Academic literature on the topic 'Concept Drift Detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concept Drift Detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Concept Drift Detection"
Zhu, Jiaqi, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Wenqiao Zhang. "METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection." Proceedings of the VLDB Endowment 17, no. 4 (2023): 794–807. http://dx.doi.org/10.14778/3636218.3636233.
Full textSakurai, Guilherme Yukio, Jessica Fernandes Lopes, Bruno Bogaz Zarpelão, and Sylvio Barbon Junior. "Benchmarking Change Detector Algorithms from Different Concept Drift Perspectives." Future Internet 15, no. 5 (2023): 169. http://dx.doi.org/10.3390/fi15050169.
Full textToor, Affan Ahmed, Muhammad Usman, Farah Younas, Alvis Cheuk M. Fong, Sajid Ali Khan, and Simon Fong. "Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems." Sensors 20, no. 7 (2020): 2131. http://dx.doi.org/10.3390/s20072131.
Full textKumar, Sanjeev, Ravendra Singh, Mohammad Zubair Khan, and Abdulfattah Noorwali. "Design of adaptive ensemble classifier for online sentiment analysis and opinion mining." PeerJ Computer Science 7 (August 5, 2021): e660. http://dx.doi.org/10.7717/peerj-cs.660.
Full textM, Thangam, Bhuvaneswari A, and Sangeetha J. "A Framework to Detect and Classify Time-based Concept Drift." Indian Journal of Science and Technology 16, no. 48 (2023): 4631–37. https://doi.org/10.17485/IJST/v16i48.583.
Full textDries, Anton, and Ulrich Rückert. "Adaptive concept drift detection." Statistical Analysis and Data Mining: The ASA Data Science Journal 2, no. 5-6 (2009): 311–27. http://dx.doi.org/10.1002/sam.10054.
Full textLu, Pengqian, Jie Lu, Anjin Liu, and Guangquan Zhang. "Early Concept Drift Detection via Prediction Uncertainty." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 18 (2025): 19124–32. https://doi.org/10.1609/aaai.v39i18.34105.
Full textPalli, Abdul Sattar, Jafreezal Jaafar, Heitor Murilo Gomes, Manzoor Ahmed Hashmani, and Abdul Rehman Gilal. "An Experimental Analysis of Drift Detection Methods on Multi-Class Imbalanced Data Streams." Applied Sciences 12, no. 22 (2022): 11688. http://dx.doi.org/10.3390/app122211688.
Full textHu, Hanqing, and Mehmed Kantardzic. "Heuristic ensemble for unsupervised detection of multiple types of concept drift in data stream classification." Intelligent Decision Technologies 15, no. 4 (2022): 609–22. http://dx.doi.org/10.3233/idt-210115.
Full textSobolewski, Piotr. "Concept Drift Detection and Model Selection with Simulated Recurrence and Ensembles of Statistical Detectors." JUCS - Journal of Universal Computer Science 19, no. (4) (2013): 462–83. https://doi.org/10.3217/jucs-019-04-0462.
Full textDissertations / Theses on the topic "Concept Drift Detection"
Ostovar, Alireza. "Business process drift: Detection and characterization." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/127157/1/Alireza_Ostovar_Thesis.pdf.
Full textESCOVEDO, TATIANA. "NEUROEVOLUTIVE LEARNING AND CONCEPT DRIFT DETECTION IN NON-STATIONARY ENVIRONMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26748@1.
Full textRoded, Keren. "The concept of drift and operationalization of its detection in simulated data." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63135.
Full textD'Ettorre, Sarah. "Fine-Grained, Unsupervised, Context-based Change Detection and Adaptation for Evolving Categorical Data." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35518.
Full textPesaranghader, Ali. "A Reservoir of Adaptive Algorithms for Online Learning from Evolving Data Streams." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38190.
Full textHenke, Márcia. "Deteção de Spam baseada na evolução das características com presença de Concept Drift." Universidade Federal do Amazonas, 2015. http://tede.ufam.edu.br/handle/tede/4708.
Full textSANTOS, Silas Garrido Teixeira de Carvalho. "Avaliação criteriosa dos algoritmos de detecção de concept drifts." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17310.
Full textDal, Pozzolo Andrea. "Adaptive Machine Learning for Credit Card Fraud Detection." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/221654.
Full textDong, Yue. "Higher Order Neural Networks and Neural Networks for Stream Learning." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35731.
Full textTogbe, Maurras Ulbricht. "Détection distribuée d'anomalies dans les flux de données." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS400.
Full textBook chapters on the topic "Concept Drift Detection"
Putatunda, Sayan. "Concept Drift Detection in Data Streams." In Practical Machine Learning for Streaming Data with Python. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6867-4_2.
Full textOgasawara, Eduardo, Rebecca Salles, Fabio Porto, and Esther Pacitti. "Change Points and Concept Drift Detection." In Synthesis Lectures on Data Management. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-75941-3_4.
Full textZenisek, Jan, Gabriel Kronberger, Josef Wolfartsberger, Norbert Wild, and Michael Affenzeller. "Concept Drift Detection with Variable Interaction Networks." In Computer Aided Systems Theory – EUROCAST 2019. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45093-9_36.
Full textLiu, Anjin, Guangquan Zhang, and Jie Lu. "Concept Drift Detection Based on Anomaly Analysis." In Neural Information Processing. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12637-1_33.
Full textYu, Shujian, and Zubin Abraham. "Concept Drift Detection with Hierarchical Hypothesis Testing." In Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974973.86.
Full textAbirami, M. G., and Gilad Gressel. "Concept Drift Detection Using Minimum Prediction Deviation." In Advances in Intelligent Systems and Computing. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1249-7_24.
Full textMenon, Aditya Gopal, and Gilad Gressel. "Concept Drift Detection in Phishing Using Autoencoders." In Communications in Computer and Information Science. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0419-5_17.
Full textSobolewski, Piotr, and Michał Woźniak. "Enhancing Concept Drift Detection with Simulated Recurrence." In Advances in Intelligent Systems and Computing. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32518-2_15.
Full textTakano, Taisei, and Hisashi Koga. "Fast Concept Drift Detection Exploiting Product Quantization." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68312-1_20.
Full textFriedrich, Björn. "Unsupervised Statistical Concept Drift Detection for Behaviour Abnormality Detection." In Empowering Independent Living using the ICF. Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-44688-8_5.
Full textConference papers on the topic "Concept Drift Detection"
Li, Jin, Kleanthis Malialis, Stelios G. Vrachimis, and Marios M. Polycarpou. "Online Detection of Water Contamination Under Concept Drift." In 2025 IEEE Symposia on Computational Intelligence for Energy, Transport and Environmental Sustainability (CIETES Companion). IEEE, 2025. https://doi.org/10.1109/cietescompanion65203.2025.11003354.
Full textIlic, Aleksandra Stojnev, and Dragan Stojanovic. "Visual Analytics of Streaming Data in Concept Drift Detection." In 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN). IEEE, 2024. http://dx.doi.org/10.1109/icetran62308.2024.10645138.
Full textYu, Jiangbin, Han Liu, Qing Guo, Xia Chen, and Meng Xue. "A Concept Drift Detection Algorithm for Power Data Stream." In 2024 6th International Conference on Energy Systems and Electrical Power (ICESEP). IEEE, 2024. http://dx.doi.org/10.1109/icesep62218.2024.10651984.
Full textLi, Mengyuan. "An Online Anomaly Detection Algorithm with Adaptive Concept Drift." In 2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE). IEEE, 2024. http://dx.doi.org/10.1109/cisce62493.2024.10653010.
Full textRahimli, Leyla, Feras M. Awaysheh, Sawsan Al Zubi, and Sadi Alawadi. "Federated Learning Drift Detection: An Empirical Study on the Impact of Concept and Data Drift." In 2024 2nd International Conference on Federated Learning Technologies and Applications (FLTA). IEEE, 2024. https://doi.org/10.1109/flta63145.2024.10839814.
Full textChen, Yijie, and Wei Guo. "Concept drift data stream regression model based on adaptive drift detection and incremental broad learning." In International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2024), edited by Xin Xu and Azlan bin Mohd Zain. SPIE, 2025. https://doi.org/10.1117/12.3061638.
Full textYang, Liusha, Zhongwen Peng, and Haosheng Yu. "Unsupervised Concept Drift Detection and Adaptation Based on Random Forest." In 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE). IEEE, 2025. https://doi.org/10.1109/icaace65325.2025.11019964.
Full textYu, Xiangyu, Carlos Natalino, Paolo Monti, et al. "Enhancing Operational Security of Human-to-Machine Applications through Concept Drift Detection." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.w3j.5.
Full textDries, Anton, and Ulrich Rückert. "Adaptive Concept Drift Detection." In Proceedings of the 2009 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2009. http://dx.doi.org/10.1137/1.9781611972795.21.
Full textPedro Mauad Nogueira, João, and Gilberto Reynoso Meza. "OPTIMIZED ENSEMBLED CONCEPT DRIFT DETECTION." In ANAIS DO LVI SIMPóSIO BRASILEIRO DE PESQUISA OPERACIONAL. Galoa, 2024. https://doi.org/10.59254/sbpo-2024-193497.
Full text