Journal articles on the topic 'Concrete - Creep and Shrinkage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Concrete - Creep and Shrinkage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nesvetaev, G. V., Y. I. Koryanova, T. N. Zhilnikova, and A. V. Kolleganov. "To the Problem of Assessing the Level of Self- Stresses during the Formation of the Structure of Self-Compacting Concrete." Materials Science Forum 974 (December 2019): 293–98. http://dx.doi.org/10.4028/www.scientific.net/msf.974.293.
Full textParfenov, S. G., and V. Ye Moschenkov. "EXPERIMENTAL STUDY OF CREEP AND SHRINKAGE STRAINS IN FINE- AGGREGATE CONCRETES." Proceedings of the Southwest State University 21, no. 4 (August 28, 2017): 13–20. http://dx.doi.org/10.21869/2223-1560-2017-21-4-13-20.
Full textBideci, Alper, Özlem Sallı Bideci, Sabit Oymael, and Hasan Yıldırım. "Analysis of shrinkage and creep behaviors in polymer-coated lightweight concretes." Science and Engineering of Composite Materials 23, no. 1 (January 1, 2016): 77–83. http://dx.doi.org/10.1515/secm-2014-0028.
Full textChen, Xu, Hua, Zhou, Wang, and Huang. "Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets." Materials 12, no. 19 (September 26, 2019): 3153. http://dx.doi.org/10.3390/ma12193153.
Full textDuan, Rui Fang, Xiu Fen Huang, and He Zhang. "Concrete Shrinkage and Creep Effect Prediction Model and the Influence Factors Analysis." Advanced Materials Research 756-759 (September 2013): 2051–54. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2051.
Full textZhang, Yun Guo, Zhi Min Wu, and Xi Wu. "Experimental Investigation on the Shrinkage and Creep Performance of Self-Compacting Lightweight Concrete." Advanced Materials Research 860-863 (December 2013): 1346–53. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1346.
Full textZhang, Rong Ling, Liang Wang, Chang An Yang, Bing Yang, Chang Yue Zhu, and Qiang Jian Hao. "Simulation Analysis of Shrinkage and Creep for Bowstring Arch Bridge Steel Tube Concrete in Different Specification." Applied Mechanics and Materials 178-181 (May 2012): 2219–23. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2219.
Full textGuo, Fei, Hong Gen Qin, Peng Fei Cao, Guan Guo Liu, and Yun Sheng Zhang. "Analysis on Creep Property and Model of Bridge Girder Concrete with Various Mix Proportions." Applied Mechanics and Materials 368-370 (August 2013): 1487–94. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.1487.
Full textMieszczak, Małgorzata, and Lucyna Domagała. "Lightweight Aggregate Concrete as an Alternative for Dense Concrete in Post-Tensioned Concrete Slab." Materials Science Forum 926 (July 2018): 140–45. http://dx.doi.org/10.4028/www.scientific.net/msf.926.140.
Full textWang, Jian Qun, Zhi Fang, and Zhi Jian Tang. "The Experimental Study on Creep and Shrinkage of High Strength Concrete with Fly Ash." Advanced Materials Research 639-640 (January 2013): 423–26. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.423.
Full textLv, Yi Gang, Jian Ren Zhang, and Kang Xu. "Prediction Models of Shrinkage and Creep for Concrete Columns." Advanced Materials Research 243-249 (May 2011): 1583–88. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.1583.
Full textNaser, Ali Fadhil. "A Review Study on Theoretical Comparison Between Time-Dependent Analysis Models for Prestressed Concrete Bridges." Jurnal Kejuruteraan 34, no. 3 (May 30, 2022): 375–85. http://dx.doi.org/10.17576/jkukm-2022-34(3)-04.
Full textWang, Yongbao, Renda Zhao, Yi Jia, and Ping Liao. "Creep Characteristics Of Concrete Used In Long-Span Arch Bridge." Baltic Journal of Road and Bridge Engineering 14, no. 1 (March 28, 2019): 18–36. http://dx.doi.org/10.7250/bjrbe.2019-14.431.
Full textLin, Sheng, Xian Fen Xu, Cheng Wang, and Jian Xin Ye. "Analysis of Creep and Shrinkage Mechanism of Bridge Considering the Effect of Shrinkage on Creep Stress Reduction." Advanced Materials Research 255-260 (May 2011): 781–85. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.781.
Full textZeng, Qing Xiang, and Da Jian Han. "A Simplified Concrete Creep and Shrinkage CEB-FIP90 Model in Long-Span Bridge Design." Applied Mechanics and Materials 638-640 (September 2014): 1059–62. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1059.
Full textLi, Fa Xiong, Jia Guo, Hou Qing Huang, and Qian Liu. "Concrete Creep and Shrinkage Effect Analysis Program Development." Applied Mechanics and Materials 405-408 (September 2013): 850–55. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.850.
Full textParfenov, S. G., and M. V. Morgunov. "EXPERIMENTAL INVESTIGATIONS OF THE LOSSES OF PRESTRESSING IN FINE REINFORCED CONCRETE ELEMENTS." Proceedings of the Southwest State University 22, no. 1 (February 28, 2018): 112–17. http://dx.doi.org/10.21869/2223-1560-2018-22-1-112-117.
Full textHu, Xu Hui, Ning Zhong, and Shi Hong Jing. "Influence of Concrete Shrinkage and Creep on Composite Beam of Cable-Stayed Bridge." Advanced Materials Research 671-674 (March 2013): 1040–44. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1040.
Full textLu, Zhi Fang, and Mu Yu Liu. "Stochastic Finite Element Analysis for Shrinkage and Creep of a Concrete Bridge Based on LHS." Advanced Materials Research 163-167 (December 2010): 1744–48. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1744.
Full textSzydłowski, Rafał Stanisław, and Barbara Łabuzek. "Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash." Materials 14, no. 14 (July 13, 2021): 3895. http://dx.doi.org/10.3390/ma14143895.
Full textKharlab, Vyacheslav, and Alexander Maslennikov. "Short-Time Creep of Concrete." Applied Mechanics and Materials 725-726 (January 2015): 493–98. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.493.
Full textLi, Si Chen, Ting Yao, Yu Jiang Wang, Hua Li, Jun Cheng, Lei Li, and Qian Tian. "Determination of Tensile Creep and Stress Relaxation of Concrete by Ring Test." Applied Mechanics and Materials 584-586 (July 2014): 1172–75. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.1172.
Full textLu, Xiao Jun, Zhi Da Li, and Ping Zhang. "Experimental Study on C60 High Performance Concrete with High Content Mineral Additives and Low Shrinkage Creep." Advanced Materials Research 1030-1032 (September 2014): 978–82. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.978.
Full textLv, Liu, Zhu, Bai, and Qi. "Experimental Study on a Prediction Model of the Shrinkage and Creep of Recycled Aggregate Concrete." Applied Sciences 9, no. 20 (October 14, 2019): 4322. http://dx.doi.org/10.3390/app9204322.
Full textZhang, Yun Tao. "Experimental Research on Concrete Shrinkage and Creep for Main Girder of Sutong Continuous Rigid-Frame Bridge." Advanced Materials Research 594-597 (November 2012): 1547–51. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.1547.
Full textZhao, Gang Yun, Tian Yu Xiang, Teng Fei Xu, and Yu Lin Zhan. "Probabilistic Analysis about Shrinkage and Creep Effect of Continuous Steel-Concrete Composite Beams with LHS." Applied Mechanics and Materials 90-93 (September 2011): 1049–53. http://dx.doi.org/10.4028/www.scientific.net/amm.90-93.1049.
Full textBywalski, Czesław, and Mieczysław KamiIński. "RHEOLOGICAL STRAINS IN CONCRETE MODIFIED WITH STEEL FIBRE REINFORCEMENT." Journal of Civil Engineering and Management 19, no. 5 (October 29, 2013): 656–64. http://dx.doi.org/10.3846/13923730.2013.803497.
Full textWu, Chong, Zu Lin He, De Fu He, Wan Jun Zhang, Rui Wang, and Guo Tao Yang. "Influence of Shrinkage and Creep of the Concrete Slab on the Mechanical Behavior of Steel Arch Bridge." Advanced Materials Research 374-377 (October 2011): 2484–87. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.2484.
Full textAsaad, Micheal, and George Morcous. "Evaluating Prediction Models of Creep and Drying Shrinkage of Self-Consolidating Concrete Containing Supplementary Cementitious Materials/Fillers." Applied Sciences 11, no. 16 (August 10, 2021): 7345. http://dx.doi.org/10.3390/app11167345.
Full textZvolánek, Lukáš, and Ivailo Terzijski. "Relaxation of Structural Concrete due to its Shrinkage in Terms of Age-Adjusted Effective Modulus Method." Key Engineering Materials 737 (June 2017): 471–76. http://dx.doi.org/10.4028/www.scientific.net/kem.737.471.
Full textPatel, K. A., Addisu Shewarega, Sandeep Chaudhary, and A. K. Nagpal. "A step-by-step method for time-dependent analysis of composite beams." Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, no. 1 (December 19, 2022): 105–9. http://dx.doi.org/10.38208/acp.v1.480.
Full textXiao, Liang Li, Ming Yang Pan, and Meng Chen. "Estimating on Creep Strain for Ready-Mixed Concrete during Shrinkage." Applied Mechanics and Materials 357-360 (August 2013): 684–88. http://dx.doi.org/10.4028/www.scientific.net/amm.357-360.684.
Full textGamnitzer, Peter, Andreas Brugger, Martin Drexel, and Günter Hofstetter. "Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete." Materials 12, no. 11 (May 29, 2019): 1745. http://dx.doi.org/10.3390/ma12111745.
Full textHwang, Euichul, Gyuyong Kim, Kyungmo Koo, Hyungjae Moon, Gyeongcheol Choe, Dongkyun Suh, and Jeongsoo Nam. "Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings." Materials 14, no. 17 (September 2, 2021): 5026. http://dx.doi.org/10.3390/ma14175026.
Full textMeng, Jiang, and Xiao Dong Yang. "Analysis on the Old and New Reinforced Concrete Beam Shrinkage and Creep Difference Effect of Broadened Bridge." Applied Mechanics and Materials 178-181 (May 2012): 2027–33. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2027.
Full textZvolánek, Lukáš, and Ivailo Terzijski. "Methods Considering the Concrete Creep due to Shrinkage." Solid State Phenomena 259 (May 2017): 3–8. http://dx.doi.org/10.4028/www.scientific.net/ssp.259.3.
Full textAwal, A. S. M. A., M. Z. A. Majid, S. M. Shirazi, and K. Y. Yuan. "Deformation Behaviour of Glass Fibre Reinforced Concrete Containing Palm Oil Fuel Ash." Applied Mechanics and Materials 780 (July 2015): 33–38. http://dx.doi.org/10.4028/www.scientific.net/amm.780.33.
Full textZhang, Yun Tao. "Finite Element Analysis on Creep and Shrinkage of Reinforced Concrete." Advanced Materials Research 838-841 (November 2013): 53–56. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.53.
Full textCharron, Jean-Philippe, Jacques Marchand, Benoît Bissonnette, and Bruno Gérard. "Étude comparative de modèles phénoménologiques décrivant le comportement au jeune âge du béton. Partie 2." Canadian Journal of Civil Engineering 28, no. 2 (April 1, 2001): 323–31. http://dx.doi.org/10.1139/l01-001.
Full textCharron, Jean-Philippe, Jacques Marchand, Benoît Bissonnette, and Bruno Gérard. "Étude comparative de modèles phénoménologiques décrivant le comportement au jeune âge du béton. Partie 1." Canadian Journal of Civil Engineering 28, no. 2 (April 1, 2001): 314–22. http://dx.doi.org/10.1139/l01-002.
Full textPeng, Keke, and Fangzhen Wen. "Analysis of shrinkage and creep effect for bridge widening based on TB-FEM method and experimental research." MATEC Web of Conferences 277 (2019): 02015. http://dx.doi.org/10.1051/matecconf/201927702015.
Full textRaupov, Chorikul, and Ganisher Malikov. "Creep in expanded clay concrete at different levels of stress under compression and tension." E3S Web of Conferences 365 (2023): 02008. http://dx.doi.org/10.1051/e3sconf/202336502008.
Full textBirhane, Fiseha Nega, Sung-Il Kim, and Seung Yup Jang. "Long-Term Deflection of Prestressed Concrete Bridge Considering Nonuniform Shrinkage and Crack Propagation by Equivalent Load Approach." Applied Sciences 10, no. 21 (November 2, 2020): 7754. http://dx.doi.org/10.3390/app10217754.
Full textFan, Xueping, Heng Zhou, and Yuefei Liu. "Time-Dependent Reliability Analysis of RC Bridges Considering Shrinkage, Creep, Resistance Degradation, and Vehicle Load Flows." Advances in Civil Engineering 2023 (August 8, 2023): 1–14. http://dx.doi.org/10.1155/2023/5111719.
Full textWang, Hai Chao, Zhen Tian Xu, and Wen Ting Liu. "The Creep Impact on the Performance of Super-Long Reinforced Concrete Structures." Advanced Materials Research 790 (September 2013): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amr.790.291.
Full textMushunje, Kudzai, Mike Otieno, and Yunus Ballim. "Partial replacement of conventional fine aggregate with crumb tyre rubber in structural concrete – effect of particle size on compressive strength and time dependent deformations." MATEC Web of Conferences 199 (2018): 11002. http://dx.doi.org/10.1051/matecconf/201819911002.
Full textYan, Yuan Jun, and Li Ping Qin. "Analysis of Time Effects in Steel and Concrete Composite Beams Considering Relative Slippage." Advanced Materials Research 446-449 (January 2012): 260–63. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.260.
Full textKim, Seung-Gyu, Yeong-Seong Park, and Yong-Hak Lee. "Comparison of Concrete Creep in Compression, Tension, and Bending under Drying Condition." Materials 12, no. 20 (October 15, 2019): 3357. http://dx.doi.org/10.3390/ma12203357.
Full textLwin, M. Myint, and Bijan Khaleghi. "Time-Dependent Prestress Losses in Prestressed Concrete Girders Built of High-Performance Concrete." Transportation Research Record: Journal of the Transportation Research Board 1594, no. 1 (January 1997): 64–72. http://dx.doi.org/10.3141/1594-07.
Full textSakata, Kenji. "Prediction of Shrinkage and Creep of Concrete." Concrete Journal 31, no. 2 (1993): 5–14. http://dx.doi.org/10.3151/coj1975.31.2_5.
Full text