Academic literature on the topic 'Concentrated solar power'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concentrated solar power.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Concentrated solar power"
Hirsch, Morris. "Thoughts on concentrated solar power." Physics Today 65, no. 7 (July 2012): 12. http://dx.doi.org/10.1063/pt.3.1624.
Full textNatelson, Michael. "Thoughts on concentrated solar power." Physics Today 65, no. 7 (July 2012): 12. http://dx.doi.org/10.1063/pt.3.1625.
Full textSlocum, Alexander H., Daniel S. Codd, Jacopo Buongiorno, Charles Forsberg, Thomas McKrell, Jean-Christophe Nave, Costas N. Papanicolas, et al. "Concentrated solar power on demand." Solar Energy 85, no. 7 (July 2011): 1519–29. http://dx.doi.org/10.1016/j.solener.2011.04.010.
Full textBarlev, David, Ruxandra Vidu, and Pieter Stroeve. "Innovation in concentrated solar power." Solar Energy Materials and Solar Cells 95, no. 10 (October 2011): 2703–25. http://dx.doi.org/10.1016/j.solmat.2011.05.020.
Full textStein, W. H., and R. Buck. "Advanced power cycles for concentrated solar power." Solar Energy 152 (August 2017): 91–105. http://dx.doi.org/10.1016/j.solener.2017.04.054.
Full textVighas, V. R., S. Bharath Subramaniam, and G. Harish. "Advances in concentrated solar absorber designs." Journal of Physics: Conference Series 2054, no. 1 (October 1, 2021): 012038. http://dx.doi.org/10.1088/1742-6596/2054/1/012038.
Full textLipiński, W., and A. Steinfeld. "Annular Compound Parabolic Concentrator." Journal of Solar Energy Engineering 128, no. 1 (March 8, 2005): 121–24. http://dx.doi.org/10.1115/1.2148970.
Full textCygan, David, Hamid Abbasi, Aleksandr Kozlov, Joseph Pondo, Roland Winston, Bennett Widyolar, Lun Jiang, et al. "Full Spectrum Solar System: Hybrid Concentrated Photovoltaic/Concentrated Solar Power (CPV-CSP)." MRS Advances 1, no. 43 (2016): 2941–46. http://dx.doi.org/10.1557/adv.2016.512.
Full textGRANT, KATE. "Concentrated solar power in South Africa." Climate Policy 9, no. 5 (January 2009): 544–52. http://dx.doi.org/10.3763/cpol.2009.0637.
Full textKribus, A. "Concentrated Solar Power: Components and materials." EPJ Web of Conferences 148 (2017): 00009. http://dx.doi.org/10.1051/epjconf/201714800009.
Full textDissertations / Theses on the topic "Concentrated solar power"
Codd, Daniel Shawn. "Concentrated solar power on demand." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67579.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 207-215).
This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions as a single tank assisted thermocline storage system. Concentrated light penetrates the molten salt and is absorbed over a depth of several meters; the molten salt free surface tolerates high irradiance levels, yet remains insensitive to the passage of clouds. Thermal losses to the environment are reduced with a refractory-lined domed roof and a small, closeable aperture. The molten salt and cover provide high and low temperature heat sources that can be optimally used to maximize energy production throughout the day, even when the sun is not shining. Hot salt is extracted from the upper region of the tank and sent through a steam generator, then returned to the bottom of the tank. An insulated barrier plate is positioned vertically within the tank to enhance the natural thermocline which forms and maintain hot and cold salt volumes required for operation. As a result, continuous, high temperature heat extraction is possible even as the average temperature of the salt is declining. Experimental results are presented for sodium-potassium nitrate salt volumetric receivers optically heated with a 10.5 kilowatt, 60-sun solar simulator. Designs, construction details and performance models used to estimate efficiency are presented for megawatt-scale molten salt volumetric receivers capable of operating with low cost nitrate or chloride salt eutectics at temperatures approaching 600 'C and 1000 'C, respectively. The integral storage capabilities of the receiver can be sized according to local needs, thereby enabling power generation on demand.
by Daniel Shawn Codd.
Ph.D.
Miranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.
Full textOggioni, Niccolò. "Modelling of microgrid energy systems with concentrated solar power." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264345.
Full textDenna master’s uppsats presenterar alla resultat från examensarbetet hos Azelio AB i Göteborg. Energy performance models för de vanligaste energiteknologerna i microgrid energisystemen designades och validerades. De forskade energiteknologerna var traditionella och bifacial solpaneler, vindkraft, energilagring genom Liion batterier och dieselgeneratorer. Modellerna användes för att simulera energiförsörjning av olika energisystem som representerar två isolerade byar i Queensland, Australia. Azelio’s CSP teknologi, som består av heliostater, värmenergilagring med phase change material och en Stirlingmotor, introducerades också. Genom att designa olika scenarier och key perfomance indicators, möjligheten att koppla av byarna ifrån det lokala kraftnätsystemet utforskades. Båda tekniska och ekonomiska synpunkter värderades. Det beslutades att 10 MW CSP kapacitet kan vara nog mycket för att nå energisjälvständighet om ytterligare backupkapacitet, t.ex. en dieselgenerator, eller demand side control strategies introducerades. Känslighetsanalys utforskade möjligheten att dela CSP systemet i två olika delar, där den med lägre kapacitet kunde avkopplas för att undvika onödig energiförsörjning. Om ekonomiska utförbarhet, off-grid system verkade dyrare än sådana system där byarna var fortfarande kopplat till det lokala kraftnätet.
Abiose, Kabir. "Improving the concentrated solar power plant through connecting the modular parabolic solar trough." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105718.
Full textCataloged from PDF version of thesis.
Concentrating solar power (CSP) stands as a promising renewable energy technology with the ability to contribute towards global reduction of carbon emissions. A major obstacle to increased adoption of CSP plants has to do with their high initial investment cost; consequently, there is a powerful desire to find improvements that decrease the initial capital investment for a CSP plant. One such improvement involves connecting modularized parabolic trough segments, each with the same dimensions, decreasing the overall amount of actuators required along with greatly simplifying system control architecture. This thesis is concerned with the extent to which parabolic solar trough modules can be connected together while still being able to operate to desired accuracy under expected load. Accuracy requirements are calculated, along with expected loads resulting in frictional torque on the trough. These expected loads are combined with a model for the effect of connecting multiple trough modules to generate a relationship between number of chained modules and required torsional stiffness. To verify said model, an experimental setup was designed and constructed to simulate loads due to both trough weight and wind loads.
by Kabir Abiose.
S.B.
Amba, Harsha Vardhan. "Operation and Monitoring of Parabolic Trough Concentrated Solar Power Plant." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5891.
Full textWilk, Gregory. "Liquid metal based high temperature concentrated solar power: Cost considerations." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54937.
Full textAvapak, Sukunta. "Failure mode analysis on concentrated solar power (CSP) plants : a case study on solar tower power plant." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/102375/1/Sukunta_Avapak_Thesis.pdf.
Full textMostaghim, Besarati Saeb. "Analysis of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrated Solar Power Applications." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5431.
Full textBester, Johan Jochemus Gildenhuys. "Carbon black nanofluid synthesis for use in concentrated solar power applications." Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/61346.
Full textDissertation (MEng)--University of Pretoria, 2016.
Chemical Engineering
MEng
Unrestricted
Guerreiro, Luís. "Energy optimization of a concentrated solar power plant with thermal storage." Doctoral thesis, Universidade de Évora, 2016. http://hdl.handle.net/10174/25594.
Full textBooks on the topic "Concentrated solar power"
United States. National Aeronautics and Space Administration., ed. Light funnel concentrator panel for solar power: Final report. Seattle, Wash: Boeing Aerospace Co., 1988.
Find full textNick, Bosco, Kurtz S. R, Photovoltaic Module Reliability Workshop, National Renewable Energy Laboratory (U.S.), and United States. Department of Energy. Office of Scientific and Technical Information, eds. Correlations in characteristic data of concentrator photovoltaics. Washington, D.C: U.S. Dept. of Energy, 2011.
Find full textVasylyev, Sergey. Slat-array concentrator development: PIER final project report. [Sacramento, Calif.]: California Energy Commission, 2009.
Find full textGreene, Lori E. High and low concentrator systems for solar electric applications V: 3-4 August 2010, San Diego, California, United States. Bellingham, Wash: SPIE, 2010.
Find full text(Society), SPIE, ed. High and low concentrator systems for solar electric applications VI: 22-24 August 2011, San Diego, California, United States. Bellingham, Wash: SPIE, 2011.
Find full textGreene, Lori E. High and low concentrator systems for solar electric applications IV: 3-5 August 2009, San Diego, California, United States. Bellingham, Wash: SPIE, 2009.
Find full textO'Neill, M. J. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator. [Cleveland, OH: National Aeronautics and Space Administration, 1990.
Find full textH, Castle C., Reimer R. R, and United States. National Aeronautics and Space Administration., eds. Solar concentrator technology development for space based applications, engineering report, ER-1001: Final report. Cleveland, Ohio: Cleveland State University, Advanced Manufacturing Center, 1995.
Find full textBaghzouz, Yahia. Concentrated Solar Power Generation. Wiley & Sons, Incorporated, John, 2016.
Find full textBaghzouz, Yahia. Concentrated Solar Power Generation. Wiley & Sons, Incorporated, John, 2016.
Find full textBook chapters on the topic "Concentrated solar power"
Sangster, Alan J. "Concentrated Solar Power." In Electromagnetic Foundations of Solar Radiation Collection, 173–206. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08512-8_8.
Full textGuerrero-Lemus, Ricardo, and José Manuel Martínez-Duart. "Concentrated Solar Power." In Lecture Notes in Energy, 135–51. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4385-7_7.
Full textMukhopadhyay, Soumitra. "Concentrated Solar Power." In Renewable Energy and AI for Sustainable Development, 115–36. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003369554-6.
Full textA. Kim, Katherine, Konstantina Mentesidi, and Yongheng Yang. "Solar Power Sources: PV, Concentrated PV, and Concentrated Solar Power." In Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®, 17–40. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315367392-2.
Full textKrothapalli, Anjaneyulu, and Brenton Greska. "Concentrated Solar Thermal Power." In Handbook of Climate Change Mitigation and Adaptation, 1503–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14409-2_33.
Full textGinley, David, R. Aswathi, S. R. Atchuta, Bikramjiit Basu, Saptarshi Basu, Joshua M. Christian, Atasi Dan, et al. "Multiscale Concentrated Solar Power." In Lecture Notes in Energy, 87–132. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33184-9_3.
Full textKrothapalli, Anjaneyulu, and Brenton Greska. "Concentrated Solar Thermal Power." In Handbook of Climate Change Mitigation and Adaptation, 1–27. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6431-0_33-2.
Full textPapaelias, Mayorkinos, Fausto Pedro García Márquez, and Isaac Segovia Ramirez. "Concentrated Solar Power: Present and Future." In Renewable Energies, 51–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45364-4_4.
Full textAlexopoulos, Spiros. "Estimation of Concentrated Solar Power Potential." In Encyclopedia of Sustainability Science and Technology, 1–21. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-4939-2493-6_1127-1.
Full textAlexopoulos, Spiros. "Estimation of Concentrated Solar Power Potential." In Encyclopedia of Sustainability Science and Technology Series, 23–42. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1422-8_1127.
Full textConference papers on the topic "Concentrated solar power"
Kumar, T. Prakash, S. Dinesh Kumar, D. Josesph, and R. Jeya Kumar. "Fresnel Solar Power using molten salt Concentrated Solar Power." In 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE). IEEE, 2013. http://dx.doi.org/10.1109/icgce.2013.6823486.
Full textElahi, Engr Tehseen, Mian Haseeb Mushtaq, H. M. Usman Shafique, and Syed Ahsan Ali. "Solar power generation using concentrated technology." In 2015 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET). IEEE, 2015. http://dx.doi.org/10.1109/honet.2015.7395425.
Full textTamme, Rainer, Reiner Buck, and Stephan Mo¨ller. "Advanced Hydrogen Generation With Concentrated Solar Power Systems." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44085.
Full textMayette, Jessica B., Roger L. Davenport, and Russell E. Forristall. "The Salt River Project SunDish Dish-Stirling System." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-111.
Full textDing, Qing, Kyle Jacobs, Aakash Choubal, Glennys Mensing, Zhong Zhang, Robert Tirawat, Guangdong Zhu, et al. "A Simple Planar Focusing Collector for Concentrated Solar Power Applications." In Optics for Solar Energy. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ose.2017.rm2c.3.
Full textAbousaba, Mohamed M., Hatem Abdelraouf, Fuad Abulfotuh, Marwa Zeitoun, and Javier Garcia-Barberena. "Modeling of decoupling concentrated solar power plant." In 2016 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2016. http://dx.doi.org/10.1109/irsec.2016.7983930.
Full textMontenon, Alaric C., Nestor Fylaktos, Fabio Montagnino, Filippo Paredes, and Costas N. Papanicolas. "Concentrated solar power in the built environment." In SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2017. http://dx.doi.org/10.1063/1.4984402.
Full textEscobar, Rodrigo, and Teresita Larrain. "Net Energy for Concentrated Solar Power in Chile." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54130.
Full textNeber, Matthew, and Hohyun Lee. "Silicon Carbide Solar Receiver for Residential Scale Concentrated Solar Power." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88372.
Full textSharma, Anupam, and Madhu Sharma. "Power & energy optimization in solar photovoltaic and concentrated solar power systems." In 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2017. http://dx.doi.org/10.1109/appeec.2017.8308973.
Full textReports on the topic "Concentrated solar power"
Chen, Gang, and Zhifeng Ren. Concentrated Solar Thermoelectric Power. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1191490.
Full textPROJECT STAFF. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1039304.
Full textMuralidharan, Govindarajan, Shivakant Shukla, Roger Miller, Donovan Leonard, Jim Myers, and Paul Enders. Cast Components for High Temperature Concentrated Solar Power Thermal Systems. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1890293.
Full textWong, Bunsen. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1165341.
Full textMazumder, Malay K., Mark N. Horenstein, and Nitin R. Joglekar. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1351259.
Full textSanta Lucia, C. Evaluation of Ceramic Heat Exchanger for Next-Generation Concentrated Solar Power. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1734612.
Full textTownley, David, and Paul Gee. Combined Heat & Power Using the Infinia Concentrated Solar CHP PowerDish System. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada607481.
Full textKumar, Vinod. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1355304.
Full textGarcia-Diaz, Brenda L. Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next Generation Concentrated Solar Power Systems. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1491796.
Full textYu, Wenhua, and Dileep Singh. Prototype Testing of Encapsulated Phase Change Material Thermal Energy Storage (EPCM-TES) for Concentrated Solar Power. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1512771.
Full text