Academic literature on the topic 'Concave mirror'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concave mirror.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Concave mirror"

1

Watanabe, Takeo, Tsuneyuki Haga, Masahito Niibe, and Hiroo Kinoshita. "Design of beamline optics for EUVL." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 1149–52. http://dx.doi.org/10.1107/s0909049597017536.

Full text
Abstract:
The design of front-end collimating optics for extreme-ultraviolet lithography (EUVL) is reported. For EUVL, collimating optics consisting of a concave toroidal mirror and a convex toroidal mirror can achieve shorter optical path lengths than collimating optics consisting of two concave toroidal mirrors. Collimating optics consisting of a concave toroidal mirror and a convex toroidal mirror are discussed. The design of collimating optics for EUVL beamlines based on ray-tracing studies is described.
APA, Harvard, Vancouver, ISO, and other styles
2

Graumann, Hugo, and Hans Laue. "Concave liquid-mirror experiments." Physics Teacher 36, no. 1 (January 1998): 28–31. http://dx.doi.org/10.1119/1.879953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Askerko, M. V., A. E. Gavlina, V. I. Batshev, and D. A. Novikov. "Orthogonal ray interferometer: modification for testing convex and concave mirror surfaces." Journal of Physics: Conference Series 2127, no. 1 (November 1, 2021): 012067. http://dx.doi.org/10.1088/1742-6596/2127/1/012067.

Full text
Abstract:
Abstract A non-contact optical method for testing of large concave and convex mirrors both spherical and aspheric is presented. It is based on the orthogonal ray interferometer modification. The point source is placed near the testing mirror and the chief ray propagates normally to its axis. The information about a tangential profile of testing mirror is contained in an interference pattern that is a result of superposition between two wavefronts, the first is reflected from the mirror, the second bypasses the mirror. Testing of the entire surface is carried out by rotating the mirror. Interferogram decoding method and algorithm for determination of an error of the testing surface are presented. The proposed method does not require bulky additional optical components what differs it from existing methods and makes promising primary for testing large astronomical mirrors. Furthermore, the method is universal and suited for surfaces with various geometrical parameters. The scheme with some modification of the present method is applied for surfaces without axis of rotational symmetry or freeform surfaces.
APA, Harvard, Vancouver, ISO, and other styles
4

Uslenghi, P. L. E. "Reflection by a Concave Parabolic Mirror." IEEE Antennas and Wireless Propagation Letters 11 (2012): 419–22. http://dx.doi.org/10.1109/lawp.2012.2194979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kadio, D., O. Houde, and L. Pruvost. "A concave mirror for cold atoms." Europhysics Letters (EPL) 54, no. 4 (May 2001): 417–23. http://dx.doi.org/10.1209/epl/i2001-00257-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xuan, Junhong Deng, King Fai Li, Mingke Jin, Yutao Tang, Xuecai Zhang, Xing Cheng, Hong Wang, Wei Liu, and Guixin Li. "Optical telescope with Cassegrain metasurfaces." Nanophotonics 9, no. 10 (April 10, 2020): 3263–69. http://dx.doi.org/10.1515/nanoph-2020-0012.

Full text
Abstract:
AbstractThe Cassegrain telescope, made of a concave primary mirror and a convex secondary mirror, is widely utilized for modern astronomical observation. However, the existence of curved mirrors inevitably results in bulky configurations. Here, we propose a new design of the miniaturized Cassegrain telescope by replacing the curved mirrors with planar reflective metasurfaces. The focusing and imaging properties of the Cassegrain metasurface telescopes are experimentally verified for circularly polarized incident light at near infrared wavelengths. The concept of the metasurface telescopes can be employed for applications in telescopes working at infrared, Terahertz, and microwave and even radio frequencies.
APA, Harvard, Vancouver, ISO, and other styles
7

Siahaan, Yahot, and Hartono Siswono. "Analysis the effect of reflector (flat mirror, convex mirror, and concave mirror) on solar panel." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 2 (June 1, 2019): 943. http://dx.doi.org/10.11591/ijpeds.v10.i2.pp943-952.

Full text
Abstract:
<p>At the time of the sun a straight line with solar cells may not necessarily produce the maximum output. Various ways continue to be done in order to get the maximum output. The maximum utilization of output from solar cells will accelerate the function of the solar cell. The use of reflectors is an excellent way to maximum output with effective time. The author will analyze solar cells with flat mirror, convex mirror, concave mirror, and without reflector. Each reflector is given varying treatment by calibrating the angle of the reflector to the solar cell by 60<sup>o</sup>, 90<sup>o</sup>, and 120<sup>o</sup>. After testing and data retrieval turns reflector very influential on the output of solar cells. The solar cell output power increases with each different reflector. Maximum output is obtained in a concave mirror with an angle is 90<sup>o</sup>.</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Пискунов, Т. С., Н. В. Барышников, И. В. Животовский, А. А. Сахаров, and В. А.  Соколовский. "Методика измерения параметров вогнутых крупногабаритных асферических зеркал с помощью датчика волнового фронта." Журнал технической физики 127, no. 10 (2019): 586. http://dx.doi.org/10.21883/os.2019.10.48362.167-19.

Full text
Abstract:
AbstractA methodology has been developed for measuring radius R _v and eccentricity (conic parameter k ) of large concave aspherical mirrors using a wavefront sensor. Analytical expressions that directly relate Zernike coefficients a _4 and a _9 to parameters R _v and k of the mirror are obtained. It is shown that the technique does not require accurate mirror alignment before measurements. A computer analysis showed that the developed scheme enables measurements with errors of δ R _v < 0.1% and δ k < 0.01 for mirrors with radii from 100 to 2000 mm and with errors of δ R _v < 0.01% and δ k < 0.001 for mirrors with radii of more than 5000 mm.
APA, Harvard, Vancouver, ISO, and other styles
9

Kencana, H. P., B. H. Iswanto, and F. C. Wibowo. "Augmented Reality Geometrical Optics (AR-GiOs) for Physics Learning in High Schools." Journal of Physics: Conference Series 2019, no. 1 (October 1, 2021): 012004. http://dx.doi.org/10.1088/1742-6596/2019/1/012004.

Full text
Abstract:
Abstract This study aims to produce “Augmented Reality Geometrical Optics (AR-GiOs)” as a medium for physics learning for geometrical optics in high school. The method used in this study is the Research and Development method with the ADDIE model (Analyze, Design, Develop, Implement, and Evaluate). AR-GiOs was developed to facilitate students in learning the concept of image formation and image properties of mirrors and lenses. AR-GiOs can display four 3D simulations, including 3D simulations of the image formation process by a concave mirror, a convex mirror, a concave lens, and a convex lens. In addition to AR, in this study, a worksheet was also developed to guide student learning activities and valuable as a marker. The results of product validation covering the material and media aspects got a very good average score (84% and 90%). Based on the results of the expert validation test, it can be concluded that AR-GiOs is suitable for use as a medium for learning physics in high school.
APA, Harvard, Vancouver, ISO, and other styles
10

Andreić, Željko, and Nikola Radić. "All-sky camera with a concave mirror." Applied Optics 35, no. 1 (January 1, 1996): 149. http://dx.doi.org/10.1364/ao.35.000149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Concave mirror"

1

Самійленко, В. В. "Дослідження властивостей сонячних модулів." Thesis, Чернігів, 2021. http://ir.stu.cn.ua/123456789/22980.

Full text
Abstract:
Самійленко, В. В. Дослідження властивостей сонячних модулів : випускна кваліфікаційна робота : 152 «Метрологія та інформаційно-вимірювальна техніка» / В. В. Самійленко ; керівник роботи П. І. Наумчик ; НУ "Чернігівська політехніка", кафедра електричної інженерії та інформаційно-вимірювальних технологій. – Чернігів, 2021. – 35 с.
Метою є встановлення умов для збільшення коефіцієнта перетворення фотоелектричних елементів Установка для проведення експериментального дослідження включала в себе універсальний проєкційний апарат з оптичною лавою ФОС-115, обладнаний лампою розжарення 500 Вт, лінза Френеля (27,5×27,5 см), люксметр DT-856A, сонячний модуль АК8045, мультиметр UT33C, увігнуте дзеркало, резистор ОМЛТ-1. У процесі досліджень за допомогою пристрою дослідження сонячних модулів встановлювали залежність потужності, яка виділяється на сонячному модулі, від освітленості природніх та штучних джерел світла. Проводили вимірювання з увігнутим дзеркалом та і лінзою в приміщенні: при кімнатній освітленості та із включеною лампою розжарення; на вулиці: при прямому попаданні сонячних променів на модуль, із дзеркалом та з лінзою, які були розташовані таким чиним, щоб зібране світло попадало одночасно на фотодетектор люксметра та на сонячний модуль АК8045. Загалом було проведено 9 серій експериментів. За отриманими даними побудували графік залежності потужності, яка виділяється на споживачі, від освітленості Сонця. Розібрали будову та принцип дії сонячних модулів, їх різновиди та властивості. Зробили висновки за результатами досліджень.
Object - photovoltaic cells The goal is to establish conditions for increasing the conversion factor of photovoltaic cells The installation for the experimental testing included a universal projection device with optical bench FOS-115, equipped with an incandescent lamp 500 W, Fresnel lens (27.5×27.5 cm), luxmeter DT-856A, solar module AK8045, multimeter UT33C, concave mirror, resistor OMLT-1. In the course of research, the dependence of the power released on the solar module on the illumination of natural and artificial light sources was established with the help of a device for studying solar modules. Measurements were performed with a concave mirror and a lens in the room: with room lighting and with an incandescent lamp on; on the street: when the sun's rays hit the module directly, with a mirror and a lens, which were arranged in such a way that the collected light fell at the same time on the photodetector of the luxmeter and on the solar module AK8045. In total of 9 series of experiments were performed. According to the obtained data, a graph of the dependence of the power released on consumers on the solar illumination was constructed. The structure and principle of operation of solar modules, their varieties and properties were analyzed. Made conclusions based on research results
APA, Harvard, Vancouver, ISO, and other styles
2

Kadio, Demascoth. "Réalisation expérimentale et étude d'un guide pour atomes froids d'une séparatrice et d'un miroir concave." Paris 11, 2002. http://www.theses.fr/2002PA112082.

Full text
Abstract:
Nous avons réalisé et démontré trois éléments d'optique atomique: un guide et une séparatrice qui utilisent la force dipolaire, et un miroir concave qui utilise la force magnétique. Ces éléments ont été appliqués à des atomes 87-Rb initialement refroidis à 10 mK dans une mélasse optique. Le guide est réalisé avec un faisceau laser Nd:YAG très désaccordé de la résonance atomique et crée un piège dipolaire 2D. Lorsque le nuage atomique est libéré de la mélasse optique, il tombe sous l'effet de la gravité, et à cause du guide dipolaire une partie des atomes reste confinée dans le faisceau laser de guidage. L'efficacité du guide obtenue est d'environ 40% sur une distance de 30 cm. De plus, comme le faisceau de guidage est focalisé, une compression du nuage a lieu, et dans la partie de défocalisation du faisceau, on observe un refroidissement adiabatique du nuage jusqu'à environ 2 mK, ce qui correspond à un abaissement de la température des atomes d'un facteur 5 [1]. Les résultats sont interprétés à l'aide d'un modèle numérique qui utilise une méthode statistique de type Monte Carlo. On a observé expérimentalement et montré par les calculs numériques qu'on peut fabriquer un nuage atomique en forme d'anneau si on introduit dans le guide dipolaire des atomes de moment cinétique moyen non nul et si le guide est utilisé en mode impulsionnel. La séparatrice utilise deux guides dipolaires qui se croisent: l'un est suivant la verticale et l'autre suivant la direction oblique fait un angle de 0. 12 radian avec la verticale. Les atomes sont guidés initialement dans le guide vertical. Lorsqu'ils ont chuté de quelques millimètres, le guide oblique est alors soudainement allumé. Le couplage créé au point de croisement des guides permet un transfert des atomes du guide vertical vers le guide oblique. L'observation à environ 10 mm en dessous de la position du piège magnéto-optique, montre une séparation du nuage de l'ordre de quelques millimètres, avec une efficacité de transfert de l'ordre de 30% [2]. Nous avons montré par le calcul qu'une séquence temporelle du guide oblique bien choisie, permettrait d'augmenter l'efficacité de la séparatrice d'environ 50%. Le miroir concave utilise le champ magnétique d'un quadrupôle en mode impulsionnel, appliqué quand les atomes sont tombés de quelques millimètres. On a observé clairement deux rebonds. Le potentiel magnétique vu par les atomes étant courbé dans les trois directions de l'espace, le rebond du nuage atomique s'accompagne d'une refocalisation [3]. Ce miroir n'est pas parfait et présente des aberrations. Les calculs numériques ont montré que l'ajout d'un petit champ magnétique tournant permettrait de réduire sensiblement les aberrations du miroir. [1] L. Provost, D. Marescaux, O. Houde, H. T Duong, Opt. Comm. 166 (1999) 199. [2] O. Houde, D. Kadio, L. Provost, Phys. Rev. Lett. 85 (2000) 5543. [3] D. Kadio, O. Houde, L. Provost, Euro. Phys. Lett. 54 (2001) 417
We have realized and demonstrated three efficients atom optics elements: a guide and a beamsplitter which use the dipole force and a concave mirror which uses the magnetic force. These elements have been tested with a cold atoms 87-Rb cloud at a temperature of 10 mK in an optical molasses. The guide is realized with a far red-detuned Nd:YAG laser beam which creates a 2-D dipole trap. When the atomic cloud is released from the optical molasses, it falls due to gravity and due to the dipole guide the atoms remain localised inside the guiding laser beam. The guide efficiency is about 40% over a distance of 30 cm. Furthermore, as the laser beam is focused an adiabatic compression of the cloud occurs, and in a defocusing region of the laser beam, its adiabatic cooling is observed to 2 mK, corresponding to a factor 5 between the temperature of the cloud in the molasses [1]. The results are numerically interpreted, by using a Monte Carlo statistic method. We have observed in the guide experiment and have demonstrated by calcu1ation that if the atoms enter in the guide with a kinetic moment and if the guide is pulsed, we generate a doughnut clouds. The beamsplitter uses two crossing dipole guides: one is along the vertical axis et the other along an oblique direction making a 0. 12 radian angle with the vertical. The atoms are first guided in the vertical one. When they have travelled a few millimeters the second guide is suddenly switched on. The created coupling at the crossing point of the two guides allows an atom transfer from the vertical to the oblique direction. The observation, 10 mm below the initial trap position, shows a cloud splitting ranging a few millimeters. The measured transfer efficiency is about 30% [2]. We have demonstrated numerically that time control of the switching time of the oblique guide could permit to increase a larger beamsplitter efficiency. The concave mirror uses a pulsed magnetic quadrupole field, applied when the atoms are fallen a few millimeters. We have clearly observed two bounces. The magnetic potential is curved and the atoms bounce and simultaneously are refocused [3]. Nevertheless, this mirror is not perfect and presents some aberrations. We have shown by using a Monte Carlo statistic method that an addition time orbiting magnetic field would significant1y reduce the aberrations of the mirror. [1] L. Provost, D. Marescaux, O. Houde, H. T. Duong, Opt. Comm. 166 (1999) 199. [2] O. Houde, D. Kadio, L. Pruvost, Phys. Rev. Lett. 85 (2000) 5543. [3] D. Kadio, O. Houde, L. Provost, Euro. Phys. Lett. 54 (2001) 417
APA, Harvard, Vancouver, ISO, and other styles
3

Houde, Olivier. "Réalisation d'éléments d'optique atomique : études d'un guide, d'une lame séparatrice dipolaire et d'un miroir concave magnétique." Paris 11, 2002. http://www.theses.fr/2002PA112229.

Full text
Abstract:
L'objet de cette thèse est la réalisation d'éléments d'optique atomique. Nous avons développé et étudié trois éléments: un guide dipolaire, une lame séparatrice dipolaire et un miroir concave magnétique. Ces éléments ont été caractérisés en étudiant leur influence sur un nuage d'atomes froids de 87Rb en propagation sous l'effet de la gravité. Les atomes froids sont produits à l'aide d'un piège magnéto-optique. Le guide à atomes repose sur l'utilisation de la force dipolaire crée par un faisceau laser de mode TEM_00, orienté verticalement et très éloigné vers le rouge de toute résonance atomique. L'interaction dipolaire créée un puits de potentiel de profondeur finie qui confine transversalement une partie des atomes au cours de leur propagation, les empêchant de s'étendre sous l'effet de leur température. Nous avons ainsi guidé 15% des atomes sur une distance de 30 cm. La lame séparatrice utilise la force dipolaire créée par deux guides dipolaires croisés. Le premier est orienté verticalement et le second suivant une direction oblique d'angle 0,12 rad. Les atomes sont, dans un premier temps, guidés par le guide vertical sur une hauteur de 4 mm. A cette altitude, le guide oblique est allumé. Dans la zone de recouvrement des deux guides, le nuage d'atomes est scindé en deux. A la sortie de la lame, on obtient deux nuages atomiques séparés d'environ 1 mm. L'efficacité de transfert d'un bras à l'autre est de l'ordre de 40%. Le miroir concave magnétique utilise l'effet Stem et Gerlach. Les atomes préalablement accélérés par la gravité rebondissent lorsque l'on allume le gradient de champ magnétique créé par une paire de bobines en configuration anti-Helmholtz. Le puits de potentiel auquel sont soumis les atomes crée une cavité dans laquelle le nuage oscille et subit une succession de focalisations et de défocalisations. Nous avons ainsi pu observer deux rebonds et plusieurs focalisations
The topic of this work deals with the realization of atom optic elements. We have developed and studied three elements: a dipole guide, a dipole beam-splitter and a magnetic concave mirror. These elements have been analysed by studying their influence on a 87Rb cold atoms cloud in propagation due to gravity. Cold atoms are produced in a magneto-optical trap. The atomic guide uses the dipole force created by a far red-detuned, vertically directed, TEM_00 laser beam. The dipole interaction leads to a potential well with finite depth, which transversally confine a large part of the atoms during their propagation. The guiding atoms do not expand due to their temperature. We have guided 15% of the atoms over a 30 cm distance. The beam-splitter uses the dipole force created by two crossed dipole guides, the first one along the vertical direction and the second one along an oblique direction at an angle of 0. 12 rad from the vertical. The atoms are first guided by the vertical guide along a 4 mm distance. Then the oblique guide is switched on. In the overlap region of the two crossing guides, the initial cloud is split. At the beam-splitter output, we obtain two clouds separated from about 1 mm. The splitter efficiency is about 40%. The magnetic concave mirror uses the Stern and Gerlach effect. After a 2 mm fall in the gravity field, the atoms are submitted to a magnetic field gradient created by two coils in the anti-Helmholtz configuration. This magnetic field induces cloud bounces because it creates a potential well in which the cloud oscillates and undergoes transverse focalisations. We have observed two bounces and multiple focalisations
APA, Harvard, Vancouver, ISO, and other styles
4

Thevenet, Julien. "Conception et réalisation d'un microsystème fabry-pérot accordable intégrant une membrane-miroir concave par flambement pour les applications à la spectroscopie." Besançon, 2005. http://www.theses.fr/2005BESA2073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Shao-an, and 呂紹安. "Spectral Resolution Anslysis of a Combined Optical System Consisting of a Concave Grating and a Concave Mirror." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/pj3jpx.

Full text
Abstract:
碩士
國立臺灣科技大學
自動化及控制研究所
99
In the past, a concave grating system of incident light is limited due to its narrow acceptance angle. If the acceptance angle becomes large, there will be a lot of energy out of concave grating. In order to collect energy, we designed a concave mirror. By adding a concave mirror, we are able to increase the light acceptance angle. Under the same condition of the resolution, the study shows the light intensity such a concave system with mirror as compared to a single concave system, and then compared the light intensity of the two systems with waveguide. Finally, the study choose a concave system with mirror and waveguide. We study the effects of the distance of ideal focal line and different detector sizes on the resolution and the light efficiency.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Wei-Lun, and 陳維倫. "An adjustable Micro-concave Mirror and Its Application on Bio-detection Systems." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/sxjh74.

Full text
Abstract:
碩士
國立虎尾科技大學
光電與材料科技研究所
96
This paper presents an adjustable micro-concave mirror and its application on bio-detection system. The bio-detection system consists of the adjustable micro-concave mirror, a micro flow cytometer chip, and an optical detection module. The adjustable micro-concave mirror could be fabricated with ease using commercially available MEMS foundry service (such as multiusers MEMS processes, MUMPs). The thermal effect of micromachined bilayer micro-concave mirrors was first investigated. A finite-element model has been established to analyze such a deformation. Postprocessing temperature and curvature reveal a close relationship. As postprocessing temperature increases, the curvature of the micro-concave mirror increases, resulting in a larger out-of-plane deformation of the micro-concave mirror. The proposed adjustable micro-concave mirror has the potential to be widely used for micro-optics or biophotonic applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Wei-Lun, and 許偉綸. "Passively mode-locked Nd:YVO4 lasers with semiconductor saturable absorber mirror in a plano-concave cavity." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/62362889900747433216.

Full text
Abstract:
碩士
東海大學
物理學系
98
In this thesis, passive mode locking of diode-pumped Nd:YVO4 lasers are investigated by placing a semiconductor saturable absorber mirror (SAM) in a plano-concave cavity. By using the SAM with 2 % absorbance, the laser is able to generate continuous wave mode-locked pulses with average output power of 240 mW, repetition rate of 369 MHz, and duration of 11 ps under absorbed pump power of 1.3 W. When the SAM with absorbance of 0.5 % and 1 % was used, the lasers could only operate at Q-switched mode locked state. The peak power as high as 1.3 kW and 617.4 W is achieved for the SAM with absorbance of 0.5 % and 1 %, respectively. Our scheme with a long cavity is also demonstrated in terms of a five elements resonator.
APA, Harvard, Vancouver, ISO, and other styles
8

Liao, Yih Feng, and 廖誼灃. "Semiconductor saturable absorber mirror based passive mode locking of Nd:YVO4 lasers with a plano-concave cavity." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/85233715507147821418.

Full text
Abstract:
碩士
東海大學
物理學系
99
This thesis investigates passive mode-locking of Nd: YVO4 lasers by using the semiconductor saturable absorber mirror (SESAM) and a plano-concave cavity. Two kinds of laser crystals are used. One is a thin Nd: YVO4 (1 mm in thickness) crystal and another is thick one (4 mm in thickness). For the thin laser crystal, there are two states of output which are characterized in multiple-pulse and single-pulse operations. At small tilt angle of laser crystal, multiple-pulse continuous wave mode-locked output is observed with the repetition rate of 500 MHz, pulse width of 4 ps, and output power of 230 mW under pump power of 780mW. By increasing the tilt angle, single-pulse continuous wave mode-locked output can be obtained with the pulse width of 9.2 ps and output power of 205mW at the same conditions as multiple-pulse case. For the thick Nd: YVO4 crystal, single-pulse continuous wave mode-locked output can be obtained with cavity lengths between 80 cm and 5 cm corresponding to the repetition rates between 185 MHz and 2.5 GHz. The pulse width obtained is between 8.5 ps and 14.7 ps.
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Ya-shih, and 黃雅詩. "Design of Concave Micro-mirrors and Optical Element Packaging." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/97615518790796784983.

Full text
Abstract:
碩士
國立中央大學
物理研究所
90
In this dissertation, two kinds of concave micro-mirrors are designed. The off-axis micro-mirror is designed based on ray tracing for the fabrication on silicon substrate using e-beam writer and inductively coupled plasma. The aspect ratios of the surface relief of the diffractive micro-lenses and the micro-mirrors are compared to reduce the fabrication difficulty for the identical optical function. The results show that compared with the micro-lenses in SiO2 and GaN, the micro-mirrors are preferred to be fabricated than micro-lenses if their numerical apertures are lower than 0.6 and 0.2, respectively. Free space echelle grating is designed for Dense Wavelength Division Multiplexing (DWDM) system. It is based on the law of Rowland. It is a hybrid of a concave micro-mirror and blazed gratings. The design of the concave micro-mirror can be carried out on silicon substrate using e-beam writer and plasma etching .The blazed grating can be achieved by fine V-groove etching. We also demonstrate a novel method to mount micro-opto-electronic devices on a Si bench. Inductively Coupled Plasma ( ICP ) and KOH etching and are performed for carrying out this novel method. The Si-based component after through wafer etching was picked by the optical fibers and placed on the optical bench. This can not only make X, Y, Z, θ and the tilt directions precisely controlled but also be suitable for all components mounting on the optical bench.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Concave mirror"

1

Kottak, Conrad Phillip. Mirror for humanity: A concise introduction to cultural anthropology. 7th ed. New York, NY: McGraw-Hill, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kottak, Conrad Phillip. Mirror for humanity: A concise introduction to cultural anthropology. 3rd ed. Boston: McGraw-Hill College, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kottak, Conrad Phillip. Mirror for humanity: A concise introduction to cultural anthropology. 2nd ed. Boston: McGraw-Hill College, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kottak, Conrad Phillip. Mirror for humanity: A concise introduction to cultural anthropology. 5th ed. Boston: McGraw-Hill, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mirror for humanity: A concise introduction to cultural anthropology. 8th ed. New York: McGraw-Hill, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kottak, Conrad Phillip. Mirror for humanity: A concise introduction to cultural anthropology. 7th ed. New York, NY: McGraw-Hill, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mirror for humanity: A concise introduction to cultural anthropology. 4th ed. Boston: McGraw-Hill Higher Education, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mirror for humanity: A concise introduction to cultural anthropology. 6th ed. Boston: McGraw-Hill, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mirror for humanity: A concise introduction to cultural anthropology. 7th ed. New York, NY: McGraw-Hill, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kottak, Conrad Phillip. Mirror for humanity: A concise introduction to cultural anthropology. New York: Overture Books, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Concave mirror"

1

Mechel, Fridolin. "Mirror Source Fields in Concave Rooms." In Room Acoustical Fields, 319–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22356-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij, et al. "Mirror Symmetry." In Concise Encyclopedia of Supersymmetry, 241. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Taylor, Marvin J. "“I'll be Your Mirror, Reflect What You Are”: Postmodern Documentation and the Downtown New York Scene from 1975 to the Present." In A Concise Companion to Postwar American Literature and Culture, 383–99. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470756430.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nelson, Jane Bray, and Jim Nelson. "Activity 21: Family Physics – Concave Mirror." In Teaching About Geometric Optics: Student Edition, 1–2. AIP Publishing, 2020. http://dx.doi.org/10.1063/9780735422179_021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nelson, Jane Bray, and Jim Nelson. "Activity 21: Family Physics – Concave Mirror." In Teaching About Geometric Optics: Teacher’s Notes, 1–4. AIP Publishing, 2020. http://dx.doi.org/10.1063/9780735422766_021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schlaich, Jörg, and Rainer Benz. "SOLAR POWER PLANT WITH A MEMBRANE CONCAVE MIRROR." In Advances In Solar Energy Technology, 1627–31. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-034315-0.50317-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nelson, Jane Bray, and Jim Nelson. "Activity 19A: Analysis of the Mirascope Illusion Activity 19B: Properties of Images Formed by a Concave Mirror." In Teaching About Geometric Optics: Student Edition, 1–8. AIP Publishing, 2020. http://dx.doi.org/10.1063/9780735422179_019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nelson, Jane Bray, and Jim Nelson. "Activity 19A: Analysis of the Mirascope Illusion Activity 19B: Properties of Images Formed by a Concave Mirror." In Teaching About Geometric Optics: Teacher’s Notes, 1–10. AIP Publishing, 2020. http://dx.doi.org/10.1063/9780735422766_019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vicario, Emilio. "Natural Nuclear Fusion Achieved by Means of the New Constructive Concept on Opening of the Concave Pentagonal Mirror." In World Renewable Energy Congress VI, 2610–13. Elsevier, 2000. http://dx.doi.org/10.1016/b978-008043865-8/50574-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nelson, Jane Bray, and Jim Nelson. "Activity 20: Properties Of Images Formed By Concave/Convex Mirrors." In Teaching About Geometric Optics: Student Edition, 1–6. AIP Publishing, 2020. http://dx.doi.org/10.1063/9780735422179_020.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Concave mirror"

1

Uslenghi, Piergiorgio L. E. "The concave parabolic mirror." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6050459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morossi, Carlo, Sergio Furlani, Mariagrazia Franchini, and A. Puzzi. "Single-mirror compensator for an aspheric concave mirror (Maksutov's scheme)." In 1994 Symposium on Astronomical Telescopes & Instrumentation for the 21st Century, edited by Larry M. Stepp. SPIE, 1994. http://dx.doi.org/10.1117/12.176233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Bolin, and Lacra Pavel. "Discounted Mirror Descent Dynamics in Concave Games." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Young Min, Byoung-Sub Song, and Sung-Wook Min. "Off-axis integral floating system using concave mirror." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/dh.2012.dsu1c.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Popov, Gennadi M., and Yevgen G. Popov. "Simple laser interferometers for concave ellipsoidal mirror testing." In International Symposium on Optical Science and Technology, edited by Wolfgang Osten. SPIE, 2002. http://dx.doi.org/10.1117/12.473563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Mao, Binghua Wu, and Hao Zhang. "Method of Concave Pin-mirror for Near-eye Display." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/3d.2020.jth2a.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tomoyuki Kato, Akihiro Matsutani, Takahiro Sakaguchi, and Kohroh Kobayashi. "24GHz mode-locking of VCSEL with external concave mirror." In 2008 IEEE 21st International Semiconductor Laser Conference (ISLC). IEEE, 2008. http://dx.doi.org/10.1109/islc.2008.4636067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Michalko, Aaron M., and James R. Fienup. "Concave Mirror Measurement Using Transverse Translation Diverse Phase Retrieval." In Optical Fabrication and Testing. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/oft.2017.ow2b.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buske, Ivo, and Peter Becker. "Compensating aberrations of a 6-inch concave membrane mirror." In SPIE Remote Sensing, edited by Karin Stein and John D. Gonglewski. SPIE, 2011. http://dx.doi.org/10.1117/12.897704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Wenqiang, Yudong Li, Jingjun Xu, and Qian Sun. "Noise-free readout in holographic storage by concave mirror." In Photonics Asia 2004, edited by Yunlong Sheng, Dahsiung Hsu, Chongxiu Yu, and Byoungho Lee. SPIE, 2005. http://dx.doi.org/10.1117/12.572614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography