Academic literature on the topic 'Condensation polymerization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Condensation polymerization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Condensation polymerization"

1

Ramakrishnan, S. "Condensation polymerization." Resonance 22, no. 4 (April 2017): 355–68. http://dx.doi.org/10.1007/s12045-017-0475-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Soo Hyun, and Young Ha Kim. "Direct condensation polymerization of lactic acid." Macromolecular Symposia 144, no. 1 (October 1999): 277–87. http://dx.doi.org/10.1002/masy.19991440125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wiegand, Tina, and Anthony A. Hyman. "Drops and fibers — how biomolecular condensates and cytoskeletal filaments influence each other." Emerging Topics in Life Sciences 4, no. 3 (October 13, 2020): 247–61. http://dx.doi.org/10.1042/etls20190174.

Full text
Abstract:
The cellular cytoskeleton self-organizes by specific monomer–monomer interactions resulting in the polymerization of filaments. While we have long thought about the role of polymerization in cytoskeleton formation, we have only begun to consider the role of condensation in cytoskeletal organization. In this review, we highlight how the interplay between polymerization and condensation leads to the formation of the cytoskeleton.
APA, Harvard, Vancouver, ISO, and other styles
4

KROL, PIOTR, and JAN PIELICHOWSKI. "Kinetic models of the step-growth polymerization (condensation polymerization and addition polymerization) processes." Polimery 37, no. 07 (July 1992): 304–11. http://dx.doi.org/10.14314/polimery.1992.304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ueda, M. "Sequence control in one-step condensation polymerization." Progress in Polymer Science 24, no. 5 (August 1999): 699–730. http://dx.doi.org/10.1016/s0079-6700(99)00014-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fino, Steve A., Kyle A. Benwitz, Kris M. Sullivan, Dan L. LaMar, Kristen M. Stroup, Stacy M. Giles, Gary J. Balaich, Rebecca M. Chamberlin, and Kent D. Abney. "Condensation Polymerization of Cobalt Dicarbollide Dicarboxylic Acid." Inorganic Chemistry 36, no. 20 (September 1997): 4604–6. http://dx.doi.org/10.1021/ic961182u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hashimoto, Hironobu, Yutaka Abe, Shigeomi Horito, and Juji Yoshimura. "Synthesis of Chitooligosaccharide Derivatives by Condensation Polymerization." Journal of Carbohydrate Chemistry 8, no. 2 (May 1989): 307–11. http://dx.doi.org/10.1080/07328308908048012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Son, Jhun-Mo, Kenji Ogino, Noriyuki Yonezawa, and Hisaya Sato. "Condensation polymerization of triphenylamine derivatives with paraformaldehyde." Synthetic Metals 98, no. 1 (November 1998): 71–77. http://dx.doi.org/10.1016/s0379-6779(98)00156-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tao, Ran, and Mitchell Anthamatten. "Condensation and Polymerization of Supersaturated Monomer Vapor." Langmuir 28, no. 48 (November 20, 2012): 16580–87. http://dx.doi.org/10.1021/la303462q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Son, Jhun-Mo, Mayumi Nakao, Kenji Ogino, and Hisaya Sato. "Condensation polymerization of triphenylamine with carbonyl compounds." Macromolecular Chemistry and Physics 200, no. 1 (January 1, 1999): 65–70. http://dx.doi.org/10.1002/(sici)1521-3935(19990101)200:1<65::aid-macp65>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Condensation polymerization"

1

Tsoi, Kit-hon. "Aspects of the statistics of condensation polymer networks." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38985433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santai, Catherine Theresa. "In vitro Condensation of Mixed-Stranded DNA." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14043.

Full text
Abstract:
DNA condensation is the process in which an anionic polymer in combination with condensing agents undergoes a drastic reduction in volume and collapses into ordered structures. Double-stranded DNA has a uniform helical secondary structure, whereas single-stranded DNA is complex and adopts numerous different conformations. Novel mixed-stranded DNA molecules, with defined regions of both single-stranded and double-stranded secondary structures attached to one another in the same molecule, were created in this body of work. Mixed-stranded DNA was designed to be intermediate between its parent secondary structures in order to discover if mixed-stranded DNA will find a balance in terms of condensation properties as well. Mixed-stranded DNA was found to condense into minimally aggregated, globular particles in the presence of low mM concentrations of divalent transition metals in aqueous solvent at room temperature, a property not observed for either pure dsDNA or ssDNA. A model is presented to describe how mixed-stranded DNA -Mn2+, -Ni2+, and -Cd2+ condensates with the observed properties are produced. Multivalent-induced condensation of mixed-stranded DNA is also characterized and found to involve an unusual rod-like morphology in order to accommodate the secondary structures condensing independent of one another at different concentrations of multivalent cations. The attachment of a ss region to an otherwise ds molecule was found to greatly influence condensation properties of the entire molecule.
APA, Harvard, Vancouver, ISO, and other styles
3

Tsoi, Kit-hon, and 徐傑漢. "Aspects of the statistics of condensation polymer networks." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38985433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nascimento, de Andrade Fabiana. "Effect of condensable materials during the gas phase polymerization of ethylene on supported catalysts." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1016/document.

Full text
Abstract:
Les réacteurs à lit fluidisé (FBR) constituent la seule technologie viable sur le plan commercial pour la production de polyéthylène en phase gaz, car la polymérisation est hautement exothermique et le FBR est le seul type de réacteur en phase gaz offrant des possibilités suffisantes de transfert de chaleur. La nature hautement exothermique de cette polymérisation pose effectivement de nombreux problèmes pour le fonctionnement en phase gaz et peut limiter la production de certains procédés. Au cours des dernières années, les procédés en lit fluidisé ont été améliorés par de nouvelles technologies. En particulier, l'ajout d'hydrocarbures inertes (généralement liquides) permet d'augmenter la quantité de chaleur évacuée du réacteur. Ces composés augmentent la capacité calorifique de la phase gazeuse et, s’ils sont injectés sous forme liquide, s’évaporent également et absorbent ainsi encore plus efficacement la chaleur du milieu réactionnel. C’est ce qu’on appelle le fonctionnement en mode condensé. On y utilise des composés qui peuvent être liquéfiés dans le condenseur de recyclage et qui sont appelés agents de condensation induits (en anglais : Induced Condensing Agents - ICA). L’utilisation de l’ICA est extrêmement importante d'un point de vue industriel. L’injection d’ICA peut avoir de nombreux effets physiques différents au niveau des particules de polymère en croissance. Par exemple, l’ajout de ces composés peut entraîner des modifications de la solubilité et d’autres propriétés physiques, ce qui peut faciliter le transport de l’éthylène et de l’hydrogène vers les sites actifs des catalyseurs. Il est donc très important que les phénomènes physiques liés à l'équilibre de sorption entre la phase gaz et la phase polymère du ou des monomères et d'autres espèces, ainsi que leur diffusion dans la matrice polymère au niveau des sites actifs, soient pris en compte. En plus d'avoir un effet sur la cinétique, ces phénomènes peuvent également impacter la structure des molécules de polymère et par conséquent changer les caractéristiques du polymère. Identifier le comportement de ces phénomènes dans les conditions de la procédé et les variables de contrôle du rapport hydrogène / éthylène et du rapport comonomère / éthylène avec l'ICA sont les objectifs centraux de cette étude. Une série d’homo- et co-polymérisations d’éthylène en phase gazeuse a été réalisée en utilisant un catalyseur commercial Ziegler-Natta en présence de l’ICA (propane, n pentane et n-hexane). Nous avons étudié l’effet des températures, de la pression partielle de l’ICA, de l'hydrogène et des comonomères sur le comportement de la polymérisation. Il a été constaté que l’ajout de l’ICA augmentait significativement la vitesse de réaction ainsi que les poids moléculaires moyens à une température donnée. De manière inattendue, il a également été observé que l’augmentation de la température du réacteur en présence d’ICA entraînait en réalité une diminution de la vitesse de réaction globale. Ces résultats ont été attribués à l’effet de cosolubilité. Dans les réactions en présence de différentes concentrations en hydrogène, pour un rapport ICA/C2 beaucoup plus grand que le rapport H2/C2, l'effet de l’ICA sur la solubilité de l’éthylène peut compenser la diminution en taille des molécules provoquée par la présence d’hydrogène. L’impact de l’ICA sur les taux de réaction de copolymérisation est plus prononcé aux stades initiaux, perdant de son efficacité en raison de l'effet de comonomère. Enfin, une évaluation de la cinétique de cristallisation dans des conditions isothermes pour des mélanges de différentes concentrations ICA: HDPE a montré que le temps de cristallisation est significativement plus long pour les systèmes riches en ICA que pour les polymères secs
Fluidized bed reactors (FBR) are the only commercially viable technology for the production of polyethylene in the gas phase since the polymerization is highly exothermic and the FBR is the only type of gas phase reactor that offers adequate possibilities of heat transfer. The highly exothermic nature of this polymerization effectively poses many problems for gas phase operation and can limit the production of a certain process. However, in recent years the fluidized bed processes have been improved with new technologies. In particular, the addition of inert (usually liquefied) hydrocarbons allows one to increase the amount of heat removed from the reactor. These compounds increase the heat capacity of the gas phase and, if injected in liquid form, also evaporate and thus absorb even more heat from the reaction medium efficiently. This is known as a condensed mode operation. In it, one uses compounds that can be liquefied in the recycle condenser, and which are called Induced Condensing Agents (ICA). The use of ICA is extremely important from an industrial point of view. The injection of ICA can have many different physical effects at the level of the growing polymer particles. For instance, adding these compounds can cause changes in solubility and other physical properties, which can facilitate the transport of ethylene and hydrogen to the active sites of the catalysts. It is thus very important that the physical phenomena related to the sorption equilibrium of the monomer(s) and other species from the gas phase to the polymer phase, and their diffusion on the polymer matrix at the active sites should be accounted for. In addition to having an effect on the kinetics, these phenomena can also impact the structure of the polymer molecules and consequently qualify the characteristics of the polymer. Identifying the behavior of these phenomena under process conditions and control variables of the hydrogen/ethylene ratio and the comonomer/ethylene ratio with ICA are central objectives of this study. A series of ethylene homo- and co-polymerizations in the gas phase were carried out using a commercial Ziegler-Natta catalyst in the presence of ICA (propane, n-pentane, and n-hexane). We investigated the effect of temperatures, the partial pressure of ICA, hydrogen, and comonomers on the behavior of the polymerization. It was found that adding ICA significantly increased the reaction rate and average molecular weights at a given temperature. It was also unexpectedly observed that increasing the reactor temperature in the presence of an ICA actually led to a decrease in the overall reaction rate. These results were attributed to the socalled cosolubility effect. In reactions in the presence of different hydrogen concentrations, for an ICA/C2 ratio much larger than the H2/C2 ratio, the effect of ICA on ethylene solubility can counteract the decrease in average molecular weight caused by the presence of hydrogen. The impact of ICA on the rates of copolymerization reactions is more pronounced in the initial stages, losing strength due to the effect of the comonomer. Finally, an evaluation of the kinetics of crystallization under isothermal conditions for mixtures of different ICA:HDPE concentrations showed that the crystallization time is significantly higher for systems rich in ICA than for dry polymer
APA, Harvard, Vancouver, ISO, and other styles
5

Erdem, Haci Bayram. "Synthesis and Characterization of Thermoplastic Polyphenoxyquinoxalines." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1207147171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tunc, Deniz. "Synthesis of functionalized polyamide 6 by anionic ring-opening polymerization." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0178/document.

Full text
Abstract:
Les études présentées dans le cadre de cette thèse visent à copolymériser l'ԑ-caprolactame (CL) avec différents dérivés de l'α-amino-ԑ-caprolactame (qui possèdent une amine primaire fonctionnalisable) par polymérisation anionique par ouverture de cycle. En utilisant cette stratégie, nous décrivons; (i) la préparation de polyamides 6 fluorés thermiquement plus stables, et ayant une surface hydrophobe; (ii) la synthèse de polyamides 6 portant des groupes pendants cinnamoyl thermo et photosensibles. Une réticulation réversible est observée ainsi que l'amélioration des propriétés thermo-mécaniques; (iii) la copolymérisation anionique par ouverture de cycle de CL avec un bis-monomère issu de l'α-amino-ԑ-caprolactame comme contrôle de la réticulation du polyamide 6. Enfin, dans le cadre de notre intérêt continu pour la chimie du polyamide 6, nous avons mis en évidence la possible combinaison de la polymérisation anionique par ouverture de cycle de CL avec la polycondensation en chaîne de l'éthyl-4-butylaminobenzoate pour obtenir en une étape un polyamide aliphatique/aromatique
The studies presented in this thesis aim to copolymerize ԑ-caprolactam (CL) with different derivatives of α-amino-ԑ-caprolactam (which has a functionalizable primary amine) via anionic ring-opening polymerization. By using this strategy, we describe: (i) the synthesis of thermally more stable fluorinated polyamide 6 having a hydrophobic surface; (ii) the synthesis of polyamides 6 bearing pendant cinnamoyl groups, which are thermo-and photoresponsivechromophore groups, and demonstrating their reversible crosslinking as well as improved thermo-mechanical properties; (iii) the copolymerization ofCL with a crosslinker (N-functionalized α-amino-ԑ-caprolactambis-monomers) into crosslinked polyamides 6.As part of our continuing interest in polyamide 6 chemistry, we developed the combination of anionic ring-opening polymerization of CL and chain-growth condensation polymerization of ethyl 4-butylaminobenzoate in order to obtain aliphatic/aromatic polyamides in one-step
APA, Harvard, Vancouver, ISO, and other styles
7

Erdogan, Selahattin. "Synthesis Of Liquid Crystalline Copolyesters With Low Melting Temperature For In Situ Composite Applications." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613306/index.pdf.

Full text
Abstract:
The objective of this study is to synthesize nematic-thermotropic liquid crystalline polymers (LCP) and determine their possible application areas. In this context, thirty different LCP&rsquo
s were synthesized and categorized with respect to their fiber formation capacity, melting temperature and mechanical properties. The basic chemical structure of synthesized LCP&rsquo
s were composed of p-acetoxybenzoic acid (p-ABA), m-acetoxybenzoic acid (m-ABA), hydroquinone diacetate (HQDA), terephthalic acid (TPA) and isophthalic acid (IPA) and alkyl-diacids monomers. In addition to mentioned monomers, polymers and oligomers were included in the backbone such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) polymers, and polybutylene naphthalate (PBN), polyhexylene naphthalate (PHN) and poly butylene terephthalate (PBT) oligomers that contain different kinds of alkyl-diols. We adjusted the LCP content to have low melting point (180oC-280oC) that is processable with thermoplastics. This was achieved by balancing the amount of linear (para) and angular (meta) groups on the aromatic backbones together with the use of linear hydrocarbon linkages in the random copolymerization (esterification) reaction. LCP species were characterized by the following techniques
Polarized Light Microscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Analysis (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), X-ray Scattering (WAXS, Fiber diffraction), surface free energy, end group analysis (CEG), intrinsic viscosity (IV) and tensile test. According to these analysis LCPs were classified into five main categories
(I) fully aromatics, (II) aromatics+ PET/PEN, (III) aromatics + oligomers (IV) aromatics + short aliphatic diacids, (V) aromatics + long aliphatic diacids. The foremost results of the analysis can be given as below. DSC analysis shows that some LCPs are materials that have stable LC mesogens under polarized light microscopy. In TGA analysis LCPs that have film formation capacity passed the thermal stability test up to 390oC. NMR results proved that predicted structures of LCPs from feed charged to the reactor are correct. In FTIR due to the inclusion of new moieties, several peaks were labeled in the finger-print range that belongs to reactants. In X-ray analysis, LCP24 (containing PET) was found to be more crystalline than LCP25 (containing PEN) which is due to the symmetrical configuration. Block segments were more pronounced in wholly aromatic LCP2 than LCP24 that has flexible spacers. Another important finding is that, as the amount of the charge to the reactor increases CEG value increases and molecular weight of the product decreases. Selected group V species were employed as reinforcing agent and mixed with the thermoplastics
acrylonitrile butadiene styrene (ABS), nylon6 (PA6), polyethylene terephthalate (PET), polypropylene (PP) and appropriate compatibilizers in micro compounder and twin screw extruder. The blends of them were tested in dog-bone and/or fiber form. In general LCPs do not improve the mechanical properties except in composite application with polypropylene. A significant increase in tensile properties is observed by LCP24 and LCP25 usage. Capillary rheometer studies show that the viscosity of ABS decreases with the inclusion PA6 and LCP2 together. In addition to the composite applications, some LCPs are promising with new usage areas. Such as nano fibers with 200nm diameter were obtained from LCP27 by electrospinning method. The high dielectric constant of LCP29 has shown that it may have application areas in capacitors.
APA, Harvard, Vancouver, ISO, and other styles
8

Vasconcelos, Inês. "Développement d’outils millifluidiques pour l’acquisition de données physico-chimiques sur des systèmes de polycondensation." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14086/document.

Full text
Abstract:
Dans le cadre d’un projet d’Intensification de Procédés de Rhodia, nous avons développé des dispositifs millifluidiques fonctionnant dans des conditions opératoires inexplorées auparavant au labortoire, jusqu’à 300 °C et 50 bar, pour l’acquisition de données physicochimiques. Ainsi, une étude rhéologique sur des solutions de sel de nylon a été réalisée, ce qui a permis de fournir une nouvelle corrélation utile pour le dimensionnement du procédé industriel de polymérisation du polyamide-6,6. Par ailleurs, une étude cinétique de la polymérisation de l’éthylène glycol avec l’acide adipique a permis de déterminer les coefficients cinétiques de la réaction ainsi que l’énergie d’activation correspondante. Finalement un procédé miniaturisé avec élimination de l’eau produite par la réaction de polycondensation permettant de déplacer l’équilibre atteint par la réaction a été mis en œuvre ainsi que son modèle
This work originated from a Rhodia’s Process Intensification project, where new physicochemical data are needed. We have developed at the laboratory new millifluidic devices which operate in conditions previously unexplored: up to 300 °C and 50 bar. A rheological study on nylon salt solutions was carried out and a new correlation based on the experimental results was provided. It is now used in the design of the industrial process of polyamide-6,6 synthesis. Moreover, a kinetic study on the polymerization of ethylene glycol with adipic acid allowed us to determine the kinetic coefficients of the reaction and the corresponding activation energy. Finally, a millifluidic process where the water produced by the polymerization reaction is eliminated by stripping and membrane separation was also developed, allowing for the chemical equilibrium to be shifted. A model describing this process has also been proposed
APA, Harvard, Vancouver, ISO, and other styles
9

Hassan, Mohamed K. I. "Novel Elastomers, Characterization Techniques, and Improvements in the Mechanical Properties of Some Thermoplastic Biodegradable Polymers and Their Nanocomposites." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1086633832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerard, Eric-Jack. "Synthese, caracterisation et comportement de polyurethannes hydrophiles : etude du mecanisme de la polycondensation reticulante." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13192.

Full text
Abstract:
Synthese d'hygrogels, constitues de chaines elastiques de polydioxolanne. Les reticulats sont synthetises en milieu organique par couplages multiples des extremites hydroxylees, du polydioxolanne precurseur avec un compose isocyanate plurifonctionnel. Apres reaction, un echange progressif du solvant organique par l'eau permet d'obtenir les hydrogels
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Condensation polymerization"

1

Fakirov, Stoyko. Transreactions in Condensation Polymers. Wiley & Sons, Limited, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stoĭko, Fakirov, ed. Transreactions in condensation polymers. Weinheim: Wiley-VCH, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fakirov, Stoyko. Transreactions in Condensation Polymers. Wiley & Sons, Incorporated, John, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration., ed. Condensation polyimides. [Washington, D.C.?: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nel, Jan Geldenhuys. Acyclic diene metathesis, a new equilibrium step propagation, condensation polymerization. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

F, Gratz Roy, and United States. National Aeronautics and Space Administration., eds. 3F condensation polyimides: Review and update. [Washington, DC: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Condensation polymerization"

1

Gooch, Jan W. "Condensation Polymerization." In Encyclopedic Dictionary of Polymers, 164. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MILLER, I. K., and J. ZIMMERMAN. "Condensation Polymerization and Polymerization Mechanisms." In ACS Symposium Series, 159–73. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ambade, Ashootosh V. "Metal-Catalyzed Condensation Polymerization." In Metal-Catalyzed Polymerization, 203–20. Boca Raton : CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153919-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ambade, Ashootosh. "Metal-Catalyzed Condensation Polymerization." In Metal-Catalyzed Polymerization, 203–20. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153919-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kade, Matthew, and Matthew Tirrell. "Free Radical and Condensation Polymerizations." In Monitoring Polymerization Reactions, 1–28. Hoboken, NJ: John Wiley & Sons, 2014. http://dx.doi.org/10.1002/9781118733813.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yokozawa, Tsutomu, and Yoshihiro Ohta. "Chain-Growth Condensation Polymerization." In Encyclopedia of Polymeric Nanomaterials, 347–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yokozawa, Tsutomu, and Yoshihiro Ohta. "Chain-Growth Condensation Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_177-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Verbicky, J. W. "Condensation Macrocyclic Oligomers: Synthesis and Polymerization." In Progress in Pacific Polymer Science, 89–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84115-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, K. N., H. J. Lee, J. Y. Lee, Y. J. Suh, and J. H. Kim. "Dispersed Condensation Polymerization in Supercritical Fluids." In ACS Symposium Series, 152–67. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2002-0801.ch012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dickson, Ronald S. "Oligomerization, Polymerization and Related Condensation Reactions." In Catalysis by Metal Complexes, 176–94. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5267-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Condensation polymerization"

1

Hatcher, Patrick G., Hongmei Chen, Seyyedhadi Khatami, and Derek C. Waggoner. "Condensation and Polymerization Explain the Humification of Lignin into Aliphatic and Aromatic Structures in Soil." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography