Academic literature on the topic 'Concrete - Creep and Shrinkage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concrete - Creep and Shrinkage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Concrete - Creep and Shrinkage"
Nesvetaev, G. V., Y. I. Koryanova, T. N. Zhilnikova, and A. V. Kolleganov. "To the Problem of Assessing the Level of Self- Stresses during the Formation of the Structure of Self-Compacting Concrete." Materials Science Forum 974 (December 2019): 293–98. http://dx.doi.org/10.4028/www.scientific.net/msf.974.293.
Full textParfenov, S. G., and V. Ye Moschenkov. "EXPERIMENTAL STUDY OF CREEP AND SHRINKAGE STRAINS IN FINE- AGGREGATE CONCRETES." Proceedings of the Southwest State University 21, no. 4 (August 28, 2017): 13–20. http://dx.doi.org/10.21869/2223-1560-2017-21-4-13-20.
Full textBideci, Alper, Özlem Sallı Bideci, Sabit Oymael, and Hasan Yıldırım. "Analysis of shrinkage and creep behaviors in polymer-coated lightweight concretes." Science and Engineering of Composite Materials 23, no. 1 (January 1, 2016): 77–83. http://dx.doi.org/10.1515/secm-2014-0028.
Full textChen, Xu, Hua, Zhou, Wang, and Huang. "Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets." Materials 12, no. 19 (September 26, 2019): 3153. http://dx.doi.org/10.3390/ma12193153.
Full textDuan, Rui Fang, Xiu Fen Huang, and He Zhang. "Concrete Shrinkage and Creep Effect Prediction Model and the Influence Factors Analysis." Advanced Materials Research 756-759 (September 2013): 2051–54. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2051.
Full textZhang, Yun Guo, Zhi Min Wu, and Xi Wu. "Experimental Investigation on the Shrinkage and Creep Performance of Self-Compacting Lightweight Concrete." Advanced Materials Research 860-863 (December 2013): 1346–53. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1346.
Full textZhang, Rong Ling, Liang Wang, Chang An Yang, Bing Yang, Chang Yue Zhu, and Qiang Jian Hao. "Simulation Analysis of Shrinkage and Creep for Bowstring Arch Bridge Steel Tube Concrete in Different Specification." Applied Mechanics and Materials 178-181 (May 2012): 2219–23. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2219.
Full textGuo, Fei, Hong Gen Qin, Peng Fei Cao, Guan Guo Liu, and Yun Sheng Zhang. "Analysis on Creep Property and Model of Bridge Girder Concrete with Various Mix Proportions." Applied Mechanics and Materials 368-370 (August 2013): 1487–94. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.1487.
Full textMieszczak, Małgorzata, and Lucyna Domagała. "Lightweight Aggregate Concrete as an Alternative for Dense Concrete in Post-Tensioned Concrete Slab." Materials Science Forum 926 (July 2018): 140–45. http://dx.doi.org/10.4028/www.scientific.net/msf.926.140.
Full textWang, Jian Qun, Zhi Fang, and Zhi Jian Tang. "The Experimental Study on Creep and Shrinkage of High Strength Concrete with Fly Ash." Advanced Materials Research 639-640 (January 2013): 423–26. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.423.
Full textDissertations / Theses on the topic "Concrete - Creep and Shrinkage"
Cordoba, Benoît. "Creep and shrinkage of self-consolidating concrete (SCC)." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1317343151&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textBush, Richard James. "Creep and shrinkage of high strength concrete." Thesis, Cardiff University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531922.
Full textAltoubat, Salah Ahmed. "Early age stresses and creep-shrinkage interaction of restrained concrete." Full text available online (restricted access), 2000. http://images.lib.monash.edu.au/ts/theses/Altoubat.pdf.
Full textTownsend, Bradley Donald. "Creep and Shrinkage of a High Strength Concrete Mixture." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/32743.
Full textMaster of Science
Kim, Seunghwan. "Creep and Shrinkage Effects on Steel-Concrete Composite Beams." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/48427.
Full textMaster of Science
Doan, Trung Van. "Long-term Deformations in Prestressed Concrete Box Girder Bridges." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12836.
Full textHaji, Arshad Abdul Aziz. "Moment continuity for simply supported pretensioned concrete bridges." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267146.
Full textGribniak, Viktor. "Shrinkage Influence on Tension-Stiffening of Concrete Structures." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20091102_090235-06535.
Full textPastaraisiais metais vis plačiau taikant stiprųjį betoną bei armatūrą, konst-rukcijų perdengiamos angos didėja, o skerspjūviai mažėja. Todėl projektuojant standumo (įlinkių) sąlyga vis dažniau tampa lemiamu veiksniu. Inžinieriai gelž-betoninių konstrukcijų apskaičiavimams gali taikyti empirinius normų arba skai-tinius metodus. Vieno ar kito skaičiavimo metodo parinkimas turi būti pagrįstas statistiniais tikslumo analizės rezultatais. Yra žinoma, kad adekvatus gelžbetoninio elemento pleišėjimo (ypač plyšių vystymosi stadijos) modeliavimas yra vienas sudėtingiausių netiesinės mechani-kos uždavinių. Toks uždavinys gali būti išspręstas taikant vidutinių plyšių kon-cepciją, kai pleišėjimo proceso modeliavimui naudojama tempiamojo betono vidutinių įtempių ir deformacijų diagrama. Dauguma tokių diagramų gautos, naudojant tempimo arba šlyties bandymo rezultatus. Pabrėžtina, kad šių diagra-mų taikymas lenkiamųjų gelžbetoninių elementų modeliavime duoda nemažas paklaidas. Kitas svarbus aspektas yra tai, kad gelžbetoniniuose bandiniuose, iki juos apkraunant trumpalaike apkrova, vyksta betono susitraukimas. Šiame darbe buvo siekiama sukurti metodą, leidžiantį pagal eksperimentinius lenkiamųjų gelžbetoninių elementų duomenis gauti tempiamojo betono vidutinių įtempių ir deformacijų diagramas, įvertinant betono susitraukimo įtaką. Pagrindinis diser-tacijos tikslas yra įvertinti ikieksploatacinių betono susitraukimo ir valkšnumo poveikį gelžbetoninių elementų, apkrautų trumpalaike apkrova... [toliau žr. visą tekstą]
Vincent, Edward Creed. "Compressive Creep of a Lightweight, High Strength Concrete Mixture." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/30962.
Full textMaster of Science
Mucambe, Edson Silva David. "Creep and shrinkage prediction models for concrete water retaining structures in South Africa." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5185.
Full textENGLISH ABSTRACT: Concrete water retaining structures (WRS) in South Africa are under scrutiny due to the numerous durability problems that they have experienced lately; despite the efforts by local and national authorities in conserving these structures. At the heart of these problems are the creep and shrinkage phenomena. While shrinkage is the reduction of concrete volume with time, creep is defined as the time-dependent increase of concrete strain under constant or controlled stress. Both phenomena are affected by conditions to which WRS are exposed hence their accurate prediction is required. Numerical models have been developed to calculate the extent to which concrete creeps or shrinks over time. The objective of this thesis is to identify which of these models is better equipped to be used in South African WRS design. This is achieved through a systematic method that involves an investigation into the contents of these models and a statistical comparison of model calculations to WRS representative data. In partnership with reputable universities, a pioneer experimental creep and shrinkage data base is created in this project from which the WRS related data is selected. While investigating the contents of the numerical models, their applicability to South African WRS is identified and the integrity of model contents is assessed. Indeed, a few irregularities are found in the process and are presented in this thesis. The model calculations are statistically compared to data in the form of individual experiments as well as in the form of groups of experiments with similar concretes to find the ideal prediction model for different types of concretes as well. Also pioneered in this project is a weighted criteria and point system in which the findings of the model content assessment and statistical evaluations are incorporated. It is based on this system that conclusions are drawn and the most suitable prediction model for WRS design in South Africa is selected.
Books on the topic "Concrete - Creep and Shrinkage"
Farrington, Erik Wayne. Creep and shrinkage of high performance concrete. [Austin]: Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, 1996.
Find full textP, Bažant Z., L'Hermite Robert 1910-1982, International Union of Testing and Research Laboratories for Materials and Structures., National Science Foundation (U.S.), and RILEM International Symposium on Creep and Shrinkage of Concrete--Mathematical Modeling (4th : 1986 : Northwestern University), eds. Mathematical modeling of creep and shrinkage of concrete. Chichester: Wiley, 1988.
Find full textVladimír, Křístek, ed. Creep and shrinkage of concrete elements and structures. Amsterdam: Elsevier, 1988.
Find full textInstitute, American Concrete. Guide for modeling and calculating shrinkage and creep in hardened concrete. Farmington Hills, MI: American Concrete Institute, 2008.
Find full textAdam, Neville Symposium (2000 Atlanta Ga ). The Adam Neville Symposium: Creep and shrinkage : structural design effects. Farmington Hills, Mich: American Concrete Institute, 2000.
Find full textP, Bažant Z., Carol Ignacio, Escola Tècnica Superior d'Enginyers de Camins, Canals, i Ports de Barcelona., and Universidad Politècnica de Catalunya. Centre Internacional de Mètodes Numèrics en Enginyeria., eds. Creep and shrinkage of concrete: Proceedings of the fifth international RILEM symposium, Barcelona, Spain, September 6-9, 1993. London: E & FN Spon, 1993.
Find full textInternational Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures (10th 2015 Vienna, Austria). CONCREEP 10: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures : Proceedings of the 10th International Conference on Creep, Shrinkage, and Durability of Concrete and Concrete Structures, September 21-23, 2015 Vienna, Austria. Reston, Virginia: American Society of Civil Engineers, 2015.
Find full textSymposium, RILEM International. Creep and shrinkage of concrete: Proceedings of the fifth International RILEM Symposim, Barcelona, Spain, September 6-9, 1993. London: E & FN Spon, 1993.
Find full textC, Fu C., and Daye M. D, eds. Computer analysis of the effects of creep, shrinkage, and temperature changes on concrete structures. Detroit, Mich. (P.O. Box 19150, Redford Station, Detroit 48219): American Concrete Institute, 1991.
Find full textP, Bažant Z., Ulm F. J. (Franz-Josef), Jennings Hamlin, Pellenq Roland, and Engineering Mechanics Institute, eds. Mechanics and physics of creep, shrinkage, and durability of concrete: A tribute to Zdenek P. Bažant : proceedings of the Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9), September 22-25, 2013 Cambridge, Massachusetts. Reston, Virginia: American Society of Civil Engineers, 2013.
Find full textBook chapters on the topic "Concrete - Creep and Shrinkage"
Benboudjema, Farid, Fékri Meftah, Grégory Heinfling, Fabrice Lemaou, and Jean Michel Torrenti. "Delayed Effects - Creep and Shrinkage." In Mechanical Behavior of Concrete, 339–408. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557587.ch9.
Full textChiew, Sing-Ping, and Yan-Qing Cai. "Concrete creep and shrinkage model." In Design of High Strength Steel Reinforced Concrete Columns, 33–45. Boca Raton : CRC Press, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781351203951-4.
Full textLeemann, Andreas, and Pietro Lura. "Creep and Shrinkage of SCC." In Mechanical Properties of Self-Compacting Concrete, 73–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_3.
Full textTan, Donglian, Wenyuan Ding, Yue Zhao, and Chuqin Yan. "Detailed Analysis of Shrinkage and Creep Effect of Concrete in Prestressed Box Girder Bridge." In Lecture Notes in Civil Engineering, 85–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2532-2_8.
Full textBažant, Zdeněk P., and Milan Jirásek. "Basic Properties of Concrete Creep, Shrinkage, and Drying." In Creep and Hygrothermal Effects in Concrete Structures, 29–62. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1138-6_3.
Full textHenschen, Jacob, Atsushi Teramoto, and David A. Lange. "Shrinkage and Creep Performance of Recycled Aggregate Concrete." In 7th RILEM International Conference on Cracking in Pavements, 1333–40. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4566-7_127.
Full textTerry, P. J., M. A. Bradford, and R. I. Gilbert. "Creep and shrinkage in concrete-filled steel tubes." In Tubular Structures VI, 293–98. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203735015-43.
Full textBažant, Zdeněk P., and Milan Jirásek. "Temperature Effect on Water Diffusion, Hydration Rate, Creep and Shrinkage." In Creep and Hygrothermal Effects in Concrete Structures, 607–86. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1138-6_13.
Full textBrooks, Jeff. "Elasticity, shrinkage, creep and thermal movement." In Advanced Concrete Technology, 1–18. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075065686-3/50254-8.
Full textAlghazali, Hayder H., and John J. Myers. "Creep and shrinkage of SCC." In Self-Compacting Concrete: Materials, Properties and Applications, 131–46. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817369-5.00006-4.
Full textConference papers on the topic "Concrete - Creep and Shrinkage"
"Shrinkage Behavior and Residual Stress Development in Mortar Containing Shrinkage Reducing Admixtures (SRAs)." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14435.
Full text"Shrinkage of Virginia Transportation Concrete Mixtures." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14432.
Full text"Testing for Concrete Creep and Shrinkage." In SP-194: The Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects. American Concrete Institute, 2000. http://dx.doi.org/10.14359/9900.
Full textLi, X., and Z. C. Grasley. "Shrinkage and Creep Caused by Dissolution." In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.037.
Full textBoumakis, I., M. Marcon, Lin Wan, and R. Wendner. "Creep and Shrinkage in Fastening Systems." In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.079.
Full text"Performance of Self-Consolidating Concrete Under Restrained Shrinkage." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14436.
Full text"Tension Cracking in Columns Under Compression Loads." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14430.
Full text"Deviations from the Principle of Superposition and their Consequences on Structural Behavior." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14426.
Full text"Design Aids for the Evaluation of Creep Induced Structural Effects." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14433.
Full text"A Rational Approach to the Analysis of Structural Effects due to Creep." In SP-227: Shrinkage and Creep of Concrete. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14428.
Full textReports on the topic "Concrete - Creep and Shrinkage"
Guerrero, H., and M. Restivo. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1023617.
Full textGiorla, Alain B. Implementation of Concrete Creep Model in Grizzly. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1460224.
Full textLiu, C. Measure of Creep Characteristics of Asphalt Concrete. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada302804.
Full textSnyder, Kenneth A. Effect of drying shrinkage cracks and flexural cracks on concrete bulk permeability. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6519.
Full textBarinakumar, Aishwarya, Joseph Bracci, Zachary Grasley, Joshua Hogancamp, Lauren Kelly, Benjamin Spencer, and Christa Torrence. EXPERIMENTALLY VALIDATED COMPUTATIONAL MODELING OF CREEP AND CREEP-CRACKING FOR NUCLEAR CONCRETE STRUCTURES. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1700505.
Full textRahman, Mohammad, Ahmed Ibrahim, and Riyadh Hindi. Bridge Decks: Mitigation of Cracking and Increased Durability—Phase III. Illinois Center for Transportation, December 2020. http://dx.doi.org/10.36501/0197-9191/20-022.
Full textJennings, Hamlin M. Developing improved relationships between microstructure and creep and shrinkage of cement-based materials. Final report for the period September 9, 1998 - July 31, 2000. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/805791.
Full textDeb, Robin, Paramita Mondal, and Ardavan Ardeshirilajimi. Bridge Decks: Mitigation of Cracking and Increased Durability—Materials Solution (Phase III). Illinois Center for Transportation, December 2020. http://dx.doi.org/10.36501/0197-9191/20-023.
Full textAndrawes, Bassem, Ernesto Perez Claros, and Zige Zhang. Bond Characteristics and Experimental Behavior of Textured Epoxy-coated Rebars Used in Concrete Bridge Decks. Illinois Center for Transportation, January 2022. http://dx.doi.org/10.36501/0197-9191/22-001.
Full textHuang, Cihang, Yen-Fang Su, and Na Lu. Self-Healing Cementitious Composites (SHCC) with Ultrahigh Ductility for Pavement and Bridge Construction. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317403.
Full text