Journal articles on the topic 'Concept Drift Detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Concept Drift Detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhu, Jiaqi, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Wenqiao Zhang. "METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection." Proceedings of the VLDB Endowment 17, no. 4 (2023): 794–807. http://dx.doi.org/10.14778/3636218.3636233.
Full textSakurai, Guilherme Yukio, Jessica Fernandes Lopes, Bruno Bogaz Zarpelão, and Sylvio Barbon Junior. "Benchmarking Change Detector Algorithms from Different Concept Drift Perspectives." Future Internet 15, no. 5 (2023): 169. http://dx.doi.org/10.3390/fi15050169.
Full textToor, Affan Ahmed, Muhammad Usman, Farah Younas, Alvis Cheuk M. Fong, Sajid Ali Khan, and Simon Fong. "Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems." Sensors 20, no. 7 (2020): 2131. http://dx.doi.org/10.3390/s20072131.
Full textKumar, Sanjeev, Ravendra Singh, Mohammad Zubair Khan, and Abdulfattah Noorwali. "Design of adaptive ensemble classifier for online sentiment analysis and opinion mining." PeerJ Computer Science 7 (August 5, 2021): e660. http://dx.doi.org/10.7717/peerj-cs.660.
Full textM, Thangam, Bhuvaneswari A, and Sangeetha J. "A Framework to Detect and Classify Time-based Concept Drift." Indian Journal of Science and Technology 16, no. 48 (2023): 4631–37. https://doi.org/10.17485/IJST/v16i48.583.
Full textDries, Anton, and Ulrich Rückert. "Adaptive concept drift detection." Statistical Analysis and Data Mining: The ASA Data Science Journal 2, no. 5-6 (2009): 311–27. http://dx.doi.org/10.1002/sam.10054.
Full textLu, Pengqian, Jie Lu, Anjin Liu, and Guangquan Zhang. "Early Concept Drift Detection via Prediction Uncertainty." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 18 (2025): 19124–32. https://doi.org/10.1609/aaai.v39i18.34105.
Full textPalli, Abdul Sattar, Jafreezal Jaafar, Heitor Murilo Gomes, Manzoor Ahmed Hashmani, and Abdul Rehman Gilal. "An Experimental Analysis of Drift Detection Methods on Multi-Class Imbalanced Data Streams." Applied Sciences 12, no. 22 (2022): 11688. http://dx.doi.org/10.3390/app122211688.
Full textHu, Hanqing, and Mehmed Kantardzic. "Heuristic ensemble for unsupervised detection of multiple types of concept drift in data stream classification." Intelligent Decision Technologies 15, no. 4 (2022): 609–22. http://dx.doi.org/10.3233/idt-210115.
Full textSobolewski, Piotr. "Concept Drift Detection and Model Selection with Simulated Recurrence and Ensembles of Statistical Detectors." JUCS - Journal of Universal Computer Science 19, no. (4) (2013): 462–83. https://doi.org/10.3217/jucs-019-04-0462.
Full textSun, Yange, Zhihai Wang, Yang Bai, Honghua Dai, and Saeid Nahavandi. "A Classifier Graph Based Recurring Concept Detection and Prediction Approach." Computational Intelligence and Neuroscience 2018 (June 7, 2018): 1–13. http://dx.doi.org/10.1155/2018/4276291.
Full textYOSHIDA, Kenichi. "Brute force concept drift detection." Procedia Computer Science 225 (2023): 1672–81. http://dx.doi.org/10.1016/j.procs.2023.10.156.
Full textWares, Scott, John Isaacs, and Eyad Elyan. "Burst Detection-Based Selective Classifier Resetting." Journal of Information & Knowledge Management 20, no. 02 (2021): 2150027. http://dx.doi.org/10.1142/s0219649221500271.
Full textGâlmeanu, Honorius, and Răzvan Andonie. "Concept Drift Adaptation with Incremental–Decremental SVM." Applied Sciences 11, no. 20 (2021): 9644. http://dx.doi.org/10.3390/app11209644.
Full textMcKay, Helen, Nathan Griffiths, Phillip Taylor, Theo Damoulas, and Zhou Xu. "Bi-directional online transfer learning: a framework." Annals of Telecommunications 75, no. 9-10 (2020): 523–47. http://dx.doi.org/10.1007/s12243-020-00776-1.
Full textLu, Ning, Guangquan Zhang, and Jie Lu. "Concept drift detection via competence models." Artificial Intelligence 209 (April 2014): 11–28. http://dx.doi.org/10.1016/j.artint.2014.01.001.
Full textMulimani, Deepa C., Shashikumar G. Totad, and Prakashgoud R. Patil. "Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning." International Journal of Natural Computing Research 10, no. 4 (2021): 1–22. http://dx.doi.org/10.4018/ijncr.2021100101.
Full textKumar, Sanjeev, and Ravendra Singh. "Comparative Analysis of Drift Detection Based Adaptive Ensemble Model with Different Drift Detection Techniques." Journal of University of Shanghai for Science and Technology 23, no. 06 (2021): 49–55. http://dx.doi.org/10.51201/jusst/21/06492.
Full textHan, Meng, Fanxing Meng, and Chunpeng Li. "Variance Feedback Drift Detection Method for Evolving Data Streams Mining." Applied Sciences 14, no. 16 (2024): 7157. http://dx.doi.org/10.3390/app14167157.
Full textSankara Prasanna Kumar, M., A. P. Siva Kumar, and K. Prasanna. "Data Mining Models of High Dimensional Data Streams, and Contemporary Concept Drift Detection Methods: a Comprehensive Review." International Journal of Engineering & Technology 7, no. 3.6 (2018): 148. http://dx.doi.org/10.14419/ijet.v7i3.6.14959.
Full textBarddal, Jean Paul, Heitor Murilo Gomes, and Fabrício Enembreck. "Advances on Concept Drift Detection in Regression Tasks Using Social Networks Theory." International Journal of Natural Computing Research 5, no. 1 (2015): 26–41. http://dx.doi.org/10.4018/ijncr.2015010102.
Full textAlthabiti, Mashail Shaeel, and Manal Abdullah. "CDDM: Concept Drift Detection Model for Data Stream." International Journal of Interactive Mobile Technologies (iJIM) 14, no. 10 (2020): 90. http://dx.doi.org/10.3991/ijim.v14i10.14803.
Full textChu, Renjie, Peiyuan Jin, Hanli Qiao, and Quanxi Feng. "Intrusion detection in the IoT data streams using concept drift localization." AIMS Mathematics 9, no. 1 (2023): 1535–61. http://dx.doi.org/10.3934/math.2024076.
Full textGower-Winter, Brandon, Georg Krempl, Sergey Dragomiretskiy, Tineke Jelsma, and Arno Siebes. "Identifying Predictions That Influence the Future: Detecting Performative Concept Drift in Data Streams." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 11 (2025): 11726–34. https://doi.org/10.1609/aaai.v39i11.33276.
Full textS, Subha, and G. R. Sathiaseelan J. "Combination of One-Class and Multi-Class Anomaly Detection Using Under-Sampling and Ensemble Technique in IoT Healthcare Data." Indian Journal of Science and Technology 17, no. 5 (2024): 386–96. https://doi.org/10.17485/IJST/v17i5.1645.
Full textCosta, Albert, Rafael Giusti, and Eulanda M. dos Santos. "Analysis of Descriptors of Concept Drift and Their Impacts." Informatics 12, no. 1 (2025): 13. https://doi.org/10.3390/informatics12010013.
Full textSheluhin, Oleg I., Vyacheslav V. Barkov, and Airapet G. Simonyan. "Concept drift detection in mobile applications classification using autoencoders." H&ES Research 15, no. 3 (2023): 20–29. http://dx.doi.org/10.36724/2409-5419-2023-15-3-20-29.
Full textSandeep Bharadwaj Mannapur. "Understanding Data Drift and Concept Drift in Machine Learning Systems." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 1 (2025): 318–30. https://doi.org/10.32628/cseit25111239.
Full textSubha, S., and J. G. R. Sathiaseelan. "Combination of One-Class and Multi-Class Anomaly Detection Using Under-Sampling and Ensemble Technique in IoT Healthcare Data." Indian Journal Of Science And Technology 17, no. 5 (2024): 386–96. http://dx.doi.org/10.17485/ijst/v17i5.1645.
Full textLEE, Jeonghoon, and Yoon-Joon LEE. "Concept Drift Detection for Evolving Stream Data." IEICE Transactions on Information and Systems E94-D, no. 11 (2011): 2288–92. http://dx.doi.org/10.1587/transinf.e94.d.2288.
Full textDesale, Ketan Sanjay, and Swati Shinde. "Real-Time Concept Drift Detection and Its Application to ECG Data." International Journal of Online and Biomedical Engineering (iJOE) 17, no. 10 (2021): 160. http://dx.doi.org/10.3991/ijoe.v17i10.25473.
Full textMehmood, Tajwar, Seemab Latif, Nor Shahida Mohd Jamail, Asad Malik, and Rabia Latif. "LSTMDD: an optimized LSTM-based drift detector for concept drift in dynamic cloud computing." PeerJ Computer Science 10 (January 31, 2024): e1827. http://dx.doi.org/10.7717/peerj-cs.1827.
Full textBeshah, Yonas Kibret, Surafel Lemma Abebe, and Henock Mulugeta Melaku. "Drift Adaptive Online DDoS Attack Detection Framework for IoT System." Electronics 13, no. 6 (2024): 1004. http://dx.doi.org/10.3390/electronics13061004.
Full textMauricio Gonçalves Júnior, Paulo, and Sylvain Chartier. "Technique Analysis for Multilayer Perceptrons to Deal with Concept Drift in Data Streams." Interdisciplinary Journal of Information, Knowledge, and Management 19 (2024): 034. https://doi.org/10.28945/5405.
Full textVasilieva, Ivan, and Olga Petrov. "An Empirical Survey of Fully Unsupervised Drift Detection Algorithms for Data Streams." International journal of data science and machine learning 05, no. 01 (2025): 20–28. https://doi.org/10.55640/ijdsml-05-01-05.
Full textPriyanka Rajamani and Dr. J. Savitha. "Comparative Analysis of Unsupervised Concept Drift Detection Techniques in High-Dimensional Biomedical Data Streams." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 3 (2025): 437–54. https://doi.org/10.32628/cseit25113302.
Full textHu, Lisha, Yaru Lu, and Yuehua Feng. "Concept Drift Detection Based on Deep Neural Networks and Autoencoders." Applied Sciences 15, no. 6 (2025): 3056. https://doi.org/10.3390/app15063056.
Full textAdebayo, Oluwadare Samuel, Thompson Aderonke Favour-Bethy, Owolafe Otasowie, and Orogun Adebola Okunola. "Comparative Review of Credit Card Fraud Detection using Machine Learning and Concept Drift Techniques." International Journal of Computer Science and Mobile Computing 12, no. 7 (2023): 24–48. http://dx.doi.org/10.47760/ijcsmc.2023.v12i07.004.
Full textLi, Xiangjun, Yong Zhou, Ziyan Jin, Peng Yu, and Shun Zhou. "A Classification and Novel Class Detection Algorithm for Concept Drift Data Stream Based on the Cohesiveness and Separation Index of Mahalanobis Distance." Journal of Electrical and Computer Engineering 2020 (March 19, 2020): 1–8. http://dx.doi.org/10.1155/2020/4027423.
Full textAbdualrhman, Mohammed Ahmed Ali, and M. C. Padma. "Deterministic Concept Drift Detection in Ensemble Classifier Based Data Stream Classification Process." International Journal of Grid and High Performance Computing 11, no. 1 (2019): 29–48. http://dx.doi.org/10.4018/ijghpc.2019010103.
Full textNamitha K. and Santhosh Kumar G. "Concept Drift Detection in Data Stream Clustering and its Application on Weather Data." International Journal of Agricultural and Environmental Information Systems 11, no. 1 (2020): 67–85. http://dx.doi.org/10.4018/ijaeis.2020010104.
Full textManikandaraja, Abishek, Peter Aaby, and Nikolaos Pitropakis. "Rapidrift: Elementary Techniques to Improve Machine Learning-Based Malware Detection." Computers 12, no. 10 (2023): 195. http://dx.doi.org/10.3390/computers12100195.
Full textLin, Ximing, Longtao Chang, Xiushan Nie, and Fei Dong. "Temporal Attention for Few-Shot Concept Drift Detection in Streaming Data." Electronics 13, no. 11 (2024): 2183. http://dx.doi.org/10.3390/electronics13112183.
Full textGandhi, Jay, and Vaibhav Gandhi. "Novel Class Detection with Concept Drift in Data Stream - AhtNODE." International Journal of Distributed Systems and Technologies 11, no. 1 (2020): 15–26. http://dx.doi.org/10.4018/ijdst.2020010102.
Full textMahdi, Osama A., Eric Pardede, Nawfal Ali, and Jinli Cao. "Fast Reaction to Sudden Concept Drift in the Absence of Class Labels." Applied Sciences 10, no. 2 (2020): 606. http://dx.doi.org/10.3390/app10020606.
Full textOmori, Nicolas Jashchenko, Gabriel Marques Tavares, Paolo Ceravolo, and Sylvio Barbon Jr. "Comparing Concept Drift Detection with Process Mining Software." iSys - Brazilian Journal of Information Systems 13, no. 4 (2020): 101–25. http://dx.doi.org/10.5753/isys.2020.832.
Full textDu, L., Q. Song, L. Zhu, and X. Zhu. "A Selective Detector Ensemble for Concept Drift Detection." Computer Journal 58, no. 3 (2014): 457–71. http://dx.doi.org/10.1093/comjnl/bxu050.
Full textZambon, Daniele, Cesare Alippi, and Lorenzo Livi. "Concept Drift and Anomaly Detection in Graph Streams." IEEE Transactions on Neural Networks and Learning Systems 29, no. 11 (2018): 5592–605. http://dx.doi.org/10.1109/tnnls.2018.2804443.
Full textCabral, Danilo Rafael de Lima, and Roberto Souto Maior de Barros. "Concept drift detection based on Fisher’s Exact test." Information Sciences 442-443 (May 2018): 220–34. http://dx.doi.org/10.1016/j.ins.2018.02.054.
Full textAdams, Jan Niklas, Cameron Pitsch, Tobias Brockhoff, and Wil M. P. van der Aalst. "An Experimental Evaluation of Process Concept Drift Detection." Proceedings of the VLDB Endowment 16, no. 8 (2023): 1856–69. http://dx.doi.org/10.14778/3594512.3594517.
Full text