Academic literature on the topic 'Concrete arch bridge'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concrete arch bridge.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Concrete arch bridge"
Tan, Geem Eng, Tai Boon Ong, and Ong Chong Yong. "Trends and Development of Precast Concrete Closed Spandrel Arch Bridge Systems." Applied Mechanics and Materials 802 (October 2015): 295–300. http://dx.doi.org/10.4028/www.scientific.net/amm.802.295.
Full textYu, Tong-Hua. "Concrete trussed arch bridges in China." Canadian Journal of Civil Engineering 14, no. 6 (December 1, 1987): 820–27. http://dx.doi.org/10.1139/l87-120.
Full textXiang, Zhong Fu, and Yong Zeng. "Chongqing Bridge and its Combination Bridge." Applied Mechanics and Materials 147 (December 2011): 45–49. http://dx.doi.org/10.4028/www.scientific.net/amm.147.45.
Full textChen, Xu Yong, and Xiao Xie. "Research on Masonry Arch-Bridges Reinforcement and Reconstruction Methods." Applied Mechanics and Materials 501-504 (January 2014): 1152–56. http://dx.doi.org/10.4028/www.scientific.net/amm.501-504.1152.
Full textXu, Jia Lin, and Yong Liang Zhang. "Test and Analysis of Dynamic Characteristics of Reinforced Concrete Arch Bridge." Applied Mechanics and Materials 599-601 (August 2014): 1081–84. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1081.
Full textHu, Da Lin, Tian Qi Qu, Hong Bin Wang, and Long Gang Chen. "Seismic Analysis of Reinforced Concrete Rib Arch Bridge." Applied Mechanics and Materials 256-259 (December 2012): 1496–502. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.1496.
Full textLu, Wei, Ding Zhou, and Zhi Chen. "Practical Calculation of Cable-Stayed Arch Bridge Lateral Stability." Applied Mechanics and Materials 587-589 (July 2014): 1586–92. http://dx.doi.org/10.4028/www.scientific.net/amm.587-589.1586.
Full textKaraś, Sławomir, and Beata Klimek. "Diagnosis of 100 years old concrete from M. Lutoslawski Bridge in Lublin." Budownictwo i Architektura 13, no. 2 (June 11, 2014): 109–18. http://dx.doi.org/10.35784/bud-arch.1885.
Full textTang, Yingying, Yong’e Wang, Yanwei Niu, Hong Chen, and Huang Pingming. "Monitoring of Daily Temperature Effect on Deck Deformation of Concrete Arch Bridge." MATEC Web of Conferences 206 (2018): 01011. http://dx.doi.org/10.1051/matecconf/201820601011.
Full textLi, Xiao Ke, Li Xin Liu, Shi Ming Liu, and Shun Bo Zhao. "Static Analysis of Reinforced Concrete Arch-Deck Bridge with Archaized Connective Corridors." Applied Mechanics and Materials 238 (November 2012): 738–42. http://dx.doi.org/10.4028/www.scientific.net/amm.238.738.
Full textDissertations / Theses on the topic "Concrete arch bridge"
McNulty, Paul. "Behaviour and analysis of a novel skew flexible concrete arch bridge." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.679480.
Full textVan, Wijk Heinrich. "Validation of the deck behaviour due to post-tension loading of Ashton arch bridge." Master's thesis, Faculty of Engineering and the Built Environment, 2019. https://hdl.handle.net/11427/31783.
Full textAndersson, Andreas. "Capacity assessment of arch bridges with backfill : Case of the old Årsta railway bridge." Doctoral thesis, KTH, Bro- och stålbyggnad, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32827.
Full textArbetet i föreliggande avhandling omfattar analyser av befintliga bågbroar med ovanliggande fyllning. Huvudsyftet är att uppskatta bärförmågan i brottgränstillstånd. En fallstudie av gamla Årstabron redovisas, vilken utgör både initieringen och en direkt tillämpning av föreliggande forskning. Kravet från broförvaltaren är att öka brons livslängd med 50 år, samtidigt som axellasten ska ökas från nuvarande 22.5 ton till 25 ton. Utförda analyser visar på stor spridning i uppskattad bärförmåga, beroende på ett stort antal parametrar. En av de främsta faktorerna är fyllningens egenskaper, vilken kan resultera i en markant ökning av bärförmågan p.g.a. samverkan med bågen. Baserat på teoretiska analyser, tillståndsbedömningar och krav från broförvaltaren beslutades att bron skulle förstärkas. En förstärkningsmetod har utvecklats i nära samarbete med broförvaltaren och personer som tidigare utfört tillståndsbedömningarna. Analyserna visar ett utpräglat tredimensionellt beteende, vilket har föranlett användandet av icke-linjära finita elementmetoder. Krav på full trafik under samtliga förstärkningsarbeten har resulterat i att dessa utförs enligt en föreskriven ordning, som ska reducera minskning i bärförmåga under samtliga etapper. Förstärkningsförslaget godkändes av Banverket och är för närvarande under byggnation. Enligt plan ska dessa slutföras under 2012. Fältmätningar har använts för att bestämma det statiska verkningssättet under brukslaster, vilket visas ge goda resultat. Resulterande töjningar från passerande tåg har uppmäts i bågen, både före, under och efter förstärkning. Resultaten har använts både för att kalibrera beräkningsmodeller och att verifiera utförda förstärkningar. Samverkan mellan båge och fyllning har inte kunnat verifierats för den aktuella bron och de utvecklade förstärkningarna baseras på en modell där både fyllning och sidomurar endast utgör yttre verkande last. De framtagna finita element modellerna har jämförts med experimentella resultat från litteraturen, omfattande tegelvalvsbroar med ovanliggande fyllning belastade till brott. Generellt erhålls god överensstämmelse om full samverkan mellan båge och fyllning antas. Om fyllningen istället endast betraktas som yttre last, minskar lastkapaciteten ofta med en faktor 2 till 3. Fortfarande uppvisar ett antal faktorer stor inverkan på bärförmågan, vilka ofta är svåra att med säkerhet bestämma. Ett konservativt betraktningssätt rekommenderas, även om delvis samverkan med fyllningen fortfarande kan öka bärförmågan avsevärt.
QC 20110426
Thornton, Nathan Paul. "Live Load Testing of Appalachia, Va Concrete Arch Bridges for Load Rating Recommendation." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/35195.
Full textTwo adjoining open spandrel reinforced concrete arch bridges in downtown Appalachia, Virginia were selected for live load testing by Virginia Department of Transportation (VDOT). Both bridges have supported an increasing amount of extreme coal truck traffic throughout their service life and are essential to the efficient transport of coal in the region. Because of their age, having been built in 1929, and the amount of visible damage and repairs, VDOT was concerned about their remaining capacity and safe operation.
The live load tests focused on global behavior characteristics such as service strain and deflection as well as local behavior of the arches surrounding significant repairs. It was found that the strain and deflection data collected during load testing displayed linear elastic behavior, indicating excess capacity beyond the test loads. Also, given the loading applied, the measured strains and deflections were small in magnitude, showing that the bridges are still acting as stiff structures and are in good condition.
Data collected during these tests was compared to results from a finite element model of the bridges to determine the coal truck size which is represented by the live load test loading configurations. The model comparisons determined the test loads produced comparable deflections to those produced by the target coal truck load. Through this approach, a recommendation was given to VDOT regarding the satisfactory condition of the aging bridges to aid in the process of load rating and maintenance scheduling for the two bridges.
Master of Science
Pěkník, Robin. "Obloukový most přes dálnici." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227654.
Full textGlajcar, Karel. "Lávka tvořená předpjatým pásem s obloukem." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225608.
Full textRolenc, Jan. "Rekonstrukce mostu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225697.
Full textOlšák, Martin. "Obloukový most přes dálnici." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240380.
Full textHerka, Martin. "Návrh, posouzení a optimalizace obloukové konstrukce." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226929.
Full textTotková, Lucie. "Lávka pro pěší přes řeku Bečvu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240273.
Full textBooks on the topic "Concrete arch bridge"
Beal, David B. Load capacity of jack arch bridges. Albany, N.Y: New York State Dept. of Transportation, Engineering Research and Development Bureau, 1985.
Find full textOhio. Dept. of Transportation. and United States. Federal Highway Administration., eds. The Concrete arch supplement to The Ohio historic bridge inventory, evaluation, and preservation plan. [Columbus]: Ohio Dept. of Transportation in cooperation with the Federal Highway Administration, 1994.
Find full textDiLucia, Ann Marie. High arch bridge: A cost benefit analysis of preservation techniques as applied to a vernacular concrete structure. 1998.
Find full textKikites, Andreas. Use of high performance concrete in the design of arch bridges. 2004, 2004.
Find full textBook chapters on the topic "Concrete arch bridge"
Stroscio, Riccardo. "Steel-Concrete Composite Flat Arch Bridge." In High Tech Concrete: Where Technology and Engineering Meet, 2645–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_301.
Full textKaminaga, Yuki, Takeshi Nakagawa, Hiromi Hosono, Hidetoshi Ichikawa, and Masanao Kajiura. "Construction of an Arch Bridge by Lowering Method." In High Tech Concrete: Where Technology and Engineering Meet, 2629–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_299.
Full textGleich, Philipp A., and Reinhard Maurer. "Bridge Reassessments – Realistic Shear Capacity Evaluation Using Arch Action Model." In High Tech Concrete: Where Technology and Engineering Meet, 1822–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_209.
Full textWeiher, Hermann, Andreas Praus, and Katrin Runtemund. "Strengthening of 100 Year Old Concrete Arch Bridge ‘Kuhbrücke/Hildesheim’." In High Tech Concrete: Where Technology and Engineering Meet, 2004–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_229.
Full textVan Bogaert, Philippe. "Refurbishment of a Heritage Concrete Tied Arch Bridge Across River Lys." In High Tech Concrete: Where Technology and Engineering Meet, 1968–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_225.
Full textXiang, Yiqiang, and Bishnu Gupt Gautam. "Reinforced Concrete Multi-Rib Arch Bridge Strengthened by Changing Structural System." In Advances and Challenges in Structural Engineering, 56–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_6.
Full textKamiński, Tomasz, Mieszko Kużawa, and Jan Bień. "Experimental and Numerical Assessment of an Old Backfilled Concrete Arch Bridge." In Structural Integrity, 194–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29227-0_18.
Full textHe, Zhi-Jun, Hong-Ju Han, Ji-Ping Guo, and Jian Yang. "Cantilever Casting Construction Technology of Reinforced Concrete Main Arch Ring of ShaTuo Bridge." In Structural Integrity, 732–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29227-0_80.
Full textWu, Fei, Donghua Xiao, Jiancheng Yuan, Sheng Zhou, Zhicheng Tan, and Zhongpeng Zou. "The Advantages of Steel-Concrete Composite Girder in Half-Through Concrete-Filled Steel Tube Bowstring Arch Bridge." In Structural Integrity, 569–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29227-0_61.
Full textNijsse, R., and A. H. Snijder. "The Foundation of an All Glass Arch Bridge for the Green Village on the Delft University Campus." In High Tech Concrete: Where Technology and Engineering Meet, 2546–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_290.
Full textConference papers on the topic "Concrete arch bridge"
Cizmar, D., D. Mestrovic, and J. Radic. "Arch bridge made of reactive powder concrete." In HIGH PERFORMANCE STRUCTURES AND MATERIALS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/hpsm06042.
Full textPapile, Tony. "Restoration of a Concrete Arch Railroad Bridge." In Third National Congress on Civil Engineering History and Heritage. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40594(265)27.
Full textJohnson, Arne P., Gary J. Klein, and John S. Lawler. "Extending the Life of Historic Concrete Bridges." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1080.
Full textHuang, Zhonglei, Jijun Su, and Yifeng Zheng. "Researchof reinforced concrete deck arch bridge detection technology." In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6201382.
Full textInaudi, Daniele, A. Ruefenacht, B. von Arx, H. P. Noher, Samuel Vurpillot, and Branko Glisic. "Monitoring of a concrete arch bridge during construction." In SPIE's 9th Annual International Symposium on Smart Structures and Materials, edited by S. C. Liu and Darryll J. Pines. SPIE, 2002. http://dx.doi.org/10.1117/12.472550.
Full textOng, Chong Yong, Kok Keong Choong, Tai Boon Ong, Kenny Chia, and Wong Fook Kan. "Design and Construction of Triple-Span Precast Concrete Open Spandrel Arch Bridge." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0925.
Full textWu, Q. X., L. H. Lin, and B. C. Chen. "Nonlinear Seismic Analysis of Concrete Arch Bridge with Steel Webs." In Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413234.050.
Full textJin, Fei. "Lancang River Railway Arch Bridge with stiffened skeleton of Concrete-filled Steel Tubes." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0940.
Full textDavidge, W. M. (Bill), and James M. Fariss, Jr. "Main Street Bridge Project, Danville, VA Open Spandrel Concrete Arch Bridges: New and Old." In Structures Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412848.053.
Full textGe, Jiping, and Wensheng Ding. "Seismic Performance of Composite Beam Concrete Filled Tubular Tied Arch Bridge." In International Conference On Civil Engineering And Urban Planning 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412435.099.
Full textReports on the topic "Concrete arch bridge"
Hoehler, M., D. McCallen, and C. Noble. The seismic response of concrete arch bridges (with focus on the Bixby Creek bridge Carmel, California). Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/9869.
Full text