To see the other types of publications on this topic, follow the link: Concrete Damage Plasticity Model.

Dissertations / Theses on the topic 'Concrete Damage Plasticity Model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Concrete Damage Plasticity Model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Onifade, Ibrahim. "Development of Energy-based Damage and Plasticity Models for Asphalt Concrete Mixtures." Doctoral thesis, KTH, Byggnadsmaterial, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198663.

Full text
Abstract:
Characterizing the full range of damage and plastic behaviour of asphalt mixtures under varying strain-rates and stress states is a complex and challenging task. One reason for this  is partly due to the strain rate and temperature dependent nature of the material as well as the variation in the properties of the constituent materials that make up the composite asphalt mixture. Existing stress-based models for asphalt concrete materials are developed based on mechanics principles, but these models are, however, limited in their application for actual pavement analysis and design since rate dependency parameters are needed in the constitutive model to account for the influence of the strain rate on the stress-based yield and evolution criteria. Till date, we are yet to arrive at simple and comprehensive constitutive models that can be used to model the behaviour of asphalt mixture over a wide range of strain-rate which is experienced in the actual pavement sections. The aim of this thesis is to develop an increased understanding of the strength and deformation mechanism of asphalt mixtures through multi-scale modeling and to develop simple and comprehensive continuum models to characterize the non-linear behaviour of the material under varying stress-states and conditions. An analysis framework is developed for the evaluation of the influence of asphalt mixture morphology on its mechanical properties and response using X-Ray CT and digital image processing techniques. The procedure developed in the analysis framework is then used to investigate the existence of an invariant critical energy threshold for meso-crack initiation which serves as the basis for the development of a theory for the development of energy-based damage and plastic deformation models for asphalt mixtures. A new energy-based viscoelastic damage model is developed and proposed based on continuum damage mechanics (CDM) and the thermodynamics of irreversible processes. A second order damage variable tensor is introduced to account for the distributed damage in the material in the different principal damage directions. In this way, the material response in tension and compression can be decoupled and the effects of both tension- and compression stress states on the material behaviour can be accounted for adequately. Based on the finding from the energy-based damage model, an equivalent micro-crack stress approach is developed and proposed for the damage and fracture characterization of asphalt mixtures. The effective micro-crack stress approach takes account of the material stiffness and a critical energy threshold for micro-crack initiation in the characterization of damage and fracture properties of the mixture. The effective micro-crack stress approach is developed based on fundamental mechanics principles and it reduces to the Griffith's energy balance criterion when purely elastic materials are considered without the need for the consideration of the surface energy and a crack size in the determination of the fracture stress. A new Continuum Plasticity Mechanics (CPM) model is developed within the framework of thermodynamics to describe the plastic behaviour of asphalt concrete material with energy-based criteria derived for the initiation and evolution of plastic deformation. An internal state variable termed the "plasticity variable" is introduced to described the distributed dislocation movement in the microstructure. The CPM model unifies aspects of existing elasto-plastic and visco-plastic theories in one theory and shows particular strength in the modeling of rate-dependent plastic behaviour of materials without the need for the consideration of rate dependency parameters in the constitutive relationships. The CPM model is further extended to consider the reduction in the stiffness properties with incremental loading and to develop a unified energy-based damage and plasticity model. The models are implemented in a Finite Element (FE) analysis program for the validation of the models. The result shows that the energy-based damage and plastic deformation models are capable of predicting the behaviour of asphalt concrete mixtures under varying stress-states and strain-rate conditions. The work in this thesis provides the basis for the development of more fundamental understanding of the asphalt concrete material response and the application of sound and solid mechanics principles in the analysis and design of pavement structures.
En heltäckande karakterisering av skador och plastiska beteende hos asfaltblandningar under varierande belastningshastighet och spänningstillstånd är en komplex och svår uppgift. En orsak till detta är relaterat till materialets belastningshastighet- och temperaturberoende, såväl som variationen i materialegenskaperna hos de ingående komponenterna i den sammansatta asfaltblandningen. Befintliga spänningsbaserade modeller för asfaltbetongmaterial är utvecklade baserade på mekanikprinciper, men dessa modeller är begränsade när det gäller analys och design av verkliga asfaltsbeläggningar eftersom hastighetsberoende parametrar behövs i den konstitutiva modellen även med hänsyn till töjningshastighetens inverkan på kriterier för gränser och utveckling av spänningstillstånd. Det finns därför behov av att utveckla enkla men ändå heltäckande konstitutiva modeller som kan användas för att modellera beteendet hos asfaltmassan över ett brett spektrum av belastningshastigheter för olika av sektioner asfaltsbeläggningar. Syftet med denna avhandling är att öka förståelsen av hållfasthets- och deformationsmekanismer för asfaltblandningar genom multi-modellering. Målet är att utveckla enkla och heltäckande kontinuummodeller som karakteriserar materialets olinjära beteende under varierande spänningstillstånd och betingelser. Ett analysramverk har utvecklats för utvärdering av påverkan av asfaltmassans morfologi på dess mekaniska egenskaper och beteende med hjälp av röntgendatortomografi och digital bildbehandlingsteknik. Detta förfarande har sedan använts för att undersöka förekomsten av inneboende kritiska tröskelvärden för brottenergin för mesosprickinitiering vilket i sin tur ligger till grund för utvecklingen av en teori för modellering av energibaserade skador och plastisk deformation hos asfaltblandningar. En ny energidensitet baserad viskoelastisk skademodell utvecklas och föreslås utgå från kontinuum-skade-mekanik (CDM) och termodynamik för irreversibla processer. En andra ordningens skadevariabeltensor införs för att ta hänsyn till  skadedistributionen i materialen i de olika principiella skaderiktningarna. På detta sätt kan materialets respons i drag- och tryckbelastning separeras och effekterna av spänningstillstånd i både drag och tryck kan beaktas på ett adekvat sätt. Baserat på resultaten från den energibaserade skademodellen utvecklas och föreslås en motsvarande metod för mikrosprickspänning gällande skade- och brottkarakteriseringen av asfaltblandningar. Metoden för den effektiva mikrosprickspänningen tar hänsyn till materialets styvhet och en kritisk tröskelenergi för mikrosprickinitiering för karakteriseringen av skador och brottegenskaper hos blandningen. Denna metod är utvecklad baserat på grundläggande mekanikprinciper och kan för rent elastiska material reduceras till Griffiths energibalanskriterium utan hänsyn till ytenergi och sprickstorlek vid bestämningen av brottspänningen. En ny termodynamikbaserad modell för kontinuumplasticitetsmekanik (CPM) utvecklas för att beskriva det plastiska beteendet hos asfaltbetongmaterial med energibaserade kriterier härledda för initiering och progression av plastisk deformation. En intern tillståndsvariabel kallad "plasticitetvariabeln" införs för att beskriva den fördelade dislokationsrörelsen i mikrostrukturen. CPM-modellen förenar befintliga elasto-plastiska och visko-plastiska teorier i en teori och visar sig vara särskilt effektiv i modelleringen av hastighetsberoende plastiskt beteende hos material utan att behöva beakta hastighetsberoende parametrar i de konstitutiva sambanden. CPM-modellen utvidgas ytterligare för att kunna beakta reduktionen av styvheten med stegvis ökad belastning och för att utveckla en enhetlig energibaserad skade- och plasticitetmodell. Modellerna är implementerade i ett finit element (FE)-analysprogram för validering av modellerna. Resultatet visar att de energibaserade modellerna för skador och plastisk deformation kan förutsäga beteendet hos asfaltbetongblandningar under varierande spänningstillstånd och töjningshastighetsförhållanden. Arbetet i denna avhandling utgör grunden för utvecklingen av mer grundläggande förståelse av asfaltbetongmaterialets respons och tillämpningen av sunda och robusta mekanikprinciper i analys och design av asfaltstrukturer.

QC 20161220

APA, Harvard, Vancouver, ISO, and other styles
2

Wahalathantri, Buddhi Lankananda. "Damage assessment in reinforced concrete flexural members using modal strain energy based method." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/59509/1/Buddhi_Wahalathantri_Thesis.pdf.

Full text
Abstract:
Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Santos, Fernanda de Oliveira. "Modelo constitutivo incremental explícito para o concreto confinado baseado na teoria da plasticidade e dano." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-10072018-114442/.

Full text
Abstract:
O confinamento de pilares de concreto por meio de camisas de aço ou compósitos possui uma função importante na preservação, recuperação e reforço de estruturas, pois proporciona aumento de resistência e ductilidade desses elementos estruturais. Porém, grande parte dos modelos existentes apresenta limitações na previsão do comportamento do concreto confinado, principalmente por serem dependentes do tipo de confinamento. Portanto, este trabalho apresenta um modelo para descrição do comportamento tensão-deformação do concreto submetido a qualquer tipo de confinamento uniforme, ativo ou passivo, e confinado com diferentes materiais confinantes - aço ou compósitos. O modelo constitutivo associa plasticidade e dano a fim de prever adequadamente a resistência, deformabilidade e redução de rigidez elástica do concreto confinado. O modelo é desenvolvido para um processo incremental explícito de implementação, permitindo, portanto, o seu desenvolvimento em qualquer tipo de planilha. Finalmente, o modelo foi validado por meio de um conjunto representativo de experimentos encontrados na literatura.
Confinement of concrete columns through steel or composites jackets has an important function in the preservation, recovery and strengthening of structures, because it provides increased strength and ductility of these structural elements. However, most of the existing models have limitations in the prediction of the behavior of confined concrete, mainly because they are dependent on the type of confinement. This work presents a model for the description of the stress-strain behavior of the concrete submitted to any type of uniform confinement, active or passive, and confined with different confinement materials, steel or composites. The constitutive model associates plasticity and damage in order to predict with accuracy the strength, ultimate strain and reduction of elastic stiffness of the confined concrete. The model is developed by an explicit incremental implementation process allowing, therefore, its development in any type of spreadsheet. Finally, the model was validated through a representative set of experiments found in the literature.
APA, Harvard, Vancouver, ISO, and other styles
4

Bülow, Angeling Jenny. "Weight reduction of concrete poles for the Swedish power line grid : Using a Finite Element Model to optimize geometry in relation to load requirements." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-66823.

Full text
Abstract:
Because of an eventual ban of creosote-impregnated products, alternative materials for poles used in the electrical grid are needed. Concrete is one alternative and spun concrete poles have been manufactured for the Swedish grid before. These poles are still in use since the high strength and good functioning. However, they weigh too much in terms of the way that poles are assembled on the grid today. Therefore, a study comparing the capacity of different geometries, resulting in lower weight, is of interest.  In this Master’s Thesis, crack initiation and compressive failure in concrete poles are examined by creating FE-models in the software BRIGADE/Plus, using concrete damage plasticity. Thus, guidance is provided about how thin the concrete walls can be made without risking failure – which also means how low the weight of such a pole can be. The failure most likely to occur is a compressive failure in the concrete with a ductile behavior. The result shows that a geometry change, which implies a thinner concrete wall, is possible. This means a weight reduction between 30-75 % or even more, depending on which network the poles are designed for.
APA, Harvard, Vancouver, ISO, and other styles
5

Vosoughian, Saeed. "The effect of pre-stressing location on punching shear capacity of concrete flat slabs." Thesis, KTH, Betongbyggnad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263243.

Full text
Abstract:
Implementing pre-stressing cables is a viable option aiming at controlling deformation and cracking of concrete flat slabs in serviceability limit state. The pre-stressing cables also contribute to punching shear capacity of the slab when they are located in vicinity of the column. The positive influence of pre-stressing cables on punching capacity of the concrete slabs is mainly due to the vertical component of inclined cables, compressive in-plane stresses and counter acting bending moments near the support region. The method presented in Eurocode 2 to determine the punching capacity of the pre-stressed concrete flat slabs considers the in-plane compressive stresses but totally neglects the effect of counter acting moments. The effect of vertical forces introduced by inclined cables is only considered when they are within the distance 2d from the face of the column. This area is called basic control area in the Eurocode 2. In this master thesis nonlinear finite element analysis is carried out to study the effect of pre-stressing cables on punching shear capacity of concrete slabs respecting the distance of cables from the face of the column. To attain this objective, the concrete damage plasticity model is implemented to model the concrete. The results indicate that until the distance of 6d from the face of the column the contribution of pre-stressing cables in punching shear capacity of slabs is significant. Furthermore, comparing the numerical results with the punching shear capacity of slabs predicted by Eurocode 2 reveals that Eurocode tremendously underestimates the punching shear capacity when the cables are located outside the basic control area.
APA, Harvard, Vancouver, ISO, and other styles
6

Farahmandpour, Chia. "Modélisation et simulation du comportement des bétons confinés." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066550/document.

Full text
Abstract:
Les techniques de renforcement de structures en béton armé (BA) par collage de polymères renforcés de fibres (PRF) trouvent un important champ d'applications dans le renforcement des poteaux en BA. Le chemisage par PRF confine le noyau du poteau et permet d'augmenter sa résistance et sa ductilité. Bien que de nombreux travaux expérimentaux aient été consacrés à l'étude de l'effet de confinement du PRF sur le comportement des poteaux en BA, la réalisation d'une simulation réaliste de la réponse structurelle de tels éléments présente de nombreuses difficultés liées aux modèles de comportement peu appropriés à reproduire précisément la réponse mécanique du béton confiné. Dans cette recherche, un modèle de comportement élasto-plastique endommageable est développé pour reproduire la réponse mécanique du béton sollicité suivant un chemin triaxial de contraintes. Ce modèle prend en compte différents mécanismes de comportement du béton tels que les déformations irréversibles, l'endommagement dû à la microfissuration, la sensibilité au confinement et les caractéristiques de dilatation. Un processus d'identification des paramètres du modèle est proposé sur la base d'essais classiques. La validation de ce modèle est ensuite démontrée en comparant des résultats de simulations à des données expérimentales de la littérature sur des bétons confinés activement puis des bétons confinés par des PRF présentant une large gamme de rigidité. Le modèle proposé est également comparé à différentes modélisations de la littérature. Les capacités du modèle sont illustrées et analysées sur des applications tridimensionnelles de poteaux en BA de taille réelle, non confinés et confinés par PRF
For the past two decades, externally bonded Fiber Reinforced Polymers (FRP) has gained much popularity for seismic rehabilitation of reinforced concrete (RC) columns. In this technique, FRP wrap installed on the surface of a column acts as lateral confinement and enhance the strength and deformation capacity of the concrete element. Although many experimental works have been devoted to the study of confining effect of FRP on the behavior of RC columns, the numerical simulation of FRP-jacketed RC columns remains a challenging issue due to the lack of appropriate constitutive model for confined concrete. In this study, a damage plastic model is developed to predict the behavior of concrete under triaxial stress states. The proposed model takes into account different material behavior such as irreversible strain, damage due to microcracking, confinement sensitivity and dilation characteristic. A straightforward identification process of all model’s parameters is then presented. The identification process is applied to different normal strength concrete. The validity of the model is then demonstrated through confrontation of experimental data with simulations considering active confined concrete and FRP confined concrete with a wide range of confinement stiffness. The proposed constitutive model is also compared with other models from the literature and the distinguishing features of this new model are discussed. Furthermore, the capacity of the model in the three-dimensional finite element analysis of full-scale RC columns is demonstrate and discussed
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Giang Dinh. "A thermodynamic approach to constitutive modelling of concrete using damage mechanics and plasticity theory." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:242564ff-cd6f-4743-8e06-0d3db5f44c3d.

Full text
Abstract:
Recent advances in computational mechanics have opened the potential of carrying out the analysis and design of concrete structures in a realistic manner with the use of nonlinear concrete models. This encourages the development of more capable and realistic constitutive models, based on a rigorous approach, for the analysis and design of concrete structures. This research focuses on the development of a thermodynamic approach to constitutive modelling of concrete, with emphasis on the rigour and consistency both in the formulation of constitutive models, and in the identification of model parameters based on experimental tests. The key feature of the thermodynamic framework used in this study is that all behaviour of the defined model can be derived from two specified energy potentials. In addition, the derivation of a constitutive model within this framework merely follows procedures established beforehand. The proposed constitutive model here is based on continuum damage mechanics, in combination with plasticity theory, hence enabling the macroscopic material behaviour observed in experiments to be appropriately modelled. Damage-induced softening is the cause of many problems in numerical failure simulations based on conventional continuum mechanics. The resolution of these problems requires an appropriate special treatment for the constitutive modelling which, in this study, is based on nonlocal theory, and realized through the nonlocality of energy terms in the damage loading functions. For practical applications in structural analysis, the model requires a minimum number of parameters, which can be identified from experimental tests. All the above features of the model have been incorporated in a unified and consistent thermodynamic approach, which also distinguish the approach from existing ones. Numerical implementation and application are important parts of the study. A suitable implicit scheme is adapted here for the integration of the nonlocal rate constitutive equations. For the solution of systems of nonlinear algebraic equations in finite element analysis, the arc-length method in combination with local constraint equations employing dominant displacements is implemented, and proves its reliability in this study. Application of the proposed constitutive models in the analysis and design of concrete structures is straightforward, with several numerical examples showing the practical aspects of the proposed modelling.
APA, Harvard, Vancouver, ISO, and other styles
8

Tahar, Benabdellah. "C←2 continuous hardening/softening elasto-plasticity model for concrete." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gomez, Rodolfo Andres. "Monotonic Plasticity-Damage and Fatigue Life Model Correlations on AISI 4140 Steel." MSSTATE, 2007. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07052007-144738/.

Full text
Abstract:
A microstructure-based plasticity-damage model is used to predict the mechanical behavior of commercially available AISI 4140 steel. Monotonic tension, compression and torsion tests were performed to obtain the set of plasticity and damage constants required for model calibration. Then, tension tests on Bridgman notched specimens were undertaken to study the damage-triaxiality dependence. Three different notch radii generated different levels of triaxiality at the notch. The modeled triaxiality-damage correlation was validated with SEM fracture surface analysis. Stress-strain correlations under different strain rate and temperature testing conditions were also studied. Little influence of the strain rate was observed. A preliminary study in high-porosity LENS materials was later performed, with satisfactory stress-strain correlation at two different temperatures on tension tests. Finally, a multistage fatigue model was used to predict life in AISI 4140 steel. The goal was to create a baseline for future application of these mathematical models into LENS manufactured materials in component design
APA, Harvard, Vancouver, ISO, and other styles
10

Abdel-Rahman, Saadeh Shadi. "Characterization of asphalt concrete using anisotropic damage viscoelastic-viscoplastic model." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4761.

Full text
Abstract:
This dissertation presents the integration of a damage viscoelastic constitutive relationship with a viscoplastic relationship in order to develop a comprehensive anisotropic damage viscoelastic-viscoplastic model that is capable of capturing hot mix asphalt (HMA) response and performance under a wide range of temperatures, loading rates, and stress states. The damage viscoelasticity model developed by Schapery (1969) is employed to present the recoverable response, and the viscoplasticity model developed at the Texas Transportation Institute (TTI) is improved and used to model the irrecoverable strain component. The influence of the anisotropic aggregate distribution is accounted for in both the viscoelastic and viscoplastic responses. A comprehensive material identification experimental program is developed in this study. The experimental program is designed such that the quantification and decomposition of the response into viscoelastic and viscoplastic components can be achieved. The developed experimental program and theoretical framework are used to analyze repeated creep tests conducted on three mixes that include aggregates with different characteristics. An experiment was conducted to capture and characterize the three-dimensional distribution of aggregate orientation and air voids in HMA specimens. X-ray computed tomography (CT) and image analysis techniques were used to analyze the microstructure in specimens before and after being subjected to triaxial repeated creep and recovery tests as well as monotonic constant strain rate tests. The results indicate that the different loading conditions and stress states induce different microstructure distributions at the same macroscopic strain level. Also, stress-induced anisotropy is shown to develop in HMA specimens.
APA, Harvard, Vancouver, ISO, and other styles
11

Dondeti, Piyush Prashant. "Rate-Dependent Homogenization based Continuum Plasticity Damage Model for Dendritic Cast Aluminum Alloys." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308245866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rukavina, Tea. "Multi-scale damage model of fiber-reinforced concrete with parameter identification." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2460/document.

Full text
Abstract:
Dans cette thèse, plusieurs approches de modélisation de composites renforcés par des fibres sont proposées. Le matériau étudié est le béton fibré, et dans ce modèle, on tient compte de l’influence de trois constituants : le béton, les fibres, et la liaison entre eux. Le comportement du béton est analysé avec un modèle d’endommagement, les fibres d'acier sont considérées comme élastiques linéaires, et le comportement sur l'interface est décrit avec une loi de glissement avec l’extraction complète de la fibre. Une approche multi-échelle pour coupler tous les constituants est proposée, dans laquelle le calcul à l'échelle macro est effectué en utilisant la procédure de solution operator-split. Cette approche partitionnée divise le calcul en deux phases, globale et locale, dans lesquelles différents mécanismes de rupture sont traités séparément, ce qui est conforme au comportement du composite observé expérimentalement. L'identification des paramètres est effectuée en minimisant l'erreur entre les valeurs calculées et mesurées. Les modèles proposés sont validés par des exemples numériques
In this thesis, several approaches for modeling fiber-reinforced composites are proposed. The material under consideration is fiber-reinforced concrete, which is composed of a few constituents: concrete, short steel fibers, and the interface between them. The behavior of concrete is described by a damage model with localized failure, fibers are taken to be linear elastic, and the behavior of the interface is modeled with a bond-slip pull-out law. A multi-scale approach for coupling all the constituents is proposed, where the macro-scale computation is carried out using the operator-split solution procedure. This partitioned approach divides the computation in two phases, global and local, where different failure mechanisms are treated separately, which is in accordance with the experimentally observed composite behavior. An inverse model for fiber-reinforced concrete is presented, where the stochastic caracterization of the fibers is known from their distribution inside the domain. Parameter identification is performed by minimizing the error between the computed and measured values. The proposed models are validated through numerical examples
APA, Harvard, Vancouver, ISO, and other styles
13

Tashman, Laith. "Microstructural viscoplastic continuum model for asphalt concrete." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/313.

Full text
Abstract:
This dissertation presents the development of an anisotropic viscoplastic continuum damage model to describe the permanent deformation of asphalt pavements. The model is developed to account for several phenomena that influence the permanent deformation of Asphalt Concrete (AC) at high temperatures. These phenomena include strain rate dependency, confining pressure dependency, dilation, aggregate friction, anisotropy, and damage. The model is based on Perzyna's theory of viscoplasticity with Drucker-Prager yield function modified to account for the microstructure anisotropy and damage. A parametric study was conducted to study the effect of key factors such as inherent anisotropy and damage on the model response. A preliminary investigation was conducted to demonstrate the capabilities of the model and its sensitivity to changes in the microstructure distribution and loading conditions. The model was used to describe laboratory experimental measurements obtained from the Federal Highway Administration (FHWA) Accelerated Loading Facility (ALF). The model had a good match with these experimental measurements. In particular, using the damage parameter, the model was able to capture the point at which AC experienced tertiary creep in a static creep test. A comprehensive experiment was conducted to systematically determine the model parameters and the evolution laws that describe AC hardening, anisotropy, and damage. The experiment consisted of a set of compressive triaxial strength tests conducted at three confining pressures and five strain rates. Based on these experimental measurements, the model was modified to include a nonassociated flow rule. The model was shown to capture the experimental measurements very well. Furthermore, an experiment was conducted to capture and characterize damage evolution in AC due to permanent deformation. AC specimens were loaded using a triaxial compression setup to four predefined strain levels at three confining pressures. X-Ray computed tomography and image analysis techniques were used to capture and characterize the evolution of cracks and air voids in the deformed specimens. Damage was found to be a localized phenomenon in the sense that there exists a critical section in an AC specimen that is mainly responsible for failure. The results of the damage experiment supported the damage evolution function proposed in the viscoplastic model.
APA, Harvard, Vancouver, ISO, and other styles
14

Bai, Jie. "A homogenization based continuum plasticity-damage model for ductile fracture of materials containing heterogeneities." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211910660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bai, Jie. "A Homogenization based Continuum Plasticity-Damage Model for Ductile Frature of Materials Containing Heterogeneities." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211910660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Song, Injun. "Damage analysis in asphalt concrete mixtures based on parameter relationships." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1300.

Full text
Abstract:
Asphalt pavements experience damage due to traffic loading under various environmental conditions. Damage can be caused by viscopl microcracks, fracture due to fatigue cracking, or fracture due to thermal cracking. Asphalt pavements have the capability to remedi s damage depending on binder surface and rheological properties, filler surface properties, and length of rest periods. Asphalt mastic (asphalt and fine aggregates) properties play an important role in controlling damage and healing. This dissertation development of a comprehensive methodology to characterize damage and healing in asphalt mastics and mixtures. The methodology reli ctive imaging techniques (X-ray CT), principles of continuum damage mechanics, and principles of micromechanics. The X-ray CT yield meter that quantifies the percentage of cracks and air voids in a specimen. The continuum damage model parameters are derived from p between applied stress and pseudo strain. The micromechanics model relates the damaged mastic modulus to a reference undamaged mo ationship is a function of internal structure properties (void size, film thickness, and percentage of voids), binder modulus, aggr and bond energy between binder and aggregates. The internal structure parameters are all obtained using X-ray CT and correlated. The developed methodology was used to characterize damage in asphalt mastic and mixture specimens tested using the Dynamic Mechanic A) and dynamic creep test. The damage parameter measured using X-ray CT correlated very well with the predictions of the continuum ics models. All damage parameters were able to reflect the accumulation of damage under cyclic loading and were also able to captur of moisture conditioning on damage. Although this dissertation focused on fatigue cracking at room temperatures, the methodology d used to assess damage due to different mechanisms such as permanent deformation and low temperature cracking.
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Tianbai. "Stress integration strategies for a new hardening/softening elasto-plasticity model for structural concrete." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

ORLANDO, Nicola. "Advanced modeling of detachment and joints in concrete and wood." Doctoral thesis, Università degli studi di Ferrara, 2019. http://hdl.handle.net/11392/2487869.

Full text
Abstract:
The prediction of the structures failure is one of the most important and yet challenging tasks in civil engineering. Numerical studies are faster and cheaper than experimental studies. For these reasons, numerical models are useful for researchers. The present work focuses on the Finite Element (FE) simulation of several non-linear 3D engineering problems related to the rehabilitation of concrete and wooden structural elements. In the considered context, the numerical model employed has to be fast, stable and robust to tackle the complexity and the computational burden of the problems to be solved. The numerical method employed for the simulations is a regularized variant of the eXtendend Finite Element Method (XFEM) proposed by Belytschko and coworkers [1]. The computational model, called REgularized XFEM (3D RE-XFEM), has been developed by Benvenuti [2] in order to study strong and weak discontinuities. Initially, it has been used to study the non-linear evolution of discontinuities in 2D plane-stress problem in concrete [3] and concrete-like [4, 5] materials. Recently, the model has been employed to study linear 3D problems involving planar/curved interfaces [6] and inclusions [7]. Since the previous 2D applications proved the stability and the reliability of the RE-XFEM, in this work, the 3D non-linear formulation (3D RE-XFEM) of the method has been implemented into a parallelized FORTRAN code [8] and successfully applied to several engineering problems. The thesis collects the results obtained for the modelling of concrete and wooden beams through the 3D RE-XFEM. In particular, the topics covered by this work can be divided into two main parts: • The first part is devoted to the modelling of the detachment of FRP reinforcements from concrete specimens. Ch. 2 introduces the 3D REXFEM approach for concrete and concrete-like materials. Ch. 3 presents the results obtained in the simulation of the detachment process of FRP plates from concrete blocks published in Ref. [9]. Ch. 4 is devoted to the investigation of FRP reinforced bended beams presented in Refs. [10, 11]. • The second part of the thesis focuses on the simulation of wooden structures. In particular, in Ch. 5 the analyses of end-repaired beams published in Ref. [12] using an orthotropic elasto-damaging model available in literature are discussed. Ch. 6 is devoted to the development of a new unpublished 2D constitutive elasto-damaging plastic model combined with the RE-XFEM for wooden structures. In the end, Ch. 7 summarizes results and significant aspects achieved in this thesis.
La predizione del carico e della modalità di rottura di una struttura è uno degli obiettivi più importanti e impegnativi dell’ingegneria civile. In questo ambito, l’utilizzo di modelli matematici e simulazioni numeriche sta via via assumendo sempre più importanza, visti la maggiore velocità di esecuzione e il minore impatto economico rispetto ai test in laboratorio. Il lavoro in esame si focalizza sulla simulazione agli Elementi Finiti (FE) di diversi problemi non-lineari nel campo 3D relativi ad interventi di riabilitazione su strutture in calcestruzzo e legno. In questo contesto è necessario che i modelli numerici sviluppati siano veloci, stabili e in grado di descrivere correttamente il comportamento del materiale senza aumentare troppo l’onere computazionale richiesto dalla simulazione. Per l’esecuzione delle simulazioni è stata usata una variante regolarizzata del metodo eXtended Finite Element Method (XFEM) proposto da Belytschko e dai suoi collaboratori [1]. Il modello numerico proposto in questo lavoro, denominato REgularized XFEM (3D RE-XFEM), è stato sviluppato da Benvenuti [2] per lo studio di discontinuità sia di tipo forte che di tipo debole. Inizialmente, il modello è stato utilizzato per l’analisi di problemi piani di tensione relativi al calcestruzzo [3] e a materiali quasi-fragili [4, 5], mentre, recentemente, il modello è stato utilizzato per lo studio in campo lineare di problemi 3D relativi a interfacce planari e curve [6], e ad inclusioni [7]. Dal momento che le precedenti analisi 2D del modello RE-XFEM hanno dimostrato l’affidabilità e la robustezza del sopracitato algoritmo, nel presente lavoro una formulazione 3D non-lineare del modello, denominata 3D RE-XFEM, è stata implamentata in un codice parallelizzato FORTRAN [8] e applicata con successo a diversi problemi ingegneristici. La tesi raccoglie i risultati ottenuti dalla modellazione di diverse prove su travi in calcestruzzo e legno attraverso il modello 3D RE-XFEM. In particolare, gli argomenti trattati in questo lavoro possono essere divisi principalmente in due parti: • La prima parte è dedicata alla modellazione del distacco di rinforzi in FRP da provini in calcastruzzo. Il Cap. 2 introduce la formulazione dell’approccio 3D RE-XFEM nel caso di materiali quasi fragili, quali il calcestruzzo. Nel Cap. 3 vengono presentati i risultati ottenuti dalle simulazione del distacco dei rinforzi in FRP da blocchi di calcestruzzo, pubblicata in Ref. [9]. Il Cap. 4 è invece dedicato all’investigazione di travi rinforzate con FRP soggette a flessione, i cui risultati sono stati pubblicati in Ref. [10, 11]. • La seconda parte della tesi si focalizza sulla simulazione di strutture in legno. In particolare, nel Cap. 5 sono riportate alcune analisi, pubblicate in Ref. [12], effetuate mediante l’uso di un modello di danno ortotropo disponibile in letteratura, relative a travi di legno sottoposte ad un intervento di riabilitazione ad una delle estremità. Il Cap. 6 è dedicato allo sviluppo di un nuovo inedito modello costitutivo 2D che abbina ad un modello ortotropo elasto-plastico-danneggiante alla metodologia RE-XFEM per strutture in legno. Infine, nel Cap. 7 vengono raccolti e discussi gli aspetti significativi trattati nella tesi.
APA, Harvard, Vancouver, ISO, and other styles
19

Pearson, Steven R. "On using vibration data to detect damage in model-scale reinforced concrete bridges." Thesis, University of Nottingham, 2003. http://eprints.nottingham.ac.uk/11239/.

Full text
Abstract:
This thesis reports the findings of an investigation into the feasibility of using vibration characteristics to monitor the structural health of bridges. The study is the second part of a larger project commissioned by the UK Highways Agency into the investigation of possible monitoring methods that can be used in a pass/fail/monitor inspection programme. To this end, ten one-quarter-scale 5m span reinforced concrete bridge decks were fabricated and loaded incrementally to failure in the laboratory. The dynamic properties of the decks were investigated at each of the loading increments to evaluate their sensitivity to structural cracking using both free and forced vibration. The results indicated that, for the specimens tested, natural frequencies were, in general, more sensitive to the damage introduced than mode shapes. It was found that the support conditions affected the dynamic behaviour of the decks, and indeterminate boundary conditions caused significant variation in the vibration characteristics. This presented several problems in the analysis of the modal properties and, when combined with the damage introduced through static loading, caused some modes to disappear and new modes to be measured, whilst a number of modes also displayed an increase in natural frequency. The application of finite element model updating to determine reduction in flexural stiffness in the damaged areas of the deck provided a systematic method to investigate the condition of the deck. Updating was performed based on the natural frequencies of one symmetrically and one asymmetrically loaded deck, and the cracking observed under the loading, and offered results consistent with expectations. In summary, the evidence presented in this thesis suggests that the natural frequencies of the decks are, in general, more sensitive to the damage introduced than the mode shapes and consistent trends can be observed in the natural frequency change as the damage to the deck increases. However, the application of this method to indicate the structural condition of real bridges may be limited without further investigation as the vibration characteristics were affected by a number of factors arising from the realistic nature of the specimen, such as the three-dimensional distribution of the damage and the indeterminate nature of the support conditions.
APA, Harvard, Vancouver, ISO, and other styles
20

Salman, Kehlan. "A new elasto-plasticity constitutive model for concrete under multiaxial compression based on experimental observations." Thesis, University of Sheffield, 2007. http://etheses.whiterose.ac.uk/10295/.

Full text
Abstract:
This thesis comprises of two different kinds of work. The first part is focussed on existing experimental data. Investigations and observations of the behaviour of plain concrete under triaxial and multiaxial compression following cyclic loading and a variety of stress paths has been presented. The behaviour of concrete with different constituents was also investigated. The directions of the plastic strain vectors were identified. Two loading surface were also identified: (i) the Peak Nominal Stress surface (PNS) which was identified from the peak stresses recorded from stress control tests and (ii) the Volume Transition Stress surface (VTS) which determines the onset of the volumetric dilation. The plastic VTS is the surface which was identified from plastic strain components only. At this surface, the directions of the plastic strain vectors are purely deviatoric. A proposal for the shapes of the yield surface for concrete is given. These shapes were identified by the plastic work contours and also from the directions of the plastic strain vectors assuming the associated flow rule. This assumption has been verified by examining the normality of the plastic strain vectors to the PNS surface. Following the investigation of the experimental data, an examination of various advanced plasticity models for concrete revealed the need to develop a new constitutive model with a suitable shape of the loading surfaces and with a better prediction for the stress-strain response. A new constitutive model for plain concrete has been developed using the previous work in this field at the University of Sheffield. The new yield surface was developed as a combination of a reflection of part of the peak nominal stress surface (PNS) and a quartic function. The continuity, the convexity and the normality of the yield surfaces were ensured. The model was calibrated and the optimum values of the thirteen material constants are presented. This is followed by a sensitivity study with simulations of a wide range of existing experimental data. Simulations of concrete with different constituents are also presented. The formulation of the model was simplified and verified by using numerical derivatives. A comparative study between the analytical and numerical derivatives of the constitutive model is presented. The sensitivity study and the simulations of experimental tests showed that the new constitutive model is: (i) easy to calibrate using only data from uniaxial compression tests and one triaxial compression test, and (ii) gives very good predictions of stressstrain response of different types of concrete under triaxial compression stresses and at different levels of confinement all the way to the peak stress state.
APA, Harvard, Vancouver, ISO, and other styles
21

An, Feng-Chen. "Modelling of FRP-concrete interfacial bond behaviour." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10511.

Full text
Abstract:
Externally bonding of fibre-reinforced polymer (FRP) strips or sheets has become a popular strengthening method for reinforced concrete structures over the last two decades. For most such strengthened concrete beams and slabs, the failure is at or near the FRP-concrete interface due to FRP debonding. The objective of this thesis is to develop a deeper understanding of the debonding behaviour of the FRP-concrete interface through mesoscale finite element simulation. Central to the investigation is the use of the concrete damaged plasticity (CDP) model for modelling the concrete. The FRP is treated as an elastic material. The numerical simulation is focused on the single shear test of FRP-concrete bonded joints. This problem is known to be highly nonlinear and has many difficulties in achieving a converged solution using the standard static loading procedures. A dynamic loading procedure is applied in this research and various parameters such as time step, loading rate etc. are investigated. In particular, the effect of the damping ratio is investigated in depth and an appropriate selection is recommended for solving such problems. It has been identified that the concrete damage model can have a significant effect on the numerical predictions in the present problem. Various concrete empirical damage models are assessed using cyclic test data and simulation of the single shear test of the FRP-concrete bonded joint and it is proposed that the Birtel and Mark’s (2006) model is the most appropriate one for use in the present problem. Subsequently, the effects of other aspects of the concrete behaviour on the FRP-concrete bond behaviour are investigated. These include the tensile fracture energy, compression strain energy and different concrete compression stress-strain models. These leads to the conclusion that the CEBFIP1990 model is the most appropriate one for the problem. An important issue for recognition is that the actual behaviour of the FRP-concrete bonded joints is three dimensional (3D), but most numerical simulations have treated the problem as two dimensional (2D) which has a number of imitations. True 3D simulation is however very expensive computationally and impractical. This study proposes a simple procedure for modelling the joint in 2D with the 3D behaviour properly considered. Numerical results show that the proposed method can successfully overcome the limitations of the traditional 2D simulation method. The above established FE model is then applied to simulate a large number of test specimens. The bond stress-slip relationship is extracted from the mesoscale FE simulation results. An alternative model is proposed based on these results which is shown to be advantageous compared with existing models. This new model provides the basis for further investigation of debonding failures in FRP strengthened concrete structures in the future.
APA, Harvard, Vancouver, ISO, and other styles
22

Reberg, Andrew Steven. "An Anisotropic Damage Mechanics Model for Concrete with Applications for Fatigue Loading and Freeze-Thaw Effects." Thesis, North Dakota State University, 2013. https://hdl.handle.net/10365/26994.

Full text
Abstract:
It is well known that the formation and propagation of microcracks within concrete is anisotropic in nature, and has a degrading effect on its mechanical performance. In this thesis an anisotropic damage mechanics model is formulated for concrete which can predict the behavior of the material subjected to monotonic loading, fatigue loading, and freeze-thaw cycles. The constitutive model is formulated using the general framework of the internal variable theory of thermodynamics. Kinetic relations are used to describe the directionality of damage accumulation and the associated softening of mechanical properties. The rate independent model is then extended to cover fatigue loading cycles and freeze-thaw cycles. Two simple softening functions are used to predict the mechanical properties of concrete as the number of cyclic loads as well as freeze-thaw cycles increases. The model is compared with experimental data for fatigue and freeze-thaw performance of plain concrete.
DOT-MPC grant
Department of Civil Engineering, North Dakota State University
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Jinkoo. "Micromechanical model for damage and failure of brittle materials : application to polycrystalline ice and concrete." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vajragupta, Napat [Verfasser]. "The artificial microstructure model and its applications on plasticity and damage of the dual phase steel / Napat Vajragupta." Aachen : Shaker, 2015. http://d-nb.info/1080763031/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gunn, Russell Michael. "Non-linear analysis of arch dams including an anisotropic damage mechanics based constitutive model for concrete." Thesis, University of Brighton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ahmed, Hesham. "Condition Assessment and Analytical Modeling of Alkali-Silica Reaction (ASR) Affected Concrete Columns." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42680.

Full text
Abstract:
Concrete has proven to be, by far, one of the most reliable materials for the construction of critical infrastructure. However, despite its structural capacity, concrete members are susceptible to damage mechanisms that may decrease its performance and durability throughout its service life. One such mechanism is alkali-silica reaction (ASR), which takes place when unstable siliceous phases present in coarse or fine aggregates react with the alkali hydroxides from the concrete pore solution, generating a secondary product (i.e., ASR gel); this product swells upon moisture uptake from the surrounding environment, leading to cracking and expansion of the affected concrete. In severe cases of ASR-affected infrastructure, structural safety could become a problem, and thus requiring the demolition of affected members. It is, therefore, necessary to adopt effective protocols for the diagnosis and prognosis of aging infrastructure, to ensure its performance over time along with properly planning for rehabilitation strategies, whether required. This work presents a two-stage case study of the S.I.T.E. building at the University of Ottawa for the diagnosis and prognosis of ASR-affected members (i.e., columns) after nearly 20 years in service. The diagnosis phase was conducted with the aim of evaluating the cause and extent of distress and interpreting its impact on the performance of the affected structure. First, a visual inspection was conducted to evaluate potentially damaged members, in order to select the best location for core-drilling. Once ASR was confirmed through petrographic examination, specimens were evaluated through the multi-level assessment (i.e., coupling of microscopic and mechanical assessment). A range of damage was discovered among the examined columns (i.e., 0.03%, 0.05%, and 0.08% expansion). Moreover, evidence of developing freeze and thaw (FT) damage was discovered in columns with greater levels of expansion, raising future concerns regarding the durability and serviceability of members affected by this coupling of damage (i.e., ASR+FT). For the second stage of this project (i.e., prognosis), a novel ASR semi-empirical model was developed with the aim of predicting future ASR-induced expansion and damage in the S.I.T.E. building. The above model was developed and validated (using ASR exposure site data) through the coupling of existing chemo-mechanical macro-models, which were used to predict material behaviour on the structural scale, and novel mathematical relationships for the prediction of anisotropy in the columns. Moreover, the use of the multi-level assessment to predict the mechanical implications of predicted distress was found to enhance the model’s capacity for prognosis and demonstrated important potential for the accurate prediction of multi-level damage in the S.I.T.E. columns.
APA, Harvard, Vancouver, ISO, and other styles
27

Johansson, Nils. "Estimation of fatigue life by using a cyclic plasticity model and multiaxial notch correction." Thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158095.

Full text
Abstract:
Mechanical components often possess notches. These notches give rise to stress concentrations, which in turn increases the likelihood that the material will undergo yielding. The finite element method (FEM) can be used to calculate transient stress and strain to be used in fatigue analyses. However, since yielding occurs, an elastic-plastic finite element analysis (FEA) must be performed. If the loading sequence to be analysed with respect to fatigue is long, the elastic-plastic FEA is often not a viable option because of its high computational requirements. In this thesis, a method that estimates the elastic-plastic stress and strain response as a result of input elastic stress and strain using plasticity modelling with the incremental Neuber rule has been derived and implemented. A numerical methodology to increase the accuracy when using the Neuber rule with cyclic loading has been proposed and validated for proportional loading. The results show fair albeit not ideal accuracy when compared to elastic-plastic finite element analysis. Different types of loading have been tested, including proportional and non-proportional as well as complex loadings with several load reversions. Based on the computed elastic-plastic stresses and strains, fatigue life is predicted by the critical plane method. Such a method has been reviewed, implemented and tested in this thesis. A comparison has been made between using a new damage parameter by Ince and an established damage parameter by Fatemi and Socie (FS). The implemented algorithm and damage parameters were evaluated by comparing the results of the program using either damage parameter to fatigue experiments of several different load cases, including non-proportional loading. The results are fairly accurate for both damage parameters, but the one by Ince tend to be slightly more accurate, if no fitted constant to use in the FS damage parameter can be obtained.
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Xiaofeng. "Computational technology for damage and failure analysis of quasi-brittle materials." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/computational-technology-for-damage-and-failure-analysis-of-quasibrittle-materials(a7c91eb6-5058-4e73-95de-b2f3efd645d2).html.

Full text
Abstract:
The thesis presents the development and validation of novel computational technology for modelling and analysis of damage and failure in quasi-brittle materials. The technology is demonstrated mostly on concrete, which is the most widely used quasi-brittle material exhibiting non-linear behaviour. Original algorithms and procedures for generating two-dimensional (2D) and three-dimensional (3D) heterogeneous material samples are developed, in which the mesoscale features of concrete, such as shape, size, volume fraction and spatial distribution of inclusions and pores/voids are randomised. Firstly, zero-thickness cohesive interface elements with softening traction-separation relations are pre-inserted within solid element meshes to simulate complex crack initiation and propagation. Monte Carlo simulations (MCS) of 2D and 3D uniaxial tension tests are carried out to investigate the effects of key mesoscale features on the fracture patterns and load-carrying capacities. Size effect in 2D concrete is then investigated by finite element analyses of meso-structural models of specimens with increasing sizes. Secondly, a 3D meso-structural damage-plasticity model for damage and failure analysis of concrete is developed and applied in tension and compression. A new scheme for identifying interfacial transition zones (ITZs) in concrete is presented, whereby ITZs are modelled by very thin layers of solid finite elements with damage-plasticity constitutive relations. Finally, a new coupled method named non-matching scaled boundary finite element-finite element coupled method is proposed to simulate crack propagation problems based on the linear elastic fracture mechanics. It combines the advantage of the scaled boundary finite element method in modelling crack propagation and also preserves the flexibility of the finite element method in re-meshing. The efficiency and effectiveness of the developed computational technology is demonstrated by simulations of crack initiation and propagation problems.
APA, Harvard, Vancouver, ISO, and other styles
29

Stewart, Calvin. "A Hybrid Constitutive Model For Creep, Fatigue, And Creep-Fatigue Damage." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6023.

Full text
Abstract:
In the combustion zone of industrial- and aero- gas turbines, thermomechanical fatigue (TMF) is the dominant damage mechanism. Thermomechanical fatigue is a coupling of independent creep, fatigue, and oxidation damage mechanisms that interact and accelerate microstructural degradation. A mixture of intergranular cracking due to creep, transgranular cracking due to fatigue, and surface embrittlement due to oxidation is often observed in gas turbine components removed from service. The current maintenance scheme for gas turbines is to remove components from service when any criteria (elongation, stress-rupture, crack length, etc.) exceed the designed maximum allowable. Experimental, theoretical, and numerical analyses are performed to determine the state of the component as it relates to each criterion (a time consuming process). While calculating these metrics individually has been successful in the past, a better approach would be to develop a unified mechanical modeling that incorporates the constitutive response, microstructural degradation, and rupture of the subject material via a damage variable used to predict the cumulative “damage state” within a component. This would allow for a priori predictions of microstructural degradation, crack propagation/arrest, and component-level lifing. In this study, a unified mechanical model for creep-fatigue (deformation, cracking, and rupture) is proposed. It is hypothesized that damage quantification techniques can be used to develop accurate creep, fatigue, and plastic/ductile cumulative- nonlinear- damage laws within the continuum damage mechanics principle. These damage laws when coupled with appropriate constitutive equations and a degrading stiffness tensor can be used to predict the mechanical state of a component. A series of monotonic, creep, fatigue, and tensile-hold creep-fatigue tests are obtained from literature for 304 stainless steel at 600°C (1112°F) in an air. Cumulative- nonlinear- creep, fatigue, and a coupled creep-fatigue damage laws are developed. The individual damage variables are incorporated as an internal state variable within a novel unified viscoplasticity constitutive model (zero yield surface) and degrading stiffness tensor. These equations are implemented as a custom material model within a custom FORTRAN one-dimensional finite element code. The radial return mapping technique is used with the updated stress vector solved by Newton-Raphson iteration. A consistent tangent stiffness matrix is derived based on the inelastic strain increment. All available experimental data is compared to finite element results to determine the ability of the unified mechanical model to predict deformation, damage evolution, crack growth, and rupture under a creep-fatigue environment.
Ph.D.
Doctorate
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
30

Mai, Van Bac. "Fracture Behaviour in Cold-Reduced High-Strength Steel." Phd thesis, University of Sydney, 2019. https://hdl.handle.net/2123/29311.

Full text
Abstract:
A comprehensive study on the ductile behaviour and fracture of high strength cold-reduced sheet G450 steel is presented. The aim of the study is to determine the material strength, ductility and fracture in different stress states including at both macro and structural scales. The objectives of the research are achieved through theoretical developments, extensive experimental studies and numerical investigations. A couple damage-plasticity model derived from a generic thermodynamic framework is developed. The general formulation allows integration of stress effects (e.g. stress triaxiality and Lode angle) into the damage threshold and evolution, in addition to the ability to incorporate any form of yield criterion into the model. The key feature of the model development is that all model parameters are explicitly identified from experimental tests. In addition, the proposed model based on a combination of both plastic theory and continuum damage mechanics allows appropriately capture of the macroscopic material response. Comprehensive experimental programmes are carried out at both the material and structural test levels where the advantages of a non-contact optical measurement (Digital Image Correlation) are successfully validated and applied. Material experiments consisting of tension and shear specimens are conducted for the determination of the material properties including fracture energy and the full-field of strain distribution and evolution. The tests of bolted connections, which are governed by block shear failure, are conducted to determine the connection strength, ductility and fracture. Strain maps in these structural tests provide an insight into the failure in the block shear limit state. In addition, all experimental data is used for determining model parameters and validating the numerical predictions. Numerical simulation also plays an important role in this study. The proposed constitutive model is derived by an appropriate semi-implicit scheme in a general three-dimensional stress state before being incorporated into commercial numerical finite element software. All numerical predictions are validated at double scale until completion of tensile fracture consisting of macro and structural responses, which distinguishes this study from existing studies. Good predictions at the double scale show high levels of accuracy of the simulations. Further, numerical simulation of bolted connections failing in block shear serves as a supplement to experimental research and provides meaningful insight into the complex stress state. In conjunction with experimental observations, the numerical results also help to clarify the features of the recently updated block shear design equations specified in the AISI S100:2016 [1] and the AS/NZS 4600:2018 [2] standards. The proposed model has potential for further applications.
Access is restricted to staff and students of the University of Sydney . UniKey credentials are required. Non university access may be obtained by visiting the University of Sydney Library.
APA, Harvard, Vancouver, ISO, and other styles
31

Bhattacharyya, Mainak. "A model reduction approach in space and time for fatigue damage simulation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN019/document.

Full text
Abstract:
L'objet de ce projet de recherche est de prédire la durée de vie d'éléments mécaniques qui sont soumis à des phénomènes de fatigue cyclique. L'idée est de développer un schéma numérique novateur pour prédire la rupture de structures sous de tels chargements. Le modèle est basé sur la mécanique des milieux continus qui introduit des variables internes pour décrire l'évolution de l'endommagement. Le défi repose dans le traitement des cycles de chargement pour la prédiction de la durée de vie, particulièrement pour la prédiction de la durée de vie résiduelle de structures existantes. Les approches traditionnelles de l'analyse de la fatigue sont basées sur des méthodes phénoménologiques utilisant des relations empiriques. De telles méthodes considèrent des approximations simplificatrices et sont incapables de prendre en compte aisément des géométries ou des charges complexes associées à des problèmes d'ingénierie réels. Une approche basée sur la description de l'évolution thermodynamique d'un milieu continu est donc utilisée pour modéliser le comportement en fatigue. Cela permet de considérer efficacement des problèmes d'ingénierie complexe et la détérioration des propriétés du matériau due à la fatigue peut être quantifiée à l'aide de variables internes. Cependant, cette approche peut être numériquement coûteuse et, par conséquent, des approches numériques sophistiquées doivent être utilisées.La stratégie numérique sur laquelle ce projet est basé est singulière par rapport aux schémas incrémentaux en temps usuellement utilisés pour résoudre des problèmes élasto-(visco)plastique avec endommagement dans le cadre de la mécanique des milieux continus. Cette stratégie numérique appelée méthode LATIN (Large Time Increment method) est une méthode non-incrémentale qui recherche la solution de manière itérative sur l'ensemble du domaine spacio-temporel. Une importante innovation de la méthode LATIN est d'incorporer une stratégie de réduction de modèle adaptative pour réduire de manière très importante le coût numérique. La Décomposition Propre Généralisée (PGD) est une stratégie de réduction de modèle a priori qui sépare les quantités d'intérêt spacio-temporelles en deux composantes indépendantes, l'une dépendant du temps, l'autre de l'espace, et estime itérativement les approximations de ces deux composantes. L'utilisation de l'approche LATIN-PGD a montré son efficacité depuis des années pour résoudre des problèmes élasto-(visco)plastiques. La première partie de ce projet vise à étendre cette approche aux modèles incorporant de l'endommagement.Bien que l'utilisation de la PGD réduise les coûts numériques, le gain n'est pas suffisant pour permettre de résoudre des problèmes considérant un grand nombre de cycles de chargement, le temps de calcul peut être très conséquent, rendant les simulations de problèmes de fatigue intraitables même en utilisant les techniques LATIN-PGD. Cette limite peut être dépassée en introduisant une approche multi-échelle en temps, qui prend en compte l'évolution rapide des quantités d'intérêt lors d'un cycle et leur évolution lente au cours de l'ensemble des cycles. Une description type « éléments finis » en temps est proposée, où l'ensemble du domaine temporel est discrétisé en éléments temporels, et seulement les cycles nodaux, qui forment les limites des éléments, sont calculés en utilisant la technique LATIN-PGD. Puis, des fonctions de forme classiques sont utilisées pour interpoler les quantités d'intérêt à l'intérieur des éléments temporels. Cette stratégie LATIN-PGD à deux échelles permet de réduire le coût numérique de manière significative, et peut être utilisée pour simuler l'évolution de l'endommagement dans une structure soumise à un chargement de fatigue comportant un très grand nombre de cycles
The motivation of the research project is to predict the life time of mechanical components that are subjected to cyclic fatigue phenomena. The idea herein is to develop an innovative numerical scheme to predict failure of structures under such loading. The model is based on classical continuum damage mechanics introducing internal variables which describe the damage evolution. The challenge lies in the treatment of large number of load cycles for the life time prediction, particularly the residual life time for existing structures.Traditional approaches for fatigue analysis are based on phenomenological methods and deal with the usage of empirical relations. Such methods consider simplistic approximations and are unable to take into account complex geometries, and complicated loadings which occur in real-life engineering problems. A thermodynamically consistent continuum-based approach is therefore used for modelling the fatigue behaviour. This allows to consider complicated geometries and loads quite efficiently and the deterioration of the material properties due to fatigue can be quantified using internal variables. However, this approach can be computationally expensive and hence sophisticated numerical frameworks should be used.The numerical strategy used in this project is different when compared to regular time incremental schemes used for solving elasto-(visco)plastic-damage problems in continuum framework. This numerical strategy is called Large Time Increment (LATIN) method, which is a non-incremental method and builds the solution iteratively for the complete space-time domain. An important feature of the LATIN method is to incorporate an on-the-fly model reduction strategy to reduce drastically the numerical cost. Proper generalised decomposition (PGD), being a priori a model reduction strategy, separates the quantities of interest with respect to space and time, and computes iteratively the spatial and temporal approximations. LATIN-PGD framework has been effectively used over the years to solve elasto-(visco)plastic problems. Herein, the first effort is to solve continuum damage problems using LATIN-PGD techniques. Although, usage of PGD reduces the numerical cost, the benefit is not enough to solve problems involving large number of load cycles and computational time can be severely high, making simulations of fatigue problems infeasible. This can be overcome by using a multi-time scale approach, that takes into account the rapid evolution of the quantities of interest within a load cycle and their slow evolution along the load cycles. A finite element like description with respect to time is proposed, where the whole time domain is discretised into time elements, and only the nodal cycles, which form the boundary of the time elements, are calculated using LATIN-PGD technique. Thereby, classical shape functions are used to interpolate within the time element. This two-scale LATIN-PGD strategy enables the reduction of the computational cost remarkably, and can be used to simulate damage evolution in a structure under fatigue loading for a very large number of cycles
APA, Harvard, Vancouver, ISO, and other styles
32

Xotta, Giovanna. "Mesoscale modelling of concrete as a multiphase material." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422951.

Full text
Abstract:
In recent years, thanks to upgraded computational resources, concrete has started being modeled as porous medium at 3D meso level, distinguishing in the multiphase system the role of aggregates, cement paste and interfacial transition zone (ITZ). A deep knowledge on the behaviour of concrete materials at the mesoscale level requires, as a fundamental aspect, to characterize aggregates and specifically, their thermal properties if fire hazards (e.g. spalling) are accounted for. The assessment of aggregates performance (and, correspondingly, concrete materials made of aggregates, cement paste and ITZ) is crucial for defining a realistic structural response as well as damage scenarios. A meso-scale approach has been here followed to study concrete behaviour under normal and high temperatures via the 3D fully coupled thermo-hydro-mechanical model developed at Padua University, called NEWCON3D. Particularly, it is assumed that concrete creep and damage are associated to cement paste and ITZ only and that creep of concrete obeys to the B3 model proposed by Bažant and Baweja, instead damage obeys to the Mazars’ damage law with non-local correction. Therefore several numerical analyses at the mesolevel have been carried out: firstly the role of the ITZ and of the aggregates on the hygro-thermal response of concrete have been investigated, highlighting the barrier effect covered by aggregates towards the flux of humidity; subsequently the visco-damaged behaviour of concrete at the meso level is investigated, to understand the influence of ITZ and aggregates on the overall mechanical behaviour at medium temperatures. Indeed, these two components are crucial for defining a realistic structural response as well as damage scenarios allowing to define an appropriate concrete mixture to withstand spalling. Finally, the study of concrete under high temperature conditions, to catch the “shape effect”, comparing columns of different section at the macro level, and the crucial role of the aggregates and the ITZ on the real evolution of cracking, have been performed.
Negli ultimi anni, grazie alle attuali risorse di calcolo, si è iniziato a modellare il calcestruzzo come un mezzo poroso al meso livello, distinguendo nel sistema multifase il ruolo degli aggregati, della pasta di cemento e dell’interfacial transition zone (ITZ). Una profonda conoscenza del comportamento del calcestruzzo al mesoscala richiede, come aspetto fondamentale, la caratterizzazione degli aggregati ed, in particolare, delle loro proprietà termiche, nel caso in cui vi siano rischi di incendio (e quindi di spalling). La valutazione delle prestazioni degli aggregati (e conseguentemente, di calcestruzzi come composti da inerti, pasta di cemento ed ITZ) è cruciale per la definizione sia di una risposta realistica strutturale, sia degli scenari di danno. In questo lavoro si è quindi seguito un approccio al mesoscala per studiare il comportamento del calcestruzzo, in condizioni di temperatura normale ed elevata, tramite un modello tridimensionale igro-termo-meccanico totalmente accoppiato sviluppato presso l’Università di Padova, chiamato NEWCON3D. Nello specifico, si è assunto che i fenomeni di viscosità e di danno fossero associati solo alla pasta di cemento e all’ITZ (per gli aggregati si assume un comportamento elastico) e che il creep obbedisse al modello B3 proposto da Bažant e Baweja, invece il danno alla legge di Mazars con la correzione non locale. Si sono pertanto condotte numerose analisi numeriche al meso livello: in primo luogo si è esaminato il ruolo dell’ITZ e degli aggregati sulla risposta igro-termica del calcestruzzo, mettendo in evidenza l'effetto barriera esercitato dagli aggregati sui flussi di umidità; successivamente si è indagato il comportamento visco-danneggiato del calcestruzzo al mesoscala, al fine di comprendere l'influenza dell’ITZ e degli aggregati sulla risposta meccanica globale a temperature medie. In realtà, come già detto precedentemente, queste due componenti sono molto importanti per ottenere una risposta realistica strutturale e per l’individuazione dei possibili scenari di danno, permettendo quindi di definire una miscela di calcestruzzo appropriata, in grado di resistere allo spalling. Infine, vi è uno studio del calcestruzzo in condizioni di temperatura elevata, al fine di catturare l '"effetto forma", confrontando due colonne di sezione differente al macro scala, ed il ruolo cruciale degli aggregati e dell’ITZ sull'evoluzione reale del danno.
APA, Harvard, Vancouver, ISO, and other styles
33

Shaarbaf, Ihsan Ali Saib. "Three-dimensional non-linear finite element analysis of reinforced concrete beams in torsion : reinforced concrete members under torsion and bending are analysed up to failure : a non-linear concrete model for general states of stress including compressive strength degradation due to cracking is described." Thesis, University of Bradford, 1990. http://hdl.handle.net/10454/3576.

Full text
Abstract:
This thesis describes a non-linear finite element model suitable for the analysis of reinforced concrete, or steel, structures under general three-dimensional states of loading. The 20 noded isoparametric brick element has been used to model the concrete and reinforcing bars are idealised as axial members embedded within the concrete elements. The compressive behaviour of concrete is simulated by an elasto-plastic work hardening model followed by a perfectly plastic plateau which is terminated at the onset the . crushing. In tension, a smeared crack model with fixed orthogonal cracks has been used with the inclusion of models for the retained post-cracking stress and the reduced shear modulus. The non-linear equations of equilibrium have been solved using an incremental-iterative technique operating under load control. The solution algorithms used are the standard and the modified Newton-Raphson methods. Line searches have been implemented to accelerate convergence. The numerical integration has been generally carried out using 15 point Gaussian type rules. Results of a study to investigate the performance of these rules show that the 15 point rules are accurate and computationally efficient compared with the 27(3X3X3) point Gaussian rule. The three- dimensional finite element model has been used to investigate the problem of elasto-plastic torsion of homogeneous members. The accuracy of the finite element solutions obtained for beams of different cross-sections subjected to pure and warping torsion have been assessed by comparing them with the available exact or approximate analytical solutions. Because the present work is devoted towards the analysis of reinforced concrete members which fail in shear or torsional modes, the computer program incorporates three models to account for the degradation in the compressive strength of concrete due to presence of tensile straining of transverse reinforcement. The numerical solutions obtained for reinforced concrete panels under pure shear and beams in torsion and combined torsion and bending reveal that the inclusion of a model for reducing the compressive strength of cracked concrete can significantly improve the correlation of the predicted post-cracking stiffness and the computed ultimate loads with the experimental results. Parametric studies to investigate the effects of some important material and solution parameters have been carried out. It is concluded that in the presence of a compression strength reduction model, the tension-stiffening parameters required for reinforced concrete members under torsion should be similar to those used for members in which bending dominates.
APA, Harvard, Vancouver, ISO, and other styles
34

Orsanic, Filip [Verfasser], and Joško [Akademischer Betreuer] Ožbolt. "Chemo-hygro-thermo-mechanical model for simulation of corrosion induced damage in reinforced concrete / Filip Orsanic. Betreuer: Josko Ozbolt." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1071153463/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

TESEI, CLAUDIA. "Nonlinear analysis of masonry and concrete structures under monotonic and cyclic loading: a regularized multidirectional d+/d− damage model." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710141.

Full text
Abstract:
A rigorous structural analysis is fundamental in the safety assessment of the built heritage and in its efficient conservation and rehabilitation. In line with the necessity of refined techniques, the objective of the present thesis is to develop and validate, in a displacement-based finite element framework, a nonlinear model apt for the study of masonry and concrete structures under monotonic and cyclic loading. The proposed constitutive law adopts two independent scalar damage variables, d+ and d−, in combination with the spectral decomposition of the elastic strain tensor, to simulate the pronounced dissimilar response under tension and compression, typical of these materials. The assumption of energy-equivalence between the damaged solid and the effective (undamaged) one is considered for representing the orthotropy induced in the material by the degradation process, with the consequence that a thermodynamically consistent constitutive operator, positive definite, symmetric and strain-driven, is derived. The formulation is integrated with a multidirectional damage procedure, addressed to extend the microcrack closure-reopening (MCR) capabilities to generic cyclic conditions, especially shear cyclic conditions, making the model suitable for dealing with seismic actions. Maintaining unaltered the dependence of the constitutive law from d+ and d−, this approach activates or deactivates a tensile (compressive) damage value on the base of the current maximum (minimum) principal strain direction. In correspondence with damage activation (crack opening) or deactivation (crack closure), a smooth transition is introduced, in order to avoid abrupt changes in stiffness and enhance the numerical performance and robustness of the multidirectional procedure. Moreover, the mesh-objectivity of the numerical solutions is ensured by resorting to a nonlocal regularization technique, based on the adoption of damage variables driven by an averaged elastic strain tensor. To perform the averaging of the strain tensor, an internal length lRG is considered in the continuum. The strategy chosen to define the parameters affecting the softening behaviour consists in the modification of the local softening law on the base of the internal length, with the intent of ensuring the proper evaluation of the correct fracture energy Gf. The adequacy of the proposed constitutive model in reproducing experimental results is proven for both monotonic and cyclic loading conditions. Under monotonic loads, unreinforced concrete notched elements subjected to pure tension, pure bending and mixed-mode bending are studied. The two examples of application involving cyclic loads, a masonry and a reinforced concrete wall under in-plane cyclic shear, constitute a validation of the multidirectional damage approach, showing how the suitable representation of unilateral effects and permanent deformations is essential to model the observed structural response in terms of maximum resistance and dissipation capacity. The effectiveness of the regularized damage formulation is proven by successfully studying a masonry arch and reinforced and unreinforced concrete elements. Besides the validation of the numerical results with experimental or analytical data, each application is exploited to highlight one or more features of the formulation: the mesh-size and mesh-bias independence of the results, the effect of the choice of the variable to be averaged, the possibility to reproduce structural size effects, the influence of the internal length lRG. On this latter aspect, the almost null dependence of the regularized solutions on the internal length in terms of force-displacement curves, achieved thanks to the calibration strategy adopted to define the energy dissipation, suggests the interpretation of the internal length as a regularization parameter. On the one hand, this implies an analogy between the role played by the nonlocal internal length in a nonlocal model and the one’s of the mesh size in the crack band approach (Bažant and Oh, 1983). On the other hand, this translates in the versatility of the regularized damage model, which requires only the identification of the standard material properties (elastic constants, fracture energies and strengths). Finally, the d+/d− damage model is successfully applied to the study of a three-span masonry arch bridge subjected to a concentrated vertical load, in order to evaluate its carrying capacity and its failure mechanism. Numerical issues, usually neglected in large-scale applications, are also addressed proving the reliability of the regularized approach to provide mesh-independent results and its applicability.
APA, Harvard, Vancouver, ISO, and other styles
36

Mohammed, Tesfaye A. "Reinforced Concrete Structural Members Under Impact Loading." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321650443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Qsymah, Ansam. "In-situ X-ray computed tomography tests and numerical modelling of ultra high performance fibre reinforced concrete." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/insitu-xray-computed-tomography-tests-and-numerical-modelling-of-ultra-high-performance-fibre-reinforced-concrete(7c27ef36-afc8-4ea7-8c72-7d92eba924f9).html.

Full text
Abstract:
Ultra high performance fibre reinforced concrete (UHPFRC) is a relatively new fibre reinforced cementitious composite and has become very popular in construction applications. Extensive experimental studies have been conducted, demonstrating its superior properties such as much higher strength, ductility and durability than conventional fibre reinforced concrete (FRC) and high performance concrete. However, the material's damage and fracture mechanisms at meso/micro scales are not well understood, limiting its wider applications considerably. This study aims at an in-depth understanding of the damage and fracture mechanisms of UHPFRC, combining microscale in-situ X-ray computed tomography (µXCT) experiments and mesoscale image-based numerical modelling. Firstly, in-situ µXCT tests of small-sized UHPFRC specimens under wedge splitting loading were carried out, probably for the first time in the world, using an in-house designed loading rig. With a voxel resolution of 16.9µm, the complicated fracture mechanisms are clearly visualised and characterised using both 2D images and 3D volumes at progressive loading stages, such as initiating of micro-cracks, arresting of cracks by fibres, bending and pulling out of fibres and spalling of mortar at the exit points of inclined fibres. Secondly, based on the statistics of pores in the µXCT images obtained for a 20mm cube specimen, an efficient two-scale analytical-numerical homogenisation method was developed to predict the effective elastic properties of the UHPFRC. The large number of small pores were first homogenised at microscale with sand and cement paste, using elastic moduli from micro-indentation tests. 3D mesoscale finite element models were built at the second scale by direct conversion of the µXCT images, with fibres and large pores were faithfully represented. The effects of the volume fraction and the orientation of steel fibres on the elastic modulus were investigated, indicating that this method can be used to optimise the material micro-structure. Thirdly, 3D mesoscale finite element models were built for the specimen used in the in-situ µXCT wedge splitting test, with embedded fibre elements directly converted from the µXCT images. The fracture behaviour in the mortar was simulated by the damage plasticity model available in ABAQUS. Finally, 2D mesoscale finite element models were developed to simulate the fracture behaviour of UHPFRC using cohesive interface elements to simulate cracks in the mortar, and randomly distributed two-noded 1D fibres and connector elements to simulate the pull-out behaviour of fibres. This approach offers a link between the fibres pull-out behaviour and the response of the whole composite at the macroscale, thus it can be used to conduct parametric studies to optimise the material properties.
APA, Harvard, Vancouver, ISO, and other styles
38

Neeli, Yeshwanth Sai. "Use of Photogrammetry Aided Damage Detection for Residual Strength Estimation of Corrosion Damaged Prestressed Concrete Bridge Girders." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99445.

Full text
Abstract:
Corrosion damage reduces the load-carrying capacity of bridges which poses a threat to passenger safety. The objective of this research was to reduce the resources involved in conventional bridge inspections which are an important tool in the condition assessment of bridges and to help in determining if live load testing is necessary. This research proposes a framework to link semi-automated damage detection on prestressed concrete bridge girders with the estimation of their residual flexural capacity. The framework was implemented on four full-scale corrosion damaged girders from decommissioned bridges in Virginia. 3D point clouds of the girders reconstructed from images using Structure from Motion (SfM) approach were textured with images containing cracks detected at pixel level using a U-Net (Fully Convolutional Network). Spalls were detected by identifying the locations where normals associated with the points in the 3D point cloud deviated from being perpendicular to the reference directions chosen, by an amount greater than a threshold angle. 3D textured mesh models, overlaid with the detected cracks and spalls were used as 3D damage maps to determine reduced cross-sectional areas of prestressing strands to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011). Scaling them to real-world dimensions enabled the measurement of any required dimension, eliminating the need for physical contact. The flexural capacities of a box beam and an I-beam estimated using strain compatibility analysis were validated with the actual capacities at failure sections determined from four destructive tests conducted by Al Rufaydah (2020). Along with the reduction in the cross-sectional areas of strands, limiting the ultimate strain that heavily corroded strands can develop was explored as a possible way to improve the results of the analysis. Strain compatibility analysis was used to estimate the ultimate rupture strain, in the heavily corroded bottommost layer prestressing strands exposed before the box beam was tested. More research is required to associate each level of strand corrosion with an average ultimate strain at which the corroded strands rupture. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework.
Master of Science
Corrosion damage is a major concern for bridges as it reduces their load carrying capacity. Bridge failures in the past have been attributed to corrosion damage. The risk associated with corrosion damage caused failures increases as the infrastructure ages. Many bridges across the world built forty to fifty years ago are now in a deteriorated condition and need to be repaired and retrofitted. Visual inspections to identify damage or deterioration on a bridge are very important to assess the condition of the bridge and determine the need for repairing or for posting weight restrictions for the vehicles that use the bridge. These inspections require close physical access to the hard-to-reach areas of the bridge for physically measuring the damage which involves many resources in the form of experienced engineers, skilled labor, equipment, time, and money. The safety of the personnel involved in the inspections is also a major concern. Nowadays, a lot of research is being done in using Unmanned Aerial Vehicles (UAVs) like drones for bridge inspections and in using artificial intelligence for the detection of cracks on the images of concrete and steel members. Girders or beams in a bridge are the primary longitudinal load carrying members. Concrete inherently is weak in tension. To address this problem, High Strength steel reinforcement (called prestressing steel or prestressing strands) in prestressed concrete beams is pre-loaded with a tensile force before the application of any loads so that the regions which will experience tension under the service loads would be subjected to a pre-compression to improve the performance of the beam and delay cracking. Spalls are a type of corrosion damage on concrete members where portions of concrete fall off (section loss) due to corrosion in the steel reinforcement, exposing the reinforcement to the environment which leads to accelerated corrosion causing a loss of cross-sectional area and ultimately, a rupture in the steel. If the process of detecting the damage (cracks, spalls, exposed or severed reinforcement, etc.) is automated, the next logical step that would add great value would be, to quantify the effect of the damage detected on the load carrying capacity of the bridges. Using a quantified estimate of the remaining capacity of a bridge, determined after accounting for the corrosion damage, informed decisions can be made about the measures to be taken. This research proposes a stepwise framework to forge a link between a semi-automated visual inspection and residual capacity evaluation of actual prestressed concrete bridge girders obtained from two bridges that have been removed from service in Virginia due to extensive deterioration. 3D point clouds represent an object as a set of points on its surface in three dimensional space. These point clouds can be constructed either using laser scanning or using Photogrammetry from images of the girders captured with a digital camera. In this research, 3D point clouds are reconstructed from sequences of overlapping images of the girders using an approach called Structure from Motion (SfM) which locates matched pixels present between consecutive images in the 3D space. Crack-like features were automatically detected and highlighted on the images of the girders that were used to build the 3D point clouds using artificial intelligence (Neural Network). The images with cracks highlighted were applied as texture to the surface mesh on the point cloud to transfer the detail, color, and realism present in the images to the 3D model. Spalls were detected on 3D point clouds based on the orientation of the normals associated with the points with respect to the reference directions. Point clouds and textured meshes of the girders were scaled to real-world dimensions facilitating the measurement of any required dimension on the point clouds, eliminating the need for physical contact in condition assessment. Any cracks or spalls that went unidentified in the damage detection were visible on the textured meshes of the girders improving the performance of the approach. 3D textured mesh models of the girders overlaid with the detected cracks and spalls were used as 3D damage maps in residual strength estimation. Cross-sectional slices were extracted from the dense point clouds at various sections along the length of each girder. The slices were overlaid on the cross-section drawings of the girders, and the prestressing strands affected due to the corrosion damage were identified. They were reduced in cross-sectional area to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011) and were used in the calculation of the ultimate moment capacity of the girders using an approach called strain compatibility analysis. Estimated residual capacities were compared to the actual capacities of the girders found from destructive tests conducted by Al Rufaydah (2020). Comparisons are presented for the failure sections in these tests and the results were analyzed to evaluate the effectiveness of this framework. More research is to be done to determine the factors causing rupture in prestressing strands with different degrees of corrosion. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework.
APA, Harvard, Vancouver, ISO, and other styles
39

Lillemo, Dennis. "Modelling masonry spires : An investigation." Thesis, KTH, Betongbyggnad, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301245.

Full text
Abstract:
Masonry spires are a typical part of church architecture. Since it is rare that masonry is used as a load-bearing material in the western world today, it is important to maintain and increase the knowledge of modelling masonry structures both from a maintenance point of view and to build new masonry structures. The purpose of this master thesis is to look at and evaluate some different methods to model masonry spires exposed to common loads such as gravity, settlement and wind. The spire of the Salisbury Cathedral is used as a template regarding geometry and mechanical properties for the modelling methods. Two modelling methods are used in the master’s thesis. The first one is the limit analysis method applied to masonry. It is used to calculate a critical thickness for the masonry of the spire for a severe wind load. The second method is the Finite Element Method (FEM). The commercial finite element software Abaqus is used to create the model and the discretization used with the FE modelling is the macro-modelling approach. Concrete Damage Plasticity (CDP) in Abaqus is used as the material model and adapted to masonry. The finite element model consists of the spire itself along with the supporting structure beneath it down to the piers. Four different simulations (jobs) are run with varying wind direction and two of them have settling piers. The results from the finite element simulations indicate that the membrane stresses in the spire faces for the various jobs were not significantly different from one another. One of the jobs with settling piers could not be completed because the tensile stresses in the arches reached the tensile strength capacity of the material. The other simulation with a settlement that did complete did not have any significant difference in stress compared with the simulations without settlements. While the arches and the piers underwent plastic straining the spire itself did not. The stress levels there remained in the linear range for all the completed simulations. The finite element results also agree with the limit analysis. These findings call into question some of the modelling choices. The inclusion of the structure beneath the spire in the finite element model, as a way to study the effect of settlements, did not give more insight into the spire’s behaviour. Furthermore, the method to implement settlements was too inaccurate and another approach should be used to study the effect of settlements on the state of spires. Further work needs to be done on that topic. Improvements can also be made regarding how CDP was adapted for masonry.
Murade tornspiror är en vanlig takkonstruktion inom kyrkoarkitekturen. Eftersom det numera är sällsynt att murverk fungerar som lastbärande material i västvärlden, är det viktigt att upprätthålla och utöka kunskapen om murverkskonstruktioner för både underhåll och nybyggnation. Syftet med denna masteruppsats är att betrakta och utvärdera några olika modelleringsmetoder för murade tornspiror som är utsatta för några typiska laster såsom egentyngd, sättningar och vind. Katedralen i Salisbury används som en modelleringsmall i uppsatsen med avseende på katedralens geometri och materialegenskaper. Två modelleringsmetoder används i uppsatsen. Den första är gränsanalys tillämpad på murverkskonstruktioner. Den används för att beräkna en kritisk tjocklek för tornspiran under en stor vindlast. Den andra metoden är Finita Elementmetoden (FEM). Den kommersiella finita elementprogramvaran Abaqus används för finita elementanalysen och diskretiseringen som används för murverket i finita elementmodellen är makromodellering. Concrete Damage Plasticity (CDP) i Abaqus används som materialmodell och anpassas för murverk. Finita elementmodellen består utav själva tornspiran inklusive de bärande delarna under spiran och ned till pelarna. Fyra olika simuleringar ("jobb") körs med vindlast som angriper från olika riktningar och två av simuleringarna har pelare som sätter sig. Resultaten från simuleringarna visar att membranspänningarna i tornspirans väggar, för de olika jobben, inte skilde sig i någon betydelig grad från varandra. Ett av jobben med pelare som satte sig kunde inte köras klart eftersom dragspänningarna i valvbågarna överskred draghållfastheten på murverket i modellen. Den andra simuleringen med sättningar som kördes klart uppvisade inte några avsevärda skillnader i spänningar i tornspiran jämfört med simuleringarna utan sättningar. Medan plastiska töjningar uppkom i både valvbågarna och pelarna i modellen, uppkom de inte i tornspiran. Spänningsnivåerna i tornspiran var inom det linjära intervallet för alla simuleringar. Resultaten från finita elementanalysen stämde överens med resultaten från gränsanalysen. Analysresultaten ifrågasätter vissa av modelleringsvalen. Att inkludera de bärande delarna under tornspiran i finita elementmodellen, för att undersöka effekten av sättningar, gav inte en större insikt i hur sättningar påverkar tornspiran. Dessutom, var metoden för att tillämpa sättningar för oprecis och en annan metod borde användas. Mer arbete måste utföras vad gäller det ämnet. Sättet att tillämpa CDP för murverk kan också förbättras.
APA, Harvard, Vancouver, ISO, and other styles
40

Guney, Murat Efe. "A Numerical Procedure For The Nonlinear Analysis Of Reinforced Concrete Frames With Infill Walls." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606318/index.pdf.

Full text
Abstract:
Materially non-linear analysis of reinforced concrete frame structures with infill walls requires appropriate mathematical models to be adopted for the beams and the columns as well as the infill walls. This study presents a mathematical model for frame elements based on a 3D Hermitian beam/column finite element and an equivalent strut model for the infill walls. The spread-of-plasticity approach is employed to model the material nonlinearity of the frame elements. The cross-section of the frame element is divided into triangular sub regions to evaluate the stiffness properties and the response of the element cross-section. By the help of the triangles spread over the actual area of the section, the bi-axial bending and the axial deformations are coupled in the inelastic range. A frame super-element is also formed by combining a number of frame finite elements. Two identical compression-only diagonal struts are used for modeling the infill. The equivalent geometric and material properties of the struts are determined from the geometry of the infill and the strength of the masonry units A computer code is developed using the object-oriented design paradigm and the models are implemented into this code. Efficiency and the effectiveness of the models are investigated for various cases by comparing the numerical response predictions produced by the program with those obtained from experimental studies.
APA, Harvard, Vancouver, ISO, and other styles
41

Pereira, Júnior Wanderlei Malaquias. "Análise numérica de estruturas de concreto com fibras utilizando mecânico do dano." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/4377.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2015-03-27T13:42:08Z No. of bitstreams: 2 Dissertação - Wanderlei Malaquias Pereira Júnior - 2014.pdf: 7970008 bytes, checksum: f601259b1df84616f459fd009136794b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-27T15:44:42Z (GMT) No. of bitstreams: 2 Dissertação - Wanderlei Malaquias Pereira Júnior - 2014.pdf: 7970008 bytes, checksum: f601259b1df84616f459fd009136794b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-03-27T15:44:42Z (GMT). No. of bitstreams: 2 Dissertação - Wanderlei Malaquias Pereira Júnior - 2014.pdf: 7970008 bytes, checksum: f601259b1df84616f459fd009136794b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-08-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The work is a contribution to the mechanical numerical modeling of concrete structures with steel fibers using constitutive models based on Damage Mechanics behavior. The same, presents the formulation of a model proposed Damage admits that the concrete as initially isotropic elastic material, but with the evolution of the damage process, the material exhibits plastic deformations, anisotropy and bimodularidad induced damage. The incorporation of fibers in the modeling is performed through a homogenization procedure. The constitutive model for the concrete as well as the homogenization technique for dealing with the case of fiber concrete are implemented on a structural analysis program bar finite element laminated in layers. The parametric identification of the constitutive model together with the proposed homogenization is carried out using experimental results from the literature. Finally, numerical analysis of reinforced concrete beams reinforced with steel fibers and subjected to bending are conducted to assess the applicability of the constitutive model considered in this work. An attempt is thus contribute to the study of the deformation of fibrous concrete beams in service, in order to aggregate results and discussions in a future proposal of Brazilian technical standard for this type of structure.
O trabalho trata de uma contribuição à modelagem numérica do comportamento mecânico de estruturas de concreto com fibras de aço utilizando modelos constitutivos baseados na Mecânica do Dano. O mesmo, apresenta a formulação de um modelo de Dano proposto que admite o concreto como material inicialmente isótropo e elástico, mas com a evolução do processo de danificação o material exibe deformações plásticas, anisotropia e bimodularidade induzidas pelo dano. A incorporação das fibras na modelagem é efetuada através de um procedimento de homogeneização. O modelo constitutivo para o concreto, assim como a técnica de homogeneização para tratar do caso do concreto com fibras são implementados em um programa para análise de estruturas de barras com elementos finitos estratificados em camadas. A identificação paramétrica do modelo constitutivo, juntamente com a proposta de homogeneização, é realizada utilizando resultados experimentais encontrados na literatura. Por fim, análises numéricas de vigas de concreto armado reforçado com fibras de aço e sujeitas à flexão são conduzidas no sentido de avaliar a aplicabilidade do modelo constitutivo tratado neste trabalho. Procura-se, assim, contribuir para o estudo da deformabilidade de vigas de concreto fibroso em serviço, com o intuito de agregar resultados e discussões numa futura proposta de norma técnica brasileira para este tipo de estrutura.
APA, Harvard, Vancouver, ISO, and other styles
42

Tesser, Leopoldo. "Composite Steel Truss and Concrete Beams and Beam-Column Joints for Seismic Resistant Frames: Modelling, numerical analysis and experimental verifications." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426466.

Full text
Abstract:
The Composite Steel Truss and Concrete (CSTC) beams and beam column joints are the subject of the present work. The CSTC beam are composed by prefabricated steel trusses embedded in cast in place concrete. The main features of the steel trusses are that they can bear their own weight and the weight of the slabs without any provisional support during the first phase and then they can collaborate with the cast in place concrete. The recent Italian Code DMLLPP 14/01/2008 mentions the composite steel truss and concrete structures and establishes that the use of this typology requires the authorization of the Italian Superior Council of Public Works without any other specification. The CSTC type isn’t included in any other existing construction type of Italian or International Codes and it needs particular design rules. The research aims are the verification of their efficiency, the development of a reliable calculation method, the application of the composite steel truss beams for seismic resistant frame, the design and the verification of innovative joints with all the necessary good seismic performance requirements. Firstly it has been focused on the reinforced concrete seismic resistant frames in order to fully understand the solicitations, that they have to withstand, and to underscored all the characteristics that can determine their behaviour in terms of stiffness, strength and ductility. In the framework of continuum damage theory, a new two-parameter damage model for concrete has been proposed. In particular, a new concrete compressive damage evolution law has been developed to evaluate the effect of confining reinforcement in RC structure better. With the aim of describing, in a unitary approach, the steel behaviour, specific steel damage indexes have been formulated, taking into account the plastic strain development and the possibility of rebar buckling. A new methodology to estimate the critical buckling load has been formulated, which turned out to be in good agreement with experimental results. An improved and generalized definition of the global damage indexes has finally been proposed, in order to obtain powerful tools to estimate the performance and the state of a RC structure. The improved model has been implemented into a fibre research FEM code, which has been used to carry out nonlinear analyses of tests examples and of a RC concrete frame structure. In particular, the reliability of the model has been demonstrated by comparison with trusted experimental tests on RC column axially loaded and subjected to imposed transversal displacements, some of which had presented the rebar buckling. The static and dynamic nonlinear analyses of two RC frames, respectively one designed in high ductility class and one with weak-columns at the ground floor, have been carried out and the model has demonstrated its ability to describe the dynamic behaviour, the failure mechanism and the energy dissipation of both frames efficiently and accurately. The RC frames investigated with the fibre approach have been studied with a concentrated plastic hinge approach as suggested by FEMA 356. A clear correlation between the GDIs here proposed and the Performance Level proposed by FEMA has been demonstrated for the test examples. The CSTC beam mechanics have been analyzed and a new calculation method has been proposed in the Limit State assessment method framework. Every Ultimate and Serviceability Limit Sates have been defined and correlated to the beam performances. The hardening of the completion concrete cast distinguishes two phases in the life of the CSTC beam that are characterized by distinct resistant sections and different mechanics. During the first phase the beam behaves as a prefabricated steel truss. In the second phase the steel truss collaborates with the hardened concrete. The mechanics of the CSTC beam have been studied for the first and second phases. The developed method has been used to predict and analyze the experimental tests carried out in the Department of Construction and Transportation of the University of Padua. Three sets of experimental tests, conduced on composite steel truss and concrete beams, have been presented and their results analyzed. In particular eight REP?-NOR beams, six ECOTRAVE? RAFTILE? and two PREREP? beams have been designed and tested. The global deformability, the bending and the shear resistant mechanisms, the global ductility, the cracking phenomena have been studied. The results have been compared to those obtained by means of the calculation method presented. The beam mechanics have been confirmed and the method has demonstrated to be efficient and precise to assess the behaviour of the CSTC beams even with very different and innovative solutions. The experimental results have demonstrated the efficiency of the proposed design method and the interesting features of the studied structural type like its strength and ductility properties. The reinforced concrete joint mechanics have been exposed, recalling the main theory and their recent development. Two resistant mechanisms have been evaluated, the concrete strut one and the diagonal compressed field or truss one. Their contribution for the total joint shear strength has been investigated. The theory can then explain all the Code prescriptions and be applied to generalized joint problem. The Eurocode, similar to the Italian code, and ACI 318M code provisions have been compared and the main points have been underlined. A test structural joint element has been defined and designed according to the actual Italian and European Code in high seismicity region. The problem of the accurate numerical analysis of reinforced concrete has been faced. The validation examples have been carried out comparing the numerical results with the experimental ones. Using two dimensional and three dimensional models, it has been possible to evaluate efficiently and accurately the behaviour of the designed reinforced concrete test joint. The numerical analyses have shown all the features and the issues underlined by the theory. The numerical results have been compared qualitatively and quantitatively with the ones obtained by theoretical simplified schemes showing a good agreement. Starting from theoretical considerations a new CSTC joint has been proposed. The main aim is to reach an adequate stiffness, strength and ductility in sight of the application on seismic resistant frames. The similarity of the resisting mechanisms has permitted the extension of the RC theory to the joint shear resistant of the CSTC structural type. The calculation of the proposed joint started with the investigations of possible admissible stress distribution within the joint and it follows with their quantitative evaluations. By means of the numerical model studied and validated on the RC structures, the analysis of the designed joint have been carried out. Both two dimensional and three dimensional analysis results have been presented along with their comparison with the RC joint ones. The numerical analysis showed the achievement of important targets as the joint stiffness, the joint strength and the joint ductility. The capacity of dissipating energy has been also assessed and compared with the RC one. The results confirm the efficiency of the proposed CSTC joint. An innovative composite beam-column joint has been studied for applications in medium-low seismicity regions. The joint connects composite steel truss and concrete beams and concrete filled steel tube columns. The main concept of this joint is to conserve the continuity of the column steel tube between one storey and the following one by means of blind cold connection. Additional elements, which passes through the joint to restore the beam continuity, have been proposed. The proposed connections require little manpower work in the construction site reducing the number of operations and the working time. The resulting joint is a special kind of composite steel and concrete structure in which the steel and the concrete collaborate to sustain the solicitations. The assessment of the joint has been made using the Eurocode 3 and 4. The verification of the joint behaviour has been done by means of numerical analyses and a finite element method program has been used with different modelling solutions. The results confirmed the efficiency of the proposed composite beam-column joint.
L’oggetto della presente Tesi di Dottorato riguarda lo studio delle travi tralicciate composte acciaio e calcestruzzo e dei nodi trave pilastro ideati per l’impiego di tale tipologia strutturale. Le travi tralicciate composte sono costituite da tralicci di acciaio prefabbricati conglobati in getti di calcestruzzo comunemente realizzati in cantiere. Le principali caratteristiche dei tralicci di acciaio sono l’autoportanza nei confronti del peso proprio e di quello del solaio senza alcun ulteriore supporto provvisionale e la collaborazione con il getto di calcestruzzo quando esso indurisce. La recente norma italiana DMLLPP 14/01/2008 fa menzione della tipologia strutturale tralicciata composta e stabilisce che il suo impiego richiede la preventiva autorizzazione del Consiglio Superiore dei Lavori Pubblici senza fornire alcuna altra specifica. L’assenza quindi di normativa Italiana e Internazionale a riguardo richiede la formulazione di regole di progetto specifiche. Gli scopi della ricerca sono la verifica dell’efficienza di questo sistema strutturale, lo sviluppo di un metodo di calcolo attendibile, l’applicazione delle travi tralicciate composte in telai sismo resistenti, il progetto e la verifica di innovativi nodi trave-pilastro con adeguate prestazioni anti sismiche. Come primo obiettivo, si sono focalizzati i telai in cemento armato sismo resistenti per comprendere a pieno le sollecitazioni a cui sono soggetti e per analizzare tutte le caratteristiche che possono condizionare il loro comportamento in termini di rigidezza, resistenza e duttilità. Nel quadro della teoria del danno continuo, è stato proposto un nuovo modello di danno a due parametri per il calcestruzzo. In particolare è stata sviluppata una nuova legge di evoluzione del danno a compressione per il calcestruzzo per una migliore valutazione degli effetti delle armature di confinamento nelle strutture di cemento armato. Allo scopo di descrivere il comportamento dell’armatura in un approccio unitario, sono stati formulati specifici indici di danno per l’acciaio, prendendo in considerazione lo sviluppo della deformazione plastica e il fenomeno dell’instabilità delle barre compresse. È stata inoltre formulata una nuova metodologia per stimare il carico critico delle barre che risulta in ottimo accordo con i risultati sperimentali. Infine è stata proposta una migliore e generalizzata definizione degli indici di danno globali con lo scopo di ottenere strumenti efficaci nella caratterizzazione delle prestazioni di strutture in cemento armato. Il modello sviluppato è stato implementato in un codice di ricerca agli elementi finiti con modello a fibre, il quale è stato validato mediante la comparazione di analisi non lineari di strutture sottoposte a prove sperimentali. In particolare, è stata dimostrata l’affidabilità del modello mediante la comparazione con i risultati di esperimenti condotti in colonne di cemento armato alcune delle quali hanno presentato l’instabilità delle barre compresse. Sono state condotte analisi statiche e dinamiche non lineari di telai in cemento armato progettati con o senza i criteri di alta duttilità e il modello si è dimostrato in grado di descrivere in modo efficiente ed accurato il comportamento dinamico, i meccanismi di collasso e l’energia dissipata. Gli stessi telai sono stati poi studiati mediante un approccio a cerniere plastiche concentrate così come proposto dalla normativa Americana FEMA 356. È stata proposta e indagata una correlazione tra i livelli di prestazione contenuti nella normativa FEMA e gli indici di danno globali. La meccanica delle travi tralicciate composte è stata analizzata ed è stato proposto un innovativo metodo di calcolo nell’ambito del metodo Semiprobabilistico agli Stati Limite. Ogni Stato Limite Ultimo e di Esercizio è stato definito e correlato alle prestazioni delle travi. L’indurimento del getto di completamento distingue due fasi nella vita delle travi tralicciate che sono caratterizzate da differenti sezioni resistenti e conseguentemente da una meccanica differente. Durante la prima fase le travi si comportano come tralicci di acciaio prefabbricati, mentre nella seconda i tralicci di acciaio collaborano con il calcestruzzo indurito. Per entrambe le fasi sono stati proposti metodi di calcolo e verifica del comportamento delle travi. Il metodo così sviluppato è stato impiegato per predire e analizzare le prove sperimentali condotte presso il Laboratorio di Prove sui Materiali da Costruzione del Dipartimento di Costruzioni e Trasporti dell’Università di Padova. Sono presentate tre serie di prove sperimentali su travi tralicciate con le relative analisi dei risultati ottenuti. In particolare sono state progettate e sottoposte a prova: otto travi REP?-NOR, sei travi ECOTRAVE? RAFTILE? e due travi PREREP?.Sono stati studiati la deformabilità globale, i meccanismi resistenti a flessione e taglio e i fenomeni di fessurazione e decompressione. I risultati sono stati comparati con quelli ottenuti per mezzo del metodo di calcolo presentato. La meccanica delle travi è stata così confermata e il metodo di calcolo si è dimostrato efficiente e preciso nella valutazione del comportamento di travi tralicciate, alcune delle quali presentavano soluzioni costruttive distinte ed innovative. La meccanica del nodo trave pilastro in cemento armato è stata poi analizzata, richiamando le principali teorie e i loro recenti sviluppi. Sono stati valutati i due meccanismi di resistenza del nodo ovvero quello del puntone di calcestruzzo e quello a traliccio d’armatura. È stato investigato il loro contributo nell’assorbire il taglio totale che sollecita il nodo per effetto di azioni sismiche. Sono state così chiaramente esplicitate tutte le prescrizioni contenute nelle normative di merito in vista dell’applicazione a nodi di geometrie e caratteristiche distinte. Sono state quindi confrontate le prescrizioni dell’Eurocodice e della normativa Americana ACI 318M nei loro apsetti fondamentali. È stato poi definito un nodo trave-colonna da impiegarsi come struttura di riferimento ed è stato progettato in cemento armato secondo la vigente normativa Europea e Italiana. Si è affrontato di seguito il problema dell’analisi numerica accurata di tale nodo. I modelli numerici proposti sono stati validati tramite confronti con risultati sperimentali. Tramite l’impiego di analisi bi- e tri- dimensionali è stato possibile valutare in modo appropriato il comportamento del nodo progettato. Lo sviluppo teorico ha così trovato conferma nelle analisi numeriche sia qualitativamente che quantitativamente. Partendo da considerazioni teoriche, è stato proposto un innovativo nodo per travi tralicciate miste. Lo scopo principale è stato quello di raggiungere adeguate rigidezza, resistenza e duttilità in telai sismo-resistenti. La similarità dei meccanismi resistenti ha permesso di estendere la teoria dei nodi di cemento armato alla tipologia tralicciata mista. Il calcolo dei nodi proposti parte dallo studio di distribuzioni di tensioni staticamente ammissibili all’interno del nodo e segue con la loro valutazione quantitativa. Per mezzo degli strumenti di analisi numerica studiati e validati con le strutture di cemento armato, sono state eseguite le analisi dei nuovi nodi progettati. Anche in questo caso analisi bi- e tri- dimensionali sono presentate assieme al loro confronto con le corrispettive dei nodi in cemento armato. Le analisi numeriche mostrano il raggiungimento di obiettivi importanti quali la rigidezza del nodo, la sua resistenza e la sua duttilità. È stata altresì verificata la capacità del nodo di dissipare energia confrontandola con quella del nodo in cemento armato. I risultati confermano l’efficienza della soluzione di nodo in tipologia tralicciata mista proposta. Infine, è stato studiato un innovativo nodo di tipologia strutturale composta per applicazioni in zone a medio-bassa sismicità. Il nodo è stato pensato per connettere travi tralicciate composte e pilastri di calcestruzzo con camicia esterna di acciaio. Il principale spunto del nodo è quello di conservare la continuità della camicia di acciaio attraverso il nodo per mezzo di connessioni a freddo con bulloni ciechi. Sono stati quindi proposti elementi strutturali aggiuntivi, che oltrepassano la colonna in corrispondenza del nodo, con il compito di ripristinare la continuità. Le connessioni proposte richiedono un limitato impiego di manodopera in cantiere riducendo così il numero di lavorazioni e i tempi di costruzione. Il nodo risultante è un tipo speciale di struttura composta acciaio e calcestruzzo, collaborando l’acciaio con il calcestruzzo nel sostenere le sollecitazioni. Il progetto del nodo è stato condotto secondo le prescrizioni della vigente normativa Italiana ed Europea. La verifica del comportamento del nodo composto è stata eseguita per mezzo di analisi numeriche con programmi agli elementi finiti valutando differenti soluzioni di modellazione. I modelli numerici hanno tenuto conto della limitazione delle tensioni di trazione all’interfaccia tra camicia di acciaio e calcestruzzo delle travi. Grazie a tale accurata modellazione, i relativi risultati possono essere considerati affidabili e precisi. Le analisi hanno quindi confermato l’efficienza del nodo trave-pilastro proposto in struttura mista acciaio e calcestruzzo.
APA, Harvard, Vancouver, ISO, and other styles
43

Quaresma, Wanessa Mesquita Godoi. "Contribuição ao estudo do comportamento mecânico do concreto utilizando diferentes modelagens em elementos finitos na escala mesoscópica." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6796.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-01-30T09:49:46Z No. of bitstreams: 2 Dissertação - Wanessa Mesquita Godoi Quaresma - 2016.pdf: 2901974 bytes, checksum: fcac435f9dfd087f8402d916a36a5f05 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-30T10:04:13Z (GMT) No. of bitstreams: 2 Dissertação - Wanessa Mesquita Godoi Quaresma - 2016.pdf: 2901974 bytes, checksum: fcac435f9dfd087f8402d916a36a5f05 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-01-30T10:04:13Z (GMT). No. of bitstreams: 2 Dissertação - Wanessa Mesquita Godoi Quaresma - 2016.pdf: 2901974 bytes, checksum: fcac435f9dfd087f8402d916a36a5f05 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-07-06
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
This work deals with the study of the concrete mechanical behavior using a two-dimensional numerical modeling in mesoscopic scale. The material is considered to be composed of three phases consisting of the interface zone matrix and inclusions, where each constituent is modeled properly. In the representative volume element (RVE) inclusions of as various shapes and randomly arranged are considered. The interface zone is modeled by finite elements where a model of fracture and contact recently proposed is incorporated. On the other hand, the transition zone is modeled by triangular finite elements where the Mohr-Coulomb model with lower strength characteristics compared to the mortar, is used. Inclusion is modeled as a linear elastic material and the matrix is considered as elastoplastic materials governed by the Mohr-Coulomb model. Our main goal is to show that a formulation based on computational homogenization is an alternative to complex macroscopic constitutive models for the mechanical behavior of brittle materials using a procedure based on the Finite Element Method and a multiscale theory. Examples changing the form of aggregate, their volume fraction and distribution in RVE, as well as various strategies for modeling the transition zone are shown to illustrate the performance of the proposed model. The results evidence that the proposed modeling leads to are promising results for employment in a multiscale modeling. Also, this work shows the importance of parametric identification of fracture and contact model in the microstructural analysis of concrete.
Este trabalho trata do estudo do comportamento mecânico do concreto utilizando uma proposta de modelagem numérica bidimensional em escala mesoscópica. O material é considerado como composto por três fases consistindo de zona de interface, matriz e inclusões, onde cada constituinte é modelado adequadamente. O Elemento de Volume Representativo (EVR) consiste de inclusões idealizadas como de várias formas e aleatoriamente dispostas no EVR. Uma das abordagens permite que a zona de interface seja modelada por meio de elementos finitos coesivos de contato, onde um modelo de fratura e contato recentemente proposto é incorporado ao elemento. Por outro lado, a zona de transição pode ser modelada por elementos finitos triangulares onde o modelo de Mohr- Coulomb com características de menor resistência em relação à argamassa, é utilizado. A inclusão é modelada como sendo um material elástico linear, já a matriz é considerada como material elastoplástico obedecendo ao modelo de Mohr-Coulomb. O principal objetivo é mostrar que uma formulação baseada na homogeneização computacional é uma alternativa aos modelos constitutivos macroscópicos complexos para o comportamento mecânico de matérias frágeis usando um procedimento baseado no Método dos Elementos Finitos no âmbito de uma teoria multiescala. Uma série de exemplos envolvendo a mudança de forma de agregados, sua fração volumétrica e sua distribuição no EVR, assim como diferentes estratégias de modelagem da zona de transição, é apresentada de modo a ilustrar a performance da modelagem proposta. Os resultados encontrados evidenciam que as modelagens propostas apresentam resultados promissores para o emprego numa modelagem multiescala. Também, este trabalho mostra a importância da identificação paramétrica do modelo de fratura e contato na análise microestrutural do concreto.
APA, Harvard, Vancouver, ISO, and other styles
44

Nana, Wendpanga Serge Auguste. "Etudes expérimentales et numériques du comportement des dalles épaisses en béton armé sous chargement de cisaillement et interaction cisaillement/effet de membrane : Application aux bâtiments nucléaires." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI108/document.

Full text
Abstract:
Cette contribution, en s’appuyant sur expérimentation et modélisation numérique vise à une meilleure compréhension du comportement des dalles en béton armé sous sollicitations de cisaillement. Une campagne expérimentale a été réalisée sur des dalles épaisses à pleine échelle de centrales nucléaires. Ces dalles sans armatures d’effort tranchant sont soumises à une sollicitation de cisaillement en chargement quasi-statique. Les essais sont réalisés en faisant varier différents paramètres qui peuvent influencer le comportement au cisaillement. Sont ainsi étudiés : résistance en compression du béton, épaisseur, taux d’armatures longitudinales et transversales, taille des granulats, longueur de la plaque de chargement. L’influence des efforts de membrane, de compression ou de traction, sur le comportement au cisaillement a également été analysée. Les résultats des essais sont ensuite comparés aux prédictions des codes de calcul. Ces résultats ont d’abord permis d’apporter une réponse aux divergences qui existent entre l’Eurocode 2 et l’Annexe Nationale Française quant à la prédiction du cisaillement. Ont également été évalués le niveau de précision donné par d’autres normes de dimensionnement au cisaillement: la norme américaine ACI 318-14, le code nucléaire AFCEN ETC-C 2010, le fib-Model Code 2010 et l’approche par la théorie de la fissure critique de cisaillement CSCT. Ensuite est évalué la possibilité d’analyses non-linéaire par élément finis (EF) pour reproduire le phénomène du cisaillement dans les dalles. Un modèle de béton élastoplastique avec endommagement est combiné à une analyse quasi-statique à schéma de résolution explicite. Des lois de comportement non linéaires appropriées du béton avec des comportements post-pic associés à un critère énergétique ont été considérées. La bonne concordance entre le modèle proposé et les résultats expérimentaux en termes de résistance au cisaillement et de modes de rupture permet de valider la modélisation proposée. Une étude paramétrique a été réalisée sur la base du modèle proposé avec les mêmes propriétés mécaniques de béton. Des lois simplifiées permettant d’estimer les capacités en cisaillement en fonction des différents paramètres étudiés sont finalement proposées
This study, based on experiments and numerical modeling, aims at a better understanding of the shear behavior of reinforced concrete slabs. An experimental campaign was carried out on full-scale thick slabs typical of nuclear power plant slabs. These slabs without shear reinforcement are subjected to a quasi-static shear loading. The tests are carried out by varying different parameters that can influence the shear behavior: the concrete compressive strength, the slab depth, the bottom longitudinal and transverse reinforcement ratio, the concrete aggregate size, the loading plate length. The influence on shear behavior of compression or tension membrane forces has also been analyzed. The results of tests are then compared with the predictions of the calculation codes. These results first of all helped to answer the differences between the Eurocode 2 and the French National Annex concerning the prediction of the shear capacity of reinforced concrete slabs. The level of accuracy given by other shear dimensioning standards was also assessed: The American standard ACI 318-14, the AFCEN ETC-C 2010 code used for nuclear buildings, the fib-Model 2010 and the Critical Shear Crack Theory. Next, we evaluate the possibilities of a non-linear finite element analysis (EF) to reproduce the phenomenon of shear in slabs. An elastoplastic concrete model with damage was used and combined with a quasi-static analysis using an explicit resolution scheme. Appropriate nonlinear behavior laws of concrete with post-peak behaviors associated with an energy criterion were considered. The good agreement between the proposed model and the experimental results in terms of shear strength and failure modes allowed validating the proposed modeling. A parametric study was conducted based on the numerical proposed model with the same mechanical properties of concrete. Simplified laws allowing estimating the shear capacities according to the different parameters studied are proposed
APA, Harvard, Vancouver, ISO, and other styles
45

Limam, Sophia. "Etudes expérimentales et numériques du comportement des dalles épaisses en béton armé avec épingles sous cisaillement : Application aux bâtiments nucléaires." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI006/document.

Full text
Abstract:
Cette thèse, en s’appuyant sur l’expérimentation et la modélisation numérique vise à une meilleure compréhension du comportement des dalles épaisses en béton armé sous sollicitations de cisaillement. Le cas particulier des dalles avec épingles est d’ailleurs spécifiquement étudié et comparé aux dalles sans armatures d’effort tranchant, l’influence de l’effort membrane est également abordé. Une synthèse bibliographique a tout d’abord été effectuée pour mettre en évidence les paramètres agissant sur la contrainte de cisaillement à travers les résultats des travaux et études précédentes comme la résistance caractéristique du béton en compression, le taux d’armatures longitudinales et transversales, et le rapport a/d, la taille des granulats. La campagne expérimentale a ensuite été réalisée sur trente dalles dont 9 dalles sans épingles et 21 dalles avec épingles partagées en quatre séries, la première conçue pour étudier le comportement global et local au cisaillement, la deuxième pour analyser l’interaction des épingles avec les armatures longitudinales, la troisième pour étudier l’effet d’un effort axial sur la résistance au cisaillement et vérifier s’il existe une interférence des aciers d’effort tranchant sur l’effort axial et la quatrième pour étudier l’effet de l’engrènement des granulats en faisant varier la taille de leur diamètre maximal. Les résultats montrent l’augmentation de la résistance au cisaillement grâce aux épingles mais également l’interaction de ceux-ci avec les armatures longitudinales et l’effort de compression. Pour ce qui est de l’influence de l’augmentation du diamètre des granulats, celle-ci est supplantée par les épingles qui remplacent cet effet. Les résultats expérimentaux sont comparés aux prévisions basées sur l’Eurocode 2, l’Annexe Nationale Française, le Fib Model Code 2010 et l’ACI 318-14. Les résultats montrent que globalement l’approche française ANF et le fib Model Code 2010 donnent des résultats très proches des valeurs expérimentales. L’EC2 donne également des résultats acceptables avec des marges de sécurité raisonnable. La comparaison des résultats analytiques obtenus avec l’EC2, l’ACI 318-14, le Fib Model Code montre que l’ANF donnent de bons résultats. La modélisation des dalles, en utilisant le modèle de béton élasto-plastique avec endommagement d’ABAQUS EXPLICIT, donne les meilleurs résultats en comparaison avec la campagne expérimentale, tant pour la détermination de la charge ultime et de l’effort tranchant maximal que pour le mode de rupture qui est similaire au mode de rupture expérimental
This thesis, based on experimentation and numerical modeling aims at a better understanding of the behaviour of reinforced concrete slabs equipped with shear reinforcements, by measuring the effect of stirrups on their shear strength. A bibliographical synthesis was first carried out to highlight the parameters acting on the shear stress through the results of previous work and studies such as the characteristic resistance of concrete in compression, the rate of longitudinal and transverse reinforcements, the shear to span ratio the size of the aggregates and the applying of an axial load. The experimental campaign was then carried out on thirty slabs including 9 slabs without shear reinforcement and 21 slabs with stirrups shared in four series, the first designed to study the global and local shear behaviour, the second to analyze the interaction of the stirrups with the longitudinal reinforcement, the third to study the effect of an axial effort on the shear strength and to check whether there is interference from the shear reinforcement on the behaviour of axial effort and the fourth to study the effect of meshing of aggregates by varying the size of their maximum diameter. The results confirm the shear gain through the adding of stirrups and also their interaction with longitudinal reinforcement and axial compression. Also, the stirrups cancel the effect of increasing the diameter of concrete aggregates. The experimental results are compared with the forecasts based on Eurocode 2, the French national Annex, the Fib Model Code 2010 and the ACI 318-14. The results show that overall the French approach ANF (avg = 1.00, std = 0.08) and the fib Model Code 2010 give very close results of experimental values. The EC2 also gives acceptable results with reasonable security margins. Comparison of the analytical results obtained with the EC2, the ACI 318-14, the Fib Model Code shows that both the ANF is successful; The best average of the "experimental shear strength and the numerical shear strength ratio (1.014) was obtained with the ANF (0.03). The modeling of slabs, using the elastoplastic concrete model with damage through ABAQUS EXPLICIT gives results comparable to the experimental results, not only for the determination of the ultimate load and the maximum shear strength but also for the failure mode which is similar to the experimental one
APA, Harvard, Vancouver, ISO, and other styles
46

Folvarčná, Ingrid. "Experimentální a numerická analýza zesílení ŽB prvku na smykové účinky." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240247.

Full text
Abstract:
Design and manufacture of test elements for experimental laboratory testing of shear damage. Testing of selected mechanical characteristics of test elements. Experimental analysis of test elements in the lab, creating a mathematical model in ATENA software, static analysis. Evaluation of experimental analysis and comparison with the values of static analysis. Final overall evaluation.
APA, Harvard, Vancouver, ISO, and other styles
47

Robard, Pierre. "Développement et implémentation dans le cadre éléments finis de modèles de comportement adaptés aux matériaux thermoplastiques élastomères en vue de la fatigue des structures." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0051.

Full text
Abstract:
Cette thèse, menée en collaboration avec Trelleborg Boots, a pour but d’étudier le comportement en fatigue des soufflets servant de protection aux articulations de cardan des trains avant des véhicules automobile. Durant son utilisation, cette pièce contenant de la graisse est soumise à des sollicitations de fatigue. Elle évolue en grande transformation dans des conditions extrêmes entre des températures de -40 à 140°C. Les matériaux employés sont des Thermo Plastiques Elastomères. L'objectif de la thèse est de déterminer un critère de fatigue destiné à prédire la durée de vie des soufflets. Des modèles de comportement élastoplastiques endommageables avec et sans viscosité sont proposés afin de mener des analyses par Eléments Finis. Des essais mécaniques de fatigue ont été réalisés. Ils ont permis de construire une courbe de Wöhler. Le vieillissement du matériau dû à la graisse a été étudié au travers de l’évolution de ses propriétés mécaniques Des essais rapides de type autoéchauffement ont été proposés pour déterminer la limite d’endurance des TPE-E. Un nouvel indicateur a été proposé pour déterminer la limite d’endurance des TPE-E
This thesis, carried out in collaboration with Trelleborg Boots, aims to study the fatigue behaviour of bellows used to protect the cardan joints of motor vehicle front axles. During use, this grease-containing part is subject to fatigue stresses. It evolves in large transformation under extreme conditions between temperatures of -40 to 140°C. The materials used are Thermo Plastics Elastomers. The objective of the thesis is to determine a fatigue criterion to predict the life span of bellows. Damageable elastoplastic behaviour models with and without viscosity are available for finite element analysis. Mechanical fatigue tests were carried out. They made it possible to build a Wöhler curve. The ageing of the material due to grease has been studied through the evolution of its mechanical properties. Rapid self-heating tests have been proposed to determine the endurance limit of the TPE-E. A new indicator has been proposed to determine the endurance limit of TPE-E
APA, Harvard, Vancouver, ISO, and other styles
48

Gomes, Geovanne Caetano. "Modelos preditivos de dano aplicados a estruturas de concreto atacadas por reação álcali-sílica: uma revisão sistemática da literatura." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7560.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-06-29T12:25:26Z No. of bitstreams: 2 Dissertação - Geovanne Caetano Gomes - 2017.pdf: 4000475 bytes, checksum: 9ebf09d429582174011cbfd00331c5d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-10T14:15:56Z (GMT) No. of bitstreams: 2 Dissertação - Geovanne Caetano Gomes - 2017.pdf: 4000475 bytes, checksum: 9ebf09d429582174011cbfd00331c5d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-07-10T14:15:56Z (GMT). No. of bitstreams: 2 Dissertação - Geovanne Caetano Gomes - 2017.pdf: 4000475 bytes, checksum: 9ebf09d429582174011cbfd00331c5d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-05-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Among the several deleterious actions may attack concrete elements, is the alkali-aggregate reaction (AAR), which affects, mainly, structures of dams, bridges and foundations, where the alkali-silica reaction (ASR) is the most common. One of the main challenges regarding the prediction of this phenomenon is the development of models that may predict damage specific for this reaction, which constitute the theme of this research. Firstly, a systematic literature review was conducted with respect to the models developed, with the organization and classification of the data found, presenting a clear and detailed state-of-art. Therefore, the studies published in journals in the last five years (2012-2016) were selected, in order to conduct their categorization regarding the scale and nature of the analysis, type of modeling, and the software necessary to execute the simulations, besides the summarizing, grouping and analysis of the information concerning the input data necessary to the execution of each modeling, as well as the results generated by each one of them. The models which do not predict damage, i.e. general models that simulate the ASR, were investigated to verify their contribution to a better understanding of the chemical and physical processes that occur in the concrete affect by the reaction. Finally, it was verified that the models analyzed are based on different theories and methods of analyses, demanding distinct input data and generating heterogeneous output data, which are meticulously explained in this paper.
Dentre as várias ações deletérias que podem atacar elementos de concreto tem-se a reação álcali-agregado (RAA), a qual afeta principalmente as estruturas de barragens, pontes e fundações, sendo a reação do tipo álcali-sílica (RAS) a mais recorrente nelas. Um dos principais desafios no que tange à predição desse fenômeno é o desenvolvimento de modelos de previsão de dano específicos dessa reação, constituindo-se o tema da presente pesquisa. A priori, executou-se uma revisão sistemática da literatura a respeito dos modelos desenvolvidos, com a organização e classificação dos dados encontrados, apresentando-se o estado da arte de forma clara e detalhada. Em seguida, foram elencados os trabalhos publicados em periódicos indexados nos últimos cinco anos (2012-2016), executando-se a categorização dos modelos quanto à escala e natureza de análise, tipo de modelagem, e softwares necessários para executar as simulações, além da sintetização, agrupamento e análise de informações concernentes aos dados de entrada necessários para a execução de cada modelação, bem como dos resultados gerados por elas. Para os modelos que não preveem dano, isto é, modelos gerais que simulam a RAS, investigou-se sua contribuição para o melhor entendimento dos processos químico-físicos que ocorrem no concreto afetado por ela. Verificou-se, assim, que os modelos analisados são pautados em diferentes teorias e métodos de análise, demandando dados de entrada distintos e gerando dados de saída heterogêneos, os quais são discriminados minuciosamente neste trabalho.
APA, Harvard, Vancouver, ISO, and other styles
49

Ben, Boubaker Houssemeddine. "Développement d'une modélisation à l'échelle cristalline d'un alliage de titane pour la simulation de l'usinage." Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0058.

Full text
Abstract:
Les alliages de titane, notamment grâce à leur faible densité et leurs bonnes propriétés mécaniques, ont vu leur utilisation s'accroître ces dernières années. Cependant, du fait que ces matériaux sont réfractaires, leur mise en forme par usinage à sec est souvent difficile. Toutefois, il est difficile de comprendre les mécanismes induisant la mauvaise usinabilité des alliages de titane en se basant seulement sur des essais expérimentaux. Le recours à la modélisation numérique est une alternative efficace qui permet d'accéder à des grandeurs physiques locales et instantanées et de faciliter la compréhension des mécanismes de formation du copeau. La plupart des simulations numériques d'usinage s'appuient sur une modélisation où le matériau est considéré comme macroscopiquement homogène. Ces simulations permettent d'avoir une estimation globale des phénomènes mécaniques, thermiques et tribologiques engendrés par la coupe. Cependant, lorsque la taille des grains devient comparable par rapport au volume coupé, l’hypothèse d’homogénéité n’est plus valable. Le principal objectif de cette étude est la mise en place d'un modèle de comportement adapté à la modélisation de l'usinage de l'alliage de titane Ti17. À cause de son importante taille des grains, la prise en compte des hétérogénéités microstructurales constitue un élément essentiel de la démarche de modélisation qui s'appuie très largement sur le cadre de la plasticité cristalline. Une loi d'homogénéisation écrite à l'échelle locale permet de considérer la nature hétérogène du Ti17. Ainsi, une procédure d’identification des paramètres basée sur les courbes de comportement en traction, en compression et cisaillement est proposée. Si l’objectif de ce travail est la construction d’un modèle de comportement à l’échelle cristalline, il est néanmoins nécessaire de caractériser le comportement de l’alliage de titane Ti17. Il s’agit d’abord de caractériser le comportement viscoplastique de l’alliage Ti17 puis d’étudier les phénomènes d’endommagement. Finalement, le modèle est principalement utilisé afin de prévoir le rôle des paramètres de coupe et de la microstructure sur les mécanismes de formation du copeau
Titanium alloys, have seen their use increase in recent years due to their low density and good mechanical properties. However, because titanium alloys are hard-to-cut materials, their shaping by dry machining is often difficult. Hence, it is difficult to understand the mechanisms inducing the poor machinability of titanium alloys using only experimental tests. Performing numerical simulations is an alternative that can provide some access to local physical quantities and can improve the understanding of chip formation mechanisms. Most of numerical machining simulations are based on the hypothesis of isotropic and homogeneous material properties. These simulations provide an overall estimate of mechanical, thermal and tribological phenomena induced by machining operations. The main objective of this study is the development of a mechanical model adapted to the machining modelling of the Ti17 titanium alloy. Because of its high grain size, explicitly taking into account the microstructural heterogeneity is an essential part of the modelling strategy, which relies on the crystal plasticity framework. A homogenization law written on the local scale is used to consider the two-phases Ti17 microstructure. Thus, an identification procedure of the constitutive model parameters based on tensile, compression and shear tests is proposed. While the objective of this work is to develop a constitutive model at crystal scale, it is nevertheless necessary to characterize the behavior of the Ti17 titanium alloy. The viscoplastic behavior is studied using compression tests and then, the damage phenomena are investigated using tensile and shear tests. Finally, the model is mainly used to predict the impact of cutting parameters and microstructure on chip formation mechanisms
APA, Harvard, Vancouver, ISO, and other styles
50

Benelfellah, Abdelkibir. "Contribution à la modélisation de l'anisotropie induite par endommagement d'un matériau agrégataire énergétique." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4018/document.

Full text
Abstract:
Le matériau composite agrégataire énergétique étudié a un comportement viscoélastique endommageable sensible à la pression de confinement et à la température. Ces travaux concernent la modélisation de l'anisotropie induite par endommagement avec deux objectifs principaux. Dans un premier temps, le caractère anisotrope de l'endommagement est mis en évidence expérimentalement. Des essais alternant tension et compression permettant d'observer l'effet unilatéral d'endommagement. Ensuite, un modèle de comportement est développé pour le matériau d'étude. Des modèles pertinents sont tout d'abord comparés. Le modèle le plus approprié est ensuite amélioré par l'ajout de mécanismes d'endommagement, d'effectivité du dommage et d'un mécanisme de plasticité. Les données expérimentales sont utilisées pour identifier les paramètres du modèle. Ce dernier a été ensuite implémenté dans un logiciel de calcul aux éléments finis (Abaqus / standard) sous la forme d'une procédure Fortran (UMAT). Différents types de chargements sont simulés et confrontés aux résultats expérimentaux
An explosive aggregate material exhibits a visco-elastic behaviour with damage, internal friction and sensitivity to the confining pressure and temperature. This thesis focuses on the anisotropic elastic damage with unilateral effect. The first aim of this study is to highlight experimentally the anisotropic nature of the damage. Then, a new model is proposed for the studied material. This is achieved using a comparison of some relevant models in order to select the most appropriate among them. The selected model is then improved by adding unilateral effect mechanisms and plasticity. Experimental data is used to characterize the material behaviour and to determine the parameters of improved model. This model has been implemented in the finite element software (Abaqus / Standard) using Fortran procedure (UMAT) and then tested for different loads and compared with experimental results
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography