Academic literature on the topic 'Concrete bridges – South Africa – Design and construction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concrete bridges – South Africa – Design and construction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Concrete bridges – South Africa – Design and construction"
Visser, Gerrit, Kees Van Ijselmuijden, Ernst Klamer, and Gideon Van Zijl. "Retrofit and Renovation of Concrete Bridges with Fibre Reinforced Polymer (FRP): The Third Alternative." MATEC Web of Conferences 199 (2018): 09010. http://dx.doi.org/10.1051/matecconf/201819909010.
Full textRowan, Andrew, and Les Thomson. "Olifants River Bridge Widening." MATEC Web of Conferences 199 (2018): 10007. http://dx.doi.org/10.1051/matecconf/201819910007.
Full textStroh, Steven L., and Rajan Sen. "Steel Bridges with Double-Composite Action: Innovative Design." Transportation Research Record: Journal of the Transportation Research Board 1696, no. 1 (January 2000): 299–309. http://dx.doi.org/10.3141/1696-31.
Full textValenti, Robert, Alex Brudno, Michael Bertoulin, and Ian Davis. "Fort Point Channel: Concrete Immersed-Tube and Ventilation Building Design." Transportation Research Record: Journal of the Transportation Research Board 1541, no. 1 (January 1996): 147–52. http://dx.doi.org/10.1177/0361198196154100119.
Full textAngelucci, Matteo. "Concrete hydration temperatures for the design of crack-width reinforcement in concrete water-retaining structures – design values versus in-situ values." MATEC Web of Conferences 199 (2018): 11014. http://dx.doi.org/10.1051/matecconf/201819911014.
Full textAl-Jabri, Khalifa S. "Research on the use of Ferro-Chrome slag in civil engineering applications." MATEC Web of Conferences 149 (2018): 01017. http://dx.doi.org/10.1051/matecconf/201814901017.
Full textBredenhann, Steph, Johan van Heerden, Pieter Strauss, and Phillip Joubert. "Design and Construction of Ultra-Thin Continuously Reinforced Concrete (UTCRC) on N1 near Hugenote Tunnell." MATEC Web of Conferences 199 (2018): 08002. http://dx.doi.org/10.1051/matecconf/201819908002.
Full textMyers, John J., and Ramon L. Carrasquillo. "Influence of Hydration Temperature on Durability and Mechanical Property Performance of Prestressed and Precast High-Performance Concrete Beams." Transportation Research Record: Journal of the Transportation Research Board 1696, no. 1 (January 2000): 131–42. http://dx.doi.org/10.3141/1696-16.
Full textLiu, Bodi, and Neil Armitage. "The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal." Water 12, no. 6 (June 16, 2020): 1714. http://dx.doi.org/10.3390/w12061714.
Full textVisser, A. T., and Sally Hall. "Innovative and Cost-Effective Solutions for Roads in Rural Areas and Difficult Terrain." Transportation Research Record: Journal of the Transportation Research Board 1819, no. 1 (January 2003): 169–73. http://dx.doi.org/10.3141/1819a-24.
Full textDissertations / Theses on the topic "Concrete bridges – South Africa – Design and construction"
Mostert, Louwrens Hubert. "Design and construction preferences for connections in the precast concrete industry of South Africa." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96036.
Full textENGLISH ABSTRACT: Precast concrete has been used for decades in the construction industry, locally as well as internationally. Rapid urban development and the need for shorter construction periods for building and infrastructure projects have however encouraged more use of precast concrete construction. The improved speed of construction, high quality and less labour requirements that precast offers makes it an effective type of construction method for modern development. The utilization of various precast concrete systems has been frequently used in the international construction industry, making it a very popular construction method. It was however found that one of the major drawbacks or concerns with the use of precast concrete is the connections between the precast elements. In-situ construction does not have this problem, because it is designed to a monolithic structure or building. It was identified that if the connections in precast buildings or structures are designed or constructed in an insufficient way, it can lead to severe structural problems and even failure. This highlights the importance the design and construction of precast concrete connections have on the overall stability, strength and robustness of the structure. Precast concrete buildings are not merely separate precast elements, connected together to eventually form the same principals of in-situ construction. Precast concrete and connection design is considered to be a specialist field and requires the sufficient expertise and knowledge to understand the structural system and all its different aspects. The precast connection’s function is not merely to transfer loads, but also to develop continuity and ensure monolithic behaviour of the entire precast concrete structure (Englekirk 2003). The most important or desirable structural functions of precast connections are; (i) direct transfer of loads (load paths and flow or forces), (ii) develop structural continuity and integrity, (iii) distribution of concentrated loads, (iv) allow for movements and unintended restraints and lastly to (v) ensure efficient rigidity and robustness for the connection. It can be seen that there is many factors that contribute to the overall design and construction phases of precast concrete connections. The aim of this study is to identify and investigate aspects that influence the design and construction of precast concrete connections. This study will mainly focus on precast concrete and precast connection preferences of participants in the South African construction industry. During this study, industry participants (contractors and consultants) were asked to identify certain aspects and concerns associated with precast concrete and precast connection construction. These answers were used to develop guidelines and preferences that can be used by industry participants to improvise and effectively manage the precast construction, mainly focussing on the connections between the precast elements.
AFRIKAANSE OPSOMMING: Voorafvervaardigde beton word al vir dekades gebruik in die konstruksiebedryf, plaaslik sowel as internasionaal. Vinnige stedelike ontwikkeling en die behoefte vir korter konstruksie tydperke vir die struktuur en infrastruktuur projekte het egter die gebruik en implementasie van voorafvervaardigde beton konstruksie laat toeneem. Die verbeterde spoed van die konstruksie proses, 'n hoë gehalte produk en minder arbeid vereistes wat voorafvervaardiging bied maak dit dus 'n effektiewe tipe konstruksie metode vir moderne ontwikkelings. Die benutting van verskeie voorafvervaardigde beton sisteme en elemente word reeds herhaaldelik gebruik in die internasionale konstruksiebedryf, wat dit vervolglik ʼn baie populêre en effektiewe sisteem maak. Dit is egter bevind dat een van die groot struikelblokke of probleme met die gebruik van voorafvervaardigde beton is die verbindings tussen die voorafvervaardigde elemente. In-situ beton konstruksie het dus nie hierdie probleem nie, want dit word ontwerp om 'n monolitiese beton struktuur of gebou te vorm. Dit was immers geïdentifiseer dat as die verbindings in ʼn voorafvervaardigde gebou of struktuur, ontwerp word deur ʼn ontoereikende manier, dit kan lei tot ernstige strukturele probleme en selfs strukturele faling. Dit beklemtoon dus die belangrikheid wat die ontwerp en konstruksie proses van voorafvervaardigde beton verbindings het op die algehele stabiliteit, sterkte en robuustheid van die struktuur. Voorafvervaardigde beton geboue en strukture kan nie slegs beskou word as aparte voorafvervaardigde elemente wat met mekaar verbind word om eventueel dieselfde beginsels van insitu konstruksie te vorm nie. Voorafvervaardigde beton en verbinding ontwerp word beskou as 'n spesialis veld en vereis dat die ontwerper die nodige kundigheid en kennis van die strukturele stelsel en al sy verskillende aspekte verstaan. Voorafvervaardigde beton verbindings se funksie is nie net om toegepaste kragte oor te dra nie, maar ook om strukturele kontinuïteit te ontwikkel en te verseker dat monolitiese gedrag gehandhaaf word vir die hele voorafvervaardigde beton struktuur (Englekirk 2003). Die mees belangrike strukturele funksies van voorafvervaardigde beton verbindings sluit die volgende in; (i) verseker direkte oordrag van toegepaste kragte (vloei van kragte), (ii) ontwikkeling van strukturele kontinuïteit en integriteit, (iii) die verspreiding van puntbelastings, (iv) moet voorsiening maak vir die bewegings in die voorafvervaardigde element en konneksie self en laastens (v) verskaf doeltreffende rigiditeit en robuustheid vir die konneksie sone. Dus kan daar afgelei word dat daar baie faktore is wat bydra tot die algehele ontwerp en konstruksie fases van voorafvervaardigde beton verbindings. Die doel van hierdie studie is om aspekte te identifiseer en te ondersoek wat die ontwerp en konstruksie van aspekte beton verbindings wel beïnvloed. Die studie sal hoofsaaklik fokus op voorafvervaardigde beton en verbindings voorkeure van persone in die Suid-Afrikaanse konstruksiebedryf. Tydens die studie was persone in die industrie (kontrakteurs en konsultante) ook gevra om sekere aspekte en kwellings wat verband hou met voorafvervaardigde beton asook die verbindings te identifiseer. Die antwoorde wat verkry was uit die industrie deelnemers kan toepaslik gebruik om word riglyne en voorkeure op te stel wat vervolglik gebruik en toegepas kan word in die konstruksie bedryf van Suid Afrika. Die riglyne kan effektief gebruik word om voorafvervaardigde beton asook die verbindings te verbeter en persone in die konstruksie bedryf in te lig oor voorkeure en toepassings van hierdie metode.
Jurgens, Christiaan Johannes. "An investigation into the feasibility of hybrid concrete construction in South Africa." Thesis, Link to the online verion, 2008. http://hdl.handle.net/10019/771.
Full textKluyts, Grant. "Investigation of the effect of selected polypropylene fibres and ultra-fine aggregate on plastic shrinkage cracks on South African roads." Thesis, Nelson Mandela Metropolitan University, 2005. http://hdl.handle.net/10948/174.
Full text"Critique of durability specifications for concrete bridges on national roads in South Africa." Thesis, 2011. http://hdl.handle.net/10413/2792.
Full textThesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
Book chapters on the topic "Concrete bridges – South Africa – Design and construction"
du Plessis, L., G. J. Jordaan, P. J. Strauss, and A. Kilian. "The Design, Construction and First-Phase Heavy Vehicle Simulator Testing Results on Full Scale Ultra-Thin Reinforced Concrete Test Sections at Rayton, South Africa." In The Roles of Accelerated Pavement Testing in Pavement Sustainability, 751–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42797-3_49.
Full textAlexander, M., and H. Beushausen. "Performance-based durability testing, design and specification in South Africa." In Excellence in Concrete Construction through Innovation. Taylor & Francis, 2008. http://dx.doi.org/10.1201/9780203883440.ch64.
Full text"Performance-based durability testing, design and specification in South Africa: latest developments." In Excellence in Concrete Construction through Innovation, 445–50. CRC Press, 2008. http://dx.doi.org/10.1201/9780203883440-72.
Full textConference papers on the topic "Concrete bridges – South Africa – Design and construction"
Plessis, Gerhard Du, Edwin Kruger, and Alan Agaienz. "Challenges in Procurement, Design and Construction of the Erasmusrand Pedestrian Bridge." In Footbridge 2022 (Madrid): Creating Experience. Madrid, Spain: Asociación Española de Ingeniería Estructural, 2021. http://dx.doi.org/10.24904/footbridge2022.061.
Full text