Academic literature on the topic 'Concrete Damage Plasticity Model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Concrete Damage Plasticity Model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Concrete Damage Plasticity Model"

1

Al-Zuhairi, Alaa H., Ali H. Al-Ahmed, Ali A. Abdulhameed, and Ammar N. Hanoon. "Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters." Civil Engineering Journal 8, no. 2 (February 1, 2022): 225–37. http://dx.doi.org/10.28991/cej-2022-08-02-03.

Full text
Abstract:
The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The proposed method can determine the damage variables at the start of the loading process, and this variable continues to increase as the load progresses until complete failure. The results obtained using this method were assessed through previous studies, whereas three case studies for concrete specimens and reinforced concrete structural elements (columns and gable beams) were considered. Additionally, finite element models were also developed and verified. The results revealed good agreement in each case. Furthermore, the results show that the proposed method outperforms other methods in terms of damage prediction, particularly when damage is calculated using the stress ratio. Doi: 10.28991/CEJ-2022-08-02-03 Full Text: PDF
APA, Harvard, Vancouver, ISO, and other styles
2

Voyiadjis, George Z., Ziad N. Taqieddin, and Peter I. Kattan. "Anisotropic damage–plasticity model for concrete." International Journal of Plasticity 24, no. 10 (October 2008): 1946–65. http://dx.doi.org/10.1016/j.ijplas.2008.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hafezolghorani, Milad, Farzad Hejazi, Ramin Vaghei, Mohd Saleh Bin Jaafar, and Keyhan Karimzade. "Simplified Damage Plasticity Model for Concrete." Structural Engineering International 27, no. 1 (February 2017): 68–78. http://dx.doi.org/10.2749/101686616x1081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rakić, Dragan M., Aleksandar S. Bodić, Nikola J. Milivojević, Vladimir Lj Dunić, and Miroslav M. Živković. "CONCRETE DAMAGE PLASTICITY MATERIAL MODEL PARAMETERS IDENTIFICATION." Journal of the Serbian Society for Computational Mechanics 15, no. 2 (December 30, 2021): 111–22. http://dx.doi.org/10.24874/jsscm.2021.15.02.11.

Full text
Abstract:
The procedure for identifying concrete damage plasticity material model parameters is presented in this paper. Concrete damage plasticity material model represents a constitutive model which is based on a combination of theory of plasticity and theory of damage mechanics. This material model is often used in solving geotechnical problems due to its realistic description of mechanical behavior of concrete material. Theoretical basis of concrete damage plasticity material model and material parameters identification procedure are presented in this paper. Proposed identification procedure is applied on experimental data from uniaxial compression and tension load-unload tests taken from literature. By applying experimental data, stress-strain curve is created. Based on stress-strain load-unload curve, stress-plastic strain and stress-degradation dependences are created which are necessary for material parameters identification. Using these dependences material parameters are determined. Verification of estimated parameters is performed in PAK software package using concrete damage plasticity material model. Finite element model is created for numerical simulations of uniaxial compression and tension tests. Numerical simulation results are compared with experimental data. By comparing numerical simulation results and experimental data it can be concluded that this procedure is effective for determining concrete damage plasticity model parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Ke Jia, Zi Ling Xie, and Wei Li. "Application of RPC Constitutive Model in FEA." Applied Mechanics and Materials 578-579 (July 2014): 25–30. http://dx.doi.org/10.4028/www.scientific.net/amm.578-579.25.

Full text
Abstract:
The damage evolution equation of RPC is established based on 2-parameter Weibull distribution. The constitutive relation of RPC is then calculated based on the damage evolution equation. The constitutive model of RPC is optimized by comparing experimental constitutive curve to models corresponding to different threshold strain. Based on the definition of damage index in ABAQUS, the damaged evolution equation in ABAQUS is recalculated based on the optimized constitutive relation. the concrete damaged plasticity model in ABAQUS is obtained using the aforementioned method. And the concrete damaged plasticity model is applied to three compression member and three simply supported beams with different reinforcements. The calculated stress-strain curve and deformation of three compression member and three beams is in accordance with the deformation characteristics of experiments, which verified the effectiveness of the proposed concrete damaged plasticity model of RPC.
APA, Harvard, Vancouver, ISO, and other styles
6

Hanif, M. U., Z. Ibrahim, K. Ghaedi, A. Javanmardi, and S. K. Rehman. "Finite Element Simulation of Damage In RC Beams." Journal of Civil Engineering, Science and Technology 9, no. 1 (April 30, 2018): 50–57. http://dx.doi.org/10.33736/jcest.883.2018.

Full text
Abstract:
A concrete damage model has been incorporated in finite element code ABAQUS as concrete damaged plasticity model to examine the sensitivity of the damage, as ABAQUS has the model that is capable of stiffness degradation in cracking which is the basis of fracture mechanics. Nonlinear constitutive relationships for concrete and steel have been incorporated in the model. The static and dynamic response of the structure at 10 different damage levels is studied and the sensitivity of the damage model towards the presence of non-linearity has been discussed. The concrete damaged plasticity model is capable of predicting formation of cracks in concrete beams against any kind of loads, as the results match with the experimental results. It can be concluded that the concrete damaged plasticity is a versatile tool for modeling RC structures and careful choice of solution procedures for dynamic analysis can lead to accurate modeling of concrete using a few routine laboratory test results of the materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Ben-ben, Hai-bei Xiong, Jia-fei Jiang, and Yang Zhan. "Damage plasticity model for passively confined concrete." MATEC Web of Conferences 275 (2019): 02016. http://dx.doi.org/10.1051/matecconf/201927502016.

Full text
Abstract:
This paper presents a modified concrete damage plasticity model (CDPM) for passively confined concrete within the concrete damage plasticity theory frame in ABAQUS. The modified CDPM can be used to simulate concrete under non-uniform passive confinement, for example, Fiber-reinforced polymer (FRP)-confined square concrete columns. The modification of CDPM includes a flow rule and a strain hardening/softening criterion in which dilation angle and yield stress are important parameters. Based on the true-triaxial experiment results of passively confined concrete, the dilation angle and yield stress were determined considering different confinement stiffness and non-uniform confinement stiffness ratio. Finally, the modified CDPM were incorporated in the ABAQUS model. The prediction of the finite element model of FRP-confined square concrete columns shows good prediction accuracy.
APA, Harvard, Vancouver, ISO, and other styles
8

Ding, Hui, Jian Ping Wang, and Cheng Fan. "Application of Damaged Plasticity Model on Slab-Column Joints." Applied Mechanics and Materials 777 (July 2015): 13–17. http://dx.doi.org/10.4028/www.scientific.net/amm.777.13.

Full text
Abstract:
By the analysis of reinforced concrete slab, combined with experiment tests the feasibility of damaged plasticity model for concrete. Using parametric analyses, further the plastic damage model of related parameters set methods were discussed, concrete dilatation Angle, viscous coefficient, tensile stiffness, tensile damage on the results, in order to the design of slab-column connections engineering personnel to provide the reference.
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Xinpu, Lu Yang, and Fusheng Zhu. "A Plasticity-Based Damage Model for Concrete." Advances in Structural Engineering 7, no. 5 (October 2004): 461–67. http://dx.doi.org/10.1260/1369433042863260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rafiqul Islam, Mohammad, Abbas Ali, Md Jahir Bin Alam, Tanvir Ahmad, and Salman Sakib. "Analysis of damage-plasticity model of concrete under uniaxial compression loading." International Journal of Engineering & Technology 10, no. 1 (January 21, 2021): 29. http://dx.doi.org/10.14419/ijet.v10i1.30878.

Full text
Abstract:
Concrete is a quasi-brittle material and shows different behavior in compression and tension. It shows elastic behavior at initial stage and damage-plasticity behavior beyond elastic limit. Therefore, development of material behavior model of concrete is a complex phenomenon. In this study, concrete damage plasticity theory has been described under experiment on concrete cylinder considering uni-axial compression loading and interpreted with analytical data calculated using CEB-FIP model code equation. The code has divided the stress-strain curve for concrete compression into three sections according to concrete’s elastic and non-elastic behaviors. Those three sections have been considered to calculate analytical data. In experiment, concrete behavior has been observed in two phases. The damage value for different stresses at the various points on the stress strain curve has been calculated. According to analytical data, the concrete shows elastic behavior up to 8.3MPa stress point and no damage occur in the concrete within the limit. However, in experimental data, concrete shows elastic behavior up to only 2.28MPa and damage occurred beyond the stress. Finally, the percentage of damage of concrete due to compression obtained from analysis and experiment has been assessed and compared. Above 32 percent of concrete damage is found for 22.5 MPa in both cases.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Concrete Damage Plasticity Model"

1

Onifade, Ibrahim. "Development of Energy-based Damage and Plasticity Models for Asphalt Concrete Mixtures." Doctoral thesis, KTH, Byggnadsmaterial, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198663.

Full text
Abstract:
Characterizing the full range of damage and plastic behaviour of asphalt mixtures under varying strain-rates and stress states is a complex and challenging task. One reason for this  is partly due to the strain rate and temperature dependent nature of the material as well as the variation in the properties of the constituent materials that make up the composite asphalt mixture. Existing stress-based models for asphalt concrete materials are developed based on mechanics principles, but these models are, however, limited in their application for actual pavement analysis and design since rate dependency parameters are needed in the constitutive model to account for the influence of the strain rate on the stress-based yield and evolution criteria. Till date, we are yet to arrive at simple and comprehensive constitutive models that can be used to model the behaviour of asphalt mixture over a wide range of strain-rate which is experienced in the actual pavement sections. The aim of this thesis is to develop an increased understanding of the strength and deformation mechanism of asphalt mixtures through multi-scale modeling and to develop simple and comprehensive continuum models to characterize the non-linear behaviour of the material under varying stress-states and conditions. An analysis framework is developed for the evaluation of the influence of asphalt mixture morphology on its mechanical properties and response using X-Ray CT and digital image processing techniques. The procedure developed in the analysis framework is then used to investigate the existence of an invariant critical energy threshold for meso-crack initiation which serves as the basis for the development of a theory for the development of energy-based damage and plastic deformation models for asphalt mixtures. A new energy-based viscoelastic damage model is developed and proposed based on continuum damage mechanics (CDM) and the thermodynamics of irreversible processes. A second order damage variable tensor is introduced to account for the distributed damage in the material in the different principal damage directions. In this way, the material response in tension and compression can be decoupled and the effects of both tension- and compression stress states on the material behaviour can be accounted for adequately. Based on the finding from the energy-based damage model, an equivalent micro-crack stress approach is developed and proposed for the damage and fracture characterization of asphalt mixtures. The effective micro-crack stress approach takes account of the material stiffness and a critical energy threshold for micro-crack initiation in the characterization of damage and fracture properties of the mixture. The effective micro-crack stress approach is developed based on fundamental mechanics principles and it reduces to the Griffith's energy balance criterion when purely elastic materials are considered without the need for the consideration of the surface energy and a crack size in the determination of the fracture stress. A new Continuum Plasticity Mechanics (CPM) model is developed within the framework of thermodynamics to describe the plastic behaviour of asphalt concrete material with energy-based criteria derived for the initiation and evolution of plastic deformation. An internal state variable termed the "plasticity variable" is introduced to described the distributed dislocation movement in the microstructure. The CPM model unifies aspects of existing elasto-plastic and visco-plastic theories in one theory and shows particular strength in the modeling of rate-dependent plastic behaviour of materials without the need for the consideration of rate dependency parameters in the constitutive relationships. The CPM model is further extended to consider the reduction in the stiffness properties with incremental loading and to develop a unified energy-based damage and plasticity model. The models are implemented in a Finite Element (FE) analysis program for the validation of the models. The result shows that the energy-based damage and plastic deformation models are capable of predicting the behaviour of asphalt concrete mixtures under varying stress-states and strain-rate conditions. The work in this thesis provides the basis for the development of more fundamental understanding of the asphalt concrete material response and the application of sound and solid mechanics principles in the analysis and design of pavement structures.
En heltäckande karakterisering av skador och plastiska beteende hos asfaltblandningar under varierande belastningshastighet och spänningstillstånd är en komplex och svår uppgift. En orsak till detta är relaterat till materialets belastningshastighet- och temperaturberoende, såväl som variationen i materialegenskaperna hos de ingående komponenterna i den sammansatta asfaltblandningen. Befintliga spänningsbaserade modeller för asfaltbetongmaterial är utvecklade baserade på mekanikprinciper, men dessa modeller är begränsade när det gäller analys och design av verkliga asfaltsbeläggningar eftersom hastighetsberoende parametrar behövs i den konstitutiva modellen även med hänsyn till töjningshastighetens inverkan på kriterier för gränser och utveckling av spänningstillstånd. Det finns därför behov av att utveckla enkla men ändå heltäckande konstitutiva modeller som kan användas för att modellera beteendet hos asfaltmassan över ett brett spektrum av belastningshastigheter för olika av sektioner asfaltsbeläggningar. Syftet med denna avhandling är att öka förståelsen av hållfasthets- och deformationsmekanismer för asfaltblandningar genom multi-modellering. Målet är att utveckla enkla och heltäckande kontinuummodeller som karakteriserar materialets olinjära beteende under varierande spänningstillstånd och betingelser. Ett analysramverk har utvecklats för utvärdering av påverkan av asfaltmassans morfologi på dess mekaniska egenskaper och beteende med hjälp av röntgendatortomografi och digital bildbehandlingsteknik. Detta förfarande har sedan använts för att undersöka förekomsten av inneboende kritiska tröskelvärden för brottenergin för mesosprickinitiering vilket i sin tur ligger till grund för utvecklingen av en teori för modellering av energibaserade skador och plastisk deformation hos asfaltblandningar. En ny energidensitet baserad viskoelastisk skademodell utvecklas och föreslås utgå från kontinuum-skade-mekanik (CDM) och termodynamik för irreversibla processer. En andra ordningens skadevariabeltensor införs för att ta hänsyn till  skadedistributionen i materialen i de olika principiella skaderiktningarna. På detta sätt kan materialets respons i drag- och tryckbelastning separeras och effekterna av spänningstillstånd i både drag och tryck kan beaktas på ett adekvat sätt. Baserat på resultaten från den energibaserade skademodellen utvecklas och föreslås en motsvarande metod för mikrosprickspänning gällande skade- och brottkarakteriseringen av asfaltblandningar. Metoden för den effektiva mikrosprickspänningen tar hänsyn till materialets styvhet och en kritisk tröskelenergi för mikrosprickinitiering för karakteriseringen av skador och brottegenskaper hos blandningen. Denna metod är utvecklad baserat på grundläggande mekanikprinciper och kan för rent elastiska material reduceras till Griffiths energibalanskriterium utan hänsyn till ytenergi och sprickstorlek vid bestämningen av brottspänningen. En ny termodynamikbaserad modell för kontinuumplasticitetsmekanik (CPM) utvecklas för att beskriva det plastiska beteendet hos asfaltbetongmaterial med energibaserade kriterier härledda för initiering och progression av plastisk deformation. En intern tillståndsvariabel kallad "plasticitetvariabeln" införs för att beskriva den fördelade dislokationsrörelsen i mikrostrukturen. CPM-modellen förenar befintliga elasto-plastiska och visko-plastiska teorier i en teori och visar sig vara särskilt effektiv i modelleringen av hastighetsberoende plastiskt beteende hos material utan att behöva beakta hastighetsberoende parametrar i de konstitutiva sambanden. CPM-modellen utvidgas ytterligare för att kunna beakta reduktionen av styvheten med stegvis ökad belastning och för att utveckla en enhetlig energibaserad skade- och plasticitetmodell. Modellerna är implementerade i ett finit element (FE)-analysprogram för validering av modellerna. Resultatet visar att de energibaserade modellerna för skador och plastisk deformation kan förutsäga beteendet hos asfaltbetongblandningar under varierande spänningstillstånd och töjningshastighetsförhållanden. Arbetet i denna avhandling utgör grunden för utvecklingen av mer grundläggande förståelse av asfaltbetongmaterialets respons och tillämpningen av sunda och robusta mekanikprinciper i analys och design av asfaltstrukturer.

QC 20161220

APA, Harvard, Vancouver, ISO, and other styles
2

Wahalathantri, Buddhi Lankananda. "Damage assessment in reinforced concrete flexural members using modal strain energy based method." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/59509/1/Buddhi_Wahalathantri_Thesis.pdf.

Full text
Abstract:
Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Santos, Fernanda de Oliveira. "Modelo constitutivo incremental explícito para o concreto confinado baseado na teoria da plasticidade e dano." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-10072018-114442/.

Full text
Abstract:
O confinamento de pilares de concreto por meio de camisas de aço ou compósitos possui uma função importante na preservação, recuperação e reforço de estruturas, pois proporciona aumento de resistência e ductilidade desses elementos estruturais. Porém, grande parte dos modelos existentes apresenta limitações na previsão do comportamento do concreto confinado, principalmente por serem dependentes do tipo de confinamento. Portanto, este trabalho apresenta um modelo para descrição do comportamento tensão-deformação do concreto submetido a qualquer tipo de confinamento uniforme, ativo ou passivo, e confinado com diferentes materiais confinantes - aço ou compósitos. O modelo constitutivo associa plasticidade e dano a fim de prever adequadamente a resistência, deformabilidade e redução de rigidez elástica do concreto confinado. O modelo é desenvolvido para um processo incremental explícito de implementação, permitindo, portanto, o seu desenvolvimento em qualquer tipo de planilha. Finalmente, o modelo foi validado por meio de um conjunto representativo de experimentos encontrados na literatura.
Confinement of concrete columns through steel or composites jackets has an important function in the preservation, recovery and strengthening of structures, because it provides increased strength and ductility of these structural elements. However, most of the existing models have limitations in the prediction of the behavior of confined concrete, mainly because they are dependent on the type of confinement. This work presents a model for the description of the stress-strain behavior of the concrete submitted to any type of uniform confinement, active or passive, and confined with different confinement materials, steel or composites. The constitutive model associates plasticity and damage in order to predict with accuracy the strength, ultimate strain and reduction of elastic stiffness of the confined concrete. The model is developed by an explicit incremental implementation process allowing, therefore, its development in any type of spreadsheet. Finally, the model was validated through a representative set of experiments found in the literature.
APA, Harvard, Vancouver, ISO, and other styles
4

Bülow, Angeling Jenny. "Weight reduction of concrete poles for the Swedish power line grid : Using a Finite Element Model to optimize geometry in relation to load requirements." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-66823.

Full text
Abstract:
Because of an eventual ban of creosote-impregnated products, alternative materials for poles used in the electrical grid are needed. Concrete is one alternative and spun concrete poles have been manufactured for the Swedish grid before. These poles are still in use since the high strength and good functioning. However, they weigh too much in terms of the way that poles are assembled on the grid today. Therefore, a study comparing the capacity of different geometries, resulting in lower weight, is of interest.  In this Master’s Thesis, crack initiation and compressive failure in concrete poles are examined by creating FE-models in the software BRIGADE/Plus, using concrete damage plasticity. Thus, guidance is provided about how thin the concrete walls can be made without risking failure – which also means how low the weight of such a pole can be. The failure most likely to occur is a compressive failure in the concrete with a ductile behavior. The result shows that a geometry change, which implies a thinner concrete wall, is possible. This means a weight reduction between 30-75 % or even more, depending on which network the poles are designed for.
APA, Harvard, Vancouver, ISO, and other styles
5

Vosoughian, Saeed. "The effect of pre-stressing location on punching shear capacity of concrete flat slabs." Thesis, KTH, Betongbyggnad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263243.

Full text
Abstract:
Implementing pre-stressing cables is a viable option aiming at controlling deformation and cracking of concrete flat slabs in serviceability limit state. The pre-stressing cables also contribute to punching shear capacity of the slab when they are located in vicinity of the column. The positive influence of pre-stressing cables on punching capacity of the concrete slabs is mainly due to the vertical component of inclined cables, compressive in-plane stresses and counter acting bending moments near the support region. The method presented in Eurocode 2 to determine the punching capacity of the pre-stressed concrete flat slabs considers the in-plane compressive stresses but totally neglects the effect of counter acting moments. The effect of vertical forces introduced by inclined cables is only considered when they are within the distance 2d from the face of the column. This area is called basic control area in the Eurocode 2. In this master thesis nonlinear finite element analysis is carried out to study the effect of pre-stressing cables on punching shear capacity of concrete slabs respecting the distance of cables from the face of the column. To attain this objective, the concrete damage plasticity model is implemented to model the concrete. The results indicate that until the distance of 6d from the face of the column the contribution of pre-stressing cables in punching shear capacity of slabs is significant. Furthermore, comparing the numerical results with the punching shear capacity of slabs predicted by Eurocode 2 reveals that Eurocode tremendously underestimates the punching shear capacity when the cables are located outside the basic control area.
APA, Harvard, Vancouver, ISO, and other styles
6

Farahmandpour, Chia. "Modélisation et simulation du comportement des bétons confinés." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066550/document.

Full text
Abstract:
Les techniques de renforcement de structures en béton armé (BA) par collage de polymères renforcés de fibres (PRF) trouvent un important champ d'applications dans le renforcement des poteaux en BA. Le chemisage par PRF confine le noyau du poteau et permet d'augmenter sa résistance et sa ductilité. Bien que de nombreux travaux expérimentaux aient été consacrés à l'étude de l'effet de confinement du PRF sur le comportement des poteaux en BA, la réalisation d'une simulation réaliste de la réponse structurelle de tels éléments présente de nombreuses difficultés liées aux modèles de comportement peu appropriés à reproduire précisément la réponse mécanique du béton confiné. Dans cette recherche, un modèle de comportement élasto-plastique endommageable est développé pour reproduire la réponse mécanique du béton sollicité suivant un chemin triaxial de contraintes. Ce modèle prend en compte différents mécanismes de comportement du béton tels que les déformations irréversibles, l'endommagement dû à la microfissuration, la sensibilité au confinement et les caractéristiques de dilatation. Un processus d'identification des paramètres du modèle est proposé sur la base d'essais classiques. La validation de ce modèle est ensuite démontrée en comparant des résultats de simulations à des données expérimentales de la littérature sur des bétons confinés activement puis des bétons confinés par des PRF présentant une large gamme de rigidité. Le modèle proposé est également comparé à différentes modélisations de la littérature. Les capacités du modèle sont illustrées et analysées sur des applications tridimensionnelles de poteaux en BA de taille réelle, non confinés et confinés par PRF
For the past two decades, externally bonded Fiber Reinforced Polymers (FRP) has gained much popularity for seismic rehabilitation of reinforced concrete (RC) columns. In this technique, FRP wrap installed on the surface of a column acts as lateral confinement and enhance the strength and deformation capacity of the concrete element. Although many experimental works have been devoted to the study of confining effect of FRP on the behavior of RC columns, the numerical simulation of FRP-jacketed RC columns remains a challenging issue due to the lack of appropriate constitutive model for confined concrete. In this study, a damage plastic model is developed to predict the behavior of concrete under triaxial stress states. The proposed model takes into account different material behavior such as irreversible strain, damage due to microcracking, confinement sensitivity and dilation characteristic. A straightforward identification process of all model’s parameters is then presented. The identification process is applied to different normal strength concrete. The validity of the model is then demonstrated through confrontation of experimental data with simulations considering active confined concrete and FRP confined concrete with a wide range of confinement stiffness. The proposed constitutive model is also compared with other models from the literature and the distinguishing features of this new model are discussed. Furthermore, the capacity of the model in the three-dimensional finite element analysis of full-scale RC columns is demonstrate and discussed
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Giang Dinh. "A thermodynamic approach to constitutive modelling of concrete using damage mechanics and plasticity theory." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:242564ff-cd6f-4743-8e06-0d3db5f44c3d.

Full text
Abstract:
Recent advances in computational mechanics have opened the potential of carrying out the analysis and design of concrete structures in a realistic manner with the use of nonlinear concrete models. This encourages the development of more capable and realistic constitutive models, based on a rigorous approach, for the analysis and design of concrete structures. This research focuses on the development of a thermodynamic approach to constitutive modelling of concrete, with emphasis on the rigour and consistency both in the formulation of constitutive models, and in the identification of model parameters based on experimental tests. The key feature of the thermodynamic framework used in this study is that all behaviour of the defined model can be derived from two specified energy potentials. In addition, the derivation of a constitutive model within this framework merely follows procedures established beforehand. The proposed constitutive model here is based on continuum damage mechanics, in combination with plasticity theory, hence enabling the macroscopic material behaviour observed in experiments to be appropriately modelled. Damage-induced softening is the cause of many problems in numerical failure simulations based on conventional continuum mechanics. The resolution of these problems requires an appropriate special treatment for the constitutive modelling which, in this study, is based on nonlocal theory, and realized through the nonlocality of energy terms in the damage loading functions. For practical applications in structural analysis, the model requires a minimum number of parameters, which can be identified from experimental tests. All the above features of the model have been incorporated in a unified and consistent thermodynamic approach, which also distinguish the approach from existing ones. Numerical implementation and application are important parts of the study. A suitable implicit scheme is adapted here for the integration of the nonlocal rate constitutive equations. For the solution of systems of nonlinear algebraic equations in finite element analysis, the arc-length method in combination with local constraint equations employing dominant displacements is implemented, and proves its reliability in this study. Application of the proposed constitutive models in the analysis and design of concrete structures is straightforward, with several numerical examples showing the practical aspects of the proposed modelling.
APA, Harvard, Vancouver, ISO, and other styles
8

Tahar, Benabdellah. "C←2 continuous hardening/softening elasto-plasticity model for concrete." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gomez, Rodolfo Andres. "Monotonic Plasticity-Damage and Fatigue Life Model Correlations on AISI 4140 Steel." MSSTATE, 2007. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07052007-144738/.

Full text
Abstract:
A microstructure-based plasticity-damage model is used to predict the mechanical behavior of commercially available AISI 4140 steel. Monotonic tension, compression and torsion tests were performed to obtain the set of plasticity and damage constants required for model calibration. Then, tension tests on Bridgman notched specimens were undertaken to study the damage-triaxiality dependence. Three different notch radii generated different levels of triaxiality at the notch. The modeled triaxiality-damage correlation was validated with SEM fracture surface analysis. Stress-strain correlations under different strain rate and temperature testing conditions were also studied. Little influence of the strain rate was observed. A preliminary study in high-porosity LENS materials was later performed, with satisfactory stress-strain correlation at two different temperatures on tension tests. Finally, a multistage fatigue model was used to predict life in AISI 4140 steel. The goal was to create a baseline for future application of these mathematical models into LENS manufactured materials in component design
APA, Harvard, Vancouver, ISO, and other styles
10

Abdel-Rahman, Saadeh Shadi. "Characterization of asphalt concrete using anisotropic damage viscoelastic-viscoplastic model." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4761.

Full text
Abstract:
This dissertation presents the integration of a damage viscoelastic constitutive relationship with a viscoplastic relationship in order to develop a comprehensive anisotropic damage viscoelastic-viscoplastic model that is capable of capturing hot mix asphalt (HMA) response and performance under a wide range of temperatures, loading rates, and stress states. The damage viscoelasticity model developed by Schapery (1969) is employed to present the recoverable response, and the viscoplasticity model developed at the Texas Transportation Institute (TTI) is improved and used to model the irrecoverable strain component. The influence of the anisotropic aggregate distribution is accounted for in both the viscoelastic and viscoplastic responses. A comprehensive material identification experimental program is developed in this study. The experimental program is designed such that the quantification and decomposition of the response into viscoelastic and viscoplastic components can be achieved. The developed experimental program and theoretical framework are used to analyze repeated creep tests conducted on three mixes that include aggregates with different characteristics. An experiment was conducted to capture and characterize the three-dimensional distribution of aggregate orientation and air voids in HMA specimens. X-ray computed tomography (CT) and image analysis techniques were used to analyze the microstructure in specimens before and after being subjected to triaxial repeated creep and recovery tests as well as monotonic constant strain rate tests. The results indicate that the different loading conditions and stress states induce different microstructure distributions at the same macroscopic strain level. Also, stress-induced anisotropy is shown to develop in HMA specimens.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Concrete Damage Plasticity Model"

1

Gunn, Russell Michael. Non-linear analysis of arch dams including an anisotropic damage mechanics based constitutive model for concrete. 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alkali-silica reaction: Minimising the risk of damage to concrete : guidance notes and model specification clauses : report of a Working Party. London: Concrete Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Concrete Damage Plasticity Model"

1

Azevedo, António C., Fernando A. N. Silva, João M. P. Q. Delgado, and Isaque Lira. "The Plasticity Model of Concrete Damage—CDPM." In Concrete Structures Deteriorated by Delayed Ettringite Formation and Alkali-Silica Reactions, 17–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12267-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dummer, A., M. Neuner, and G. Hofstetter. "Investigation of an extended damage-plasticity model for concrete considering nonlinear creep behavior." In Computational Modelling of Concrete and Concrete Structures, 443–50. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003316404-52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jia, Yueqiao, and Jeffrey Choong Luin Chiang. "Finite Element Analysis of Punching Shear of Reinforced Concrete Mushroom Slab-Column Connections Using ABAQUS." In Advances in Frontier Research on Engineering Structures, 83–91. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_8.

Full text
Abstract:
AbstractCapital is one of the common measures to strengthen the slab-column connections. It can make the joint's load capacity increase. However, when the connection is subjected to the unbalanced bending moment, the reduction effect of the capital on the bending moment is to be studied. Nonlinear finite element analysis is performed on reinforced concrete slabs with column capital for various moment-to-shear (M/V) ratios. The effect of capital radius on the punching shear resistance of slab-column connections is investigated. The 3D finite element modeling is performed using the concrete damage plasticity model and concrete constitutive equations. The concrete damage plasticity model parameters are calibrated by the experiment results of specimens. Increasing the radius of capital can improve the bearing capacity of nodes and reduce the moment transfer effect obviously.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Fei, Shaoyu Zhao, and Shuli Fan. "Effect of Autoclaved Aerated Concrete on Dynamic Response of Concrete Gravity Dam Under Earthquakes." In Lecture Notes in Civil Engineering, 409–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2532-2_35.

Full text
Abstract:
AbstractAutoclaved Aerated Concrete (AAC) is commonly used in lower floors buildings in low seismicity areas due to its lightweight property and high energy absorption capacity. This paper proposes a novel application of AAC as an effective seismic countermeasure in the reduction of vibrational energy for concrete gravity dam. According the vibrating characteristics and failure modes of gravity dam under earthquake excitation, AAC was placed in the upper zone of a gravity dam to reduce the seismic inertia force and consequently to increase the seismic safety of the dam. Dynamic responses of two non-overflow sections of a gravity dam were analyzed through finite element analysis utilizing a damaged plasticity constitutive model. The anti-seismic effect of using AAC in gravity dams is researched by inputting different kind of ground motion records. The comparison of the natural vibration characteristics, dam crest displacement, and dynamic damage of the dam were investigated. The results show that, AAC effectively improves seismic resistance of concrete gravity dams, particularly eliminating cracks in the concrete along reduced damage zones, through inertial force reduction and energy dissipation. The results warrant further considerations for applying AAC to gravity dams.
APA, Harvard, Vancouver, ISO, and other styles
5

Senthil, K., and Rachit Sharma. "Estimation on Accuracy of Compressive and Tensile Damage Parameters of Concrete Damage Plasticity Model." In Mechanisms and Machine Science, 65–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15758-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jia, Yueqiao, and Jeffrey Chiang Choong Luin. "Finite Element Analysis of Reinforced Concrete Slab-Rectangular Column Connections Using ABAQUS." In Advances in Frontier Research on Engineering Structures, 33–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_4.

Full text
Abstract:
AbstractRectangular columns used in flat-slab structures run the risk of punching shear damage due to stress concentrations, especially when bending moments and vertical forces act together at the connections. Using the finite element analysis method, the existing experiments are numerically simulated using the 3D modeling software ABAQUS, and describe the cracking behavior of concrete using the concrete damaged plasticity model. The accuracy of the numerical simulation was calibrated by load–displacement curves and crack patterns using the experimental results. The study of the model was set up with different moment-to-shear ratios and outputs the trend of the average shear stress on the eccentric force side of the slab. The moment transfer coefficients are derived through the equation of ACI-318 and compared with the code values. A safe range of side length ratios is proposed to reduce the risk of punching shear damage from the use of rectangular columns. This provides a reference for practical design, but more experiments are needed to support the proposed recommendations.
APA, Harvard, Vancouver, ISO, and other styles
7

Vorlet, S., P. Manso, and G. De Cesare. "Seismic Behavior of Pine Flat Concrete Gravity Dam Using Microplane Damage-Plasticity Model." In Lecture Notes in Civil Engineering, 353–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51085-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sannametla, Nidhi, and Jyosyula Sri Kalyana Rama. "Seismic Response of UHPC Strengthened Reinforced Concrete Frame Using Concrete Damaged Plasticity Model." In Lecture Notes in Civil Engineering, 159–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4079-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aymerich, F., L. Fenu, and G. Loi. "FE Analysis of the Flexural Behavior of Cementitious Composites Using the Concrete Damage Plasticity Model." In Lecture Notes in Civil Engineering, 124–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23748-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, J. F., and Y. Tao. "Finite Element Modelling of FRP-to-Concrete Bond Behaviour Using the Concrete Damage Plasticity Theory Combined with a Plastic Degradation Model." In Advances in FRP Composites in Civil Engineering, 45–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17487-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Concrete Damage Plasticity Model"

1

Chandrasekaran, Srinivasan, and P. Kumar. "Damage assessment in concrete marine structures using damage plasticity model." In Proceedings of the 6th International Conference On Marine Structures (Marstruct 2017). CRC Press/Balkema P.O. Box 11320, 2301 EH Leiden, The Netherlands: CRC Press/Balkema, 2017. http://dx.doi.org/10.1201/9781315157368-84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grassl, P. "Modelling the dynamic response of concrete with the damage plasticity model CDPM2." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.235633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fakeh, Mina, Akram Jawdhari, and Amir Fam. "Calibration of ABAQUS Concrete Damage Plasticity (CDP) Model for UHPC Material." In Third International Interactive Symposium on Ultra-High Performance Concrete. Iowa State University Digital Press, 2023. http://dx.doi.org/10.21838/uhpc.16675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pratama, M. Mirza Abdillah, Rhamadani Ryan Yudhatama Putra, Rizal Maulana, Dinda Ainur Istiqomah, Nindyawati Nindyawati, Karyadi Karyadi, and Buntara Sthenly Gan. "Finite element analysis of reinforced graded concrete beams using simplified damage plasticity model approach." In PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING EDUCATION (ICCEE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0093873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Altaee, Mohammed, Majid Kadhim, Sarmed Altayee, and Ali Adheem. "Employment of damage plasticity constitutive model for concrete members subjected to high strain-rate." In Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 28-30 June 2020. EAI, 2020. http://dx.doi.org/10.4108/eai.28-6-2020.2298164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, W., and J. Wu. "A note on the ABAQUS Concrete Damaged Plasticity (CDP) model." In Proceedings of the International Conference on Civil, Architecture and Environmental Engineering (ICCAE2016). CRC Press/Balkema P.O. Box 11320, 2301 EH Leiden, The Netherlands: CRC Press/Balkema, 2017. http://dx.doi.org/10.1201/9781315116242-42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dongmo, B. F. "A 3D visco-elasto-plasto damage constitutive model of concrete under long-term effects." In AIMETA 2022. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902431-6.

Full text
Abstract:
Abstract. A comprehensive 3D visco-elasto-plasto-damage constitutive model of concrete is proposed to analyze its behaviour under long-term and cyclic loadings. This model combines the visco-elasticy and plasticity theories together with damage mechanics. The work aims at providing an efficient model capable of predicting the material behaviour, taking into account time-dependent effects at the mesoscale. The visco-elastic part is modeled within the framework of the linear visco-elasticity theory. The creep function is evaluated with the aid of the B3 model by Bažant and Baweja, and implemented via the exponential algorithm. The modified Menétrey-Willam pressure-dependent yield surface, and a non-associated flow rule are used for the plastic formulation of the model. The damage part of the model considers two exponential damage parameters: one in tension, and one in compression, that account for a realistic description of the transition from tensile to compressive failure. After discussing the numerical implementation, the proposed model is calibrated, and numerical results at the mesoscale level are compared to experimental results.
APA, Harvard, Vancouver, ISO, and other styles
8

Al Saman, Marwan, and Mehmet Alper ÇANKAYA. "Plasticity Based Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Beams." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.013.

Full text
Abstract:
In this study, a blind simulation was carried out to predict the response of full-scale steel fiber-reinforced concrete beams (SFRC) subjected to four-point bending. For this purpose, an experimental study was selected from the literature. Bending tests of two beam specimens with prismatic geometry of 300x500x4400 and 150x250x2000 mm were simulated using the non-linear finite element (NLFE) code ABAQUS/Explicit [1]. In the full-scale numerical models, concrete, and steel rebars were discretized in space by eight-node reduced integration linear brick elements (C3D8R) and linear beam elements (B31), respectively. Additionally, concrete damage plasticity (CDP) constitutive model was adopted for concrete and the stress-strain relationship of steel reinforcements was established based on the piecewise functions given in Turkish Building Earthquake Code (TBEC) 2018 [2]. The embedded element technique was used to establish a perfect bond between concrete brick elements and steel reinforcement beam elements. Therefore, concrete elements were selected to be host elements while steel reinforcement was embedded in the host material. Support conditions and loading plates were explicitly modeled using eight-node brick element (C3D8R) as rectangular prisms. The interaction between the plates and beam specimen was provided by tie constraint. Results from the numerical analyses included load-displacement curve and crack pattern variables which are considered to verify the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
9

Al Saman, Marwan, and Mehmet Alper ÇANKAYA. "Plasticity Based Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Beams." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.013.

Full text
Abstract:
In this study, a blind simulation was carried out to predict the response of full-scale steel fiber-reinforced concrete beams (SFRC) subjected to four-point bending. For this purpose, an experimental study was selected from the literature. Bending tests of two beam specimens with prismatic geometry of 300x500x4400 and 150x250x2000 mm were simulated using the non-linear finite element (NLFE) code ABAQUS/Explicit [1]. In the full-scale numerical models, concrete, and steel rebars were discretized in space by eight-node reduced integration linear brick elements (C3D8R) and linear beam elements (B31), respectively. Additionally, concrete damage plasticity (CDP) constitutive model was adopted for concrete and the stress-strain relationship of steel reinforcements was established based on the piecewise functions given in Turkish Building Earthquake Code (TBEC) 2018 [2]. The embedded element technique was used to establish a perfect bond between concrete brick elements and steel reinforcement beam elements. Therefore, concrete elements were selected to be host elements while steel reinforcement was embedded in the host material. Support conditions and loading plates were explicitly modeled using eight-node brick element (C3D8R) as rectangular prisms. The interaction between the plates and beam specimen was provided by tie constraint. Results from the numerical analyses included load-displacement curve and crack pattern variables which are considered to verify the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
10

Waghmare, Ambadas, and Ananth Ramaswamy. "Nonlinear Analysis of Reinforced Concrete Structural Elements." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1419.

Full text
Abstract:
<p>Nonlinear analysis of reinforced concrete elements is the focus of the present study. A concrete damage plasticity model available in Abaqus commercial software has been modified using user defined modules to include the concrete stiffness degradation and growth in the Poisson’s ratio in plain concrete with increase in compressive strain. In reinforced concrete the degradation of cracked concrete in compression, tension stiffening effects and bond slip have been considered to enhance the prediction of responses observed in reinforced concrete elements under various loadings. The model predicts the salient features of multiaxial response observed in experiments on plain and reinforced concrete elements subjected to various loads.</p>
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Concrete Damage Plasticity Model"

1

Neilsen, Michael K., Wei-Yang Lu, William M. Scherzinger, Terry D. Hinnerichs, and Chi S. Lo. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1183947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sanchez, Jason James. The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1423181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vogler, Tracy, and Christopher James Lammi. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, E. P. Simulation of concrete perforation based on a continuum damage model. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10185320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bammann, Douglas J., G. C. Johnson, Esteban B. Marin, and Richard A. Regueiro. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/883488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ko, Yu-Fu, and Jessica Gonzalez. Fiber-Based Seismic Damage and Collapse Assessment of Reinforced Concrete Single-Column Pier-Supported Bridges Using Damage Indices. Mineta Transportation Institute, August 2023. http://dx.doi.org/10.31979/mti.2023.2241.

Full text
Abstract:
Near-fault earthquakes can have major effects on transportation systems due to the structural damage they impose on bridges. Therefore, it is imperative to assess the seismic damage of bridges appropriately, and this research focuses on reinforced concrete (RC) bridges. This research advances the seismic performance assessment of RC single-column pier-supported bridges with flexural failure under near-fault ground motion by use of ductility coefficients and damage indices. The methodology included modeling fiber-based nonlinear beam-column elements to simulate the damage development process of RC bridge piers under earthquake loadings, considering the global buckling of longitudinal steel bars, examining the cracking and spalling of cover concrete, and analyzing the effects of bond-slip. The tensile strain represented the damage of the longitudinal bars while the compression strain represented the cover concrete damage. Two innovative nonlinear fiber-based finite element models (FEMs) were developed: Model 1 (bond-slip excluded) and Model 2 (bond-slip included). Nonlinear static cyclic pushover analyses and nonlinear response history analyses were conducted. The simulation results were compared with available pseudo-dynamic test results. Model 1 provided a more ideal prognosis on the seismic performance of RC single-column pier-supported bridges under near-fault ground motion. The proposed damage indices can indicate the damage state at any stage and the gradual accumulation of damage in RC bridge piers, which are more convincing than most other indices in the literature. The proposed fiber-based nonlinear FEMs, together with the use of ductility coefficients and proposed damage indices, can also assist engineers and researchers in simulating the seismic behavior and assessing the damage state of RC bridge columns in a computationally effective manner which can empower engineers to identify and prioritize RC bridges for seismic retrofit and maintenance.
APA, Harvard, Vancouver, ISO, and other styles
7

Sparks, Paul, Jesse Sherburn, William Heard, and Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41963.

Full text
Abstract:
Terminal ballistics of concrete is of extreme importance to the military and civil communities. Over the past few decades, ultra‐high performance concrete (UHPC) has been developed for various applications in the design of protective structures because UHPC has an enhanced ballistic resistance over conventional strength concrete. Developing predictive numerical models of UHPC subjected to penetration is critical in understanding the material's enhanced performance. This study employs the advanced fundamental concrete (AFC) model, and it runs inside the reproducing kernel particle method (RKPM)‐based code known as the nonlinear meshfree analysis program (NMAP). NMAP is advantageous for modeling impact and penetration problems that exhibit extreme deformation and material fragmentation. A comprehensive experimental study was conducted to characterize the UHPC. The investigation consisted of fracture toughness testing, the utilization of nondestructive microcomputed tomography analysis, and projectile penetration shots on the UHPC targets. To improve the accuracy of the model, a new scaled damage evolution law (SDEL) is employed within the microcrack informed damage model. During the homogenized macroscopic calculation, the corresponding microscopic cell needs to be dimensionally equivalent to the mesh dimension when the partial differential equation becomes ill posed and strain softening ensues. Results of numerical investigations will be compared with results of penetration experiments.
APA, Harvard, Vancouver, ISO, and other styles
8

Rahmani, Mehran, Xintong Ji, and Sovann Reach Kiet. Damage Detection and Damage Localization in Bridges with Low-Density Instrumentations Using the Wave-Method: Application to a Shake-Table Tested Bridge. Mineta Transportation Institute, September 2022. http://dx.doi.org/10.31979/mti.2022.2033.

Full text
Abstract:
This study presents a major development to the wave method, a methodology used for structural identification and monitoring. The research team tested the method for use in structural damage detection and damage localization in bridges, the latter being a challenging task. The main goal was to assess capability of the improved method by applying it to a shake-table-tested prototype bridge with sparse instrumentation. The bridge was a 4-span reinforced concrete structure comprising two columns at each bent (6 columns total) and a flat slab. It was tested to failure using seven biaxial excitations at its base. Availability of a robust and verified method, which can work with sparse recording stations, can be valuable for detecting damage in bridges soon after an earthquake. The proposed method in this study includes estimating the shear (cS) and the longitudinal (cL) wave velocities by fitting an equivalent uniform Timoshenko beam model in impulse response functions of the recorded acceleration response. The identification algorithm is enhanced by adding the model’s damping ratio to the unknown parameters, as well as performing the identification for a range of initial values to avoid early convergence to a local minimum. Finally, the research team detect damage in the bridge columns by monitoring trends in the identified shear wave velocities from one damaging event to another. A comprehensive comparison between the reductions in shear wave velocities and the actual observed damages in the bridge columns is presented. The results revealed that the reduction of cS is generally consistent with the observed distribution and severity of damage during each biaxial motion. At bents 1 and 3, cS is consistently reduced with the progression of damage. The trends correctly detected the onset of damage at bent 1 during biaxial 3, and damage in bent 3 during biaxial 4. The most significant reduction was caused by the last two biaxial motions in bents 1 and 3, also consistent with the surveyed damage. In bent 2 (middle bent), the reduction trend in cS was relatively minor, correctly showing minor damage at this bent. Based on these findings, the team concluded that the enhanced wave method presented in this study was capable of detecting damage in the bridge and identifying the location of the most severe damage. The proposed methodology is a fast and inexpensive tool for real-time or near real-time damage detection and localization in similar bridges, especially those with sparsely deployed accelerometers.
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.

Full text
Abstract:
Recent advances in visual sensing technology have gained much attention in the field of bridge inspection and management. Coupled with advanced robotic systems, state-of-the-art visual sensors can be used to obtain accurate documentation of bridges without the need for any special equipment or traffic closure. The captured visual sensor data can be post-processed to gather meaningful information for the bridge structures and hence to support bridge inspection and management. However, state-of-the-practice data postprocessing approaches require substantial manual operations, which can be time-consuming and expensive. The main objective of this study is to develop methods and algorithms to automate the post-processing of the visual sensor data towards the extraction of three main categories of information: 1) object information such as object identity, shapes, and spatial relationships - a novel heuristic-based method is proposed to automate the detection and recognition of main structural elements of steel girder bridges in both terrestrial and unmanned aerial vehicle (UAV)-based laser scanning data. Domain knowledge on the geometric and topological constraints of the structural elements is modeled and utilized as heuristics to guide the search as well as to reject erroneous detection results. 2) structural damage information, such as damage locations and quantities - to support the assessment of damage associated with small deformations, an advanced crack assessment method is proposed to enable automated detection and quantification of concrete cracks in critical structural elements based on UAV-based visual sensor data. In terms of damage associated with large deformations, based on the surface normal-based method proposed in Guldur et al. (2014), a new algorithm is developed to enhance the robustness of damage assessment for structural elements with curved surfaces. 3) three-dimensional volumetric models - the object information extracted from the laser scanning data is exploited to create a complete geometric representation for each structural element. In addition, mesh generation algorithms are developed to automatically convert the geometric representations into conformal all-hexahedron finite element meshes, which can be finally assembled to create a finite element model of the entire bridge. To validate the effectiveness of the developed methods and algorithms, several field data collections have been conducted to collect both the visual sensor data and the physical measurements from experimental specimens and in-service bridges. The data were collected using both terrestrial laser scanners combined with images, and laser scanners and cameras mounted to unmanned aerial vehicles.
APA, Harvard, Vancouver, ISO, and other styles
10

Ramakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer, and Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.

Full text
Abstract:
Truck platoons are expected to improve safety and reduce fuel consumption. However, their use is projected to accelerate pavement damage due to channelized-load application (lack of wander) and potentially reduced duration between truck-loading applications (reduced rest period). The effect of wander on pavement damage is well documented, while relatively few studies are available on the effect of rest period on pavement permanent deformation. Therefore, the main objective of this study was to quantify the impact of rest period theoretically, using a numerical method, and experimentally, using laboratory testing. A 3-D finite-element (FE) pavement model was developed and run to quantify the effect of rest period. Strain recovery and accumulation were predicted by fitting Gaussian mixture models to the strain values computed from the FE model. The effect of rest period was found to be insignificant for truck spacing greater than 10 ft. An experimental program was conducted, and several asphalt concrete (AC) mixes were considered at various stress levels, temperatures, and rest periods. Test results showed that AC deformation increased with rest period, irrespective of AC-mix type, stress level, and/or temperature. This observation was attributed to a well-documented hardening–relaxation mechanism, which occurs during AC plastic deformation. Hence, experimental and FE-model results are conflicting due to modeling AC as a viscoelastic and the difference in the loading mechanism. A shift model was developed by extending the time–temperature superposition concept to incorporate rest period, using the experimental data. The shift factors were used to compute the equivalent number of cycles for various platoon scenarios (truck spacings or rest period). The shift model was implemented in AASHTOware pavement mechanic–empirical design (PMED) guidelines for the calculation of rutting using equivalent number of cycles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography