. R. COMSOL Multiphysics Model for HLW Canister Filling. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1250756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kesterson, M. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING, REVISION 1. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Primm, Trent, Arthur Ruggles, and James D. Freels. Evaluation of HFIR LEU Fuel Using the COMSOL Multiphysics Platform. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/950435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Freels, James D., Isaac T. Bodey, Rao V. Arimilli, Franklin G. Curtis, Kivanc Ekici, and Prashant K. Jain. Preliminary Multiphysics Analyses of HFIR LEU Fuel Conversion using COMSOL. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1017315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Howard, Trevor, and Prashant Jain. A Verification and Validation Approach for COMSOL Multiphysics to Support High Flux Isotope Reactor (HFIR). Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1808379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Veit, Martin, and Hicham Johra. A comparative study of BSim and COMSOL Multiphysics for steady-state and dynamic simulation of transmission loss. Department of the Built Environment, Aalborg University, 2023. http://dx.doi.org/10.54337/aau518779357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beveridge, Lucas, and Richard R. Schultz. Calculation of Helium Coolant Behavior in A Single Cooling Channel in MHTGR Reflector Region During Pressurized Conduction Cooldown Scenario Using the COMSOL Multiphysics Code. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography